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Abstract
Computer systems do not exist in isolation: they must 
interact with the world through I/O devices. Our work, 
which focuses on constrained embedded systems, pro
vides a framework for verifying device driver software 
at the machine code level. We created an abstract de
vice model that can be plugged into an existing formal 
semantics for an instruction set architecture. We have in
stantiated the abstract model with a model for the serial 
port for a real embedded processor, and we have verified 
the full functional correctness of the transmit and receive 
functions from an open-source driver for this device.

1 Introduction

Formal verification of high-level software is relatively 
well understood. Interesting recent examples include 
correctness proofs for a realistic compiler [20], a 
LISP interpreter [25], and an operating system ker
nel [18]. Device drivers—routines that directly interact 
with peripherals— are less well understood, but they are 
worth verifying since they are part of the trusted comput
ing base for essentially all safety-critical computer sys
tems.

Our goal is to prove full functional correctness of 
bottom-level device code that directly interacts with 
hardware devices through I/O registers. Our approach re
quires substantial manual effort, but the resulting proofs 
are stronger than those produced in previous work: we 
guarantee not only that the hardware device is driven in 
a functionally correct fashion, but also that its timing re
quirements are met. This approach is too detail-oriented 
to scale up to large driver stacks that may be thousands 
of lines; we intend to integrate our manual proofs about 
bottom-level routines with more automated methods for 
reasoning about the rest of the driver stack.

Starting with Fox et al.’s semantics for the ARM in
struction set architecture [14,23], which models only
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the ARM core and memory, we created a framework 
for plugging in models of hardware peripherals typically 
found on an ARM-based systems-on-chip (SoC), such as 
communication ports, timers, and analog-to-digital con
verters. As a proof-of-concept, we instantiated our ab
stract device model with a UART (serial port) found on 
a real ARM processor. We then took a simple open- 
source driver for this UART, compiled it to ARM object 
code, and verified the functional correctness of its trans
mit and receive functions. Our results are all proved in 
HOL4 [15]. So far, our work is limited to devices and 
drivers that do not use interrupts or direct memory ac
cess (DMA).

2 Timing Requirements

Peripherals are clocked independently of the processor 
core. Therefore, even on a uniprocessor, device drivers 
execute in parallel with the devices they manage. One 
approach to verifying device drivers is to model the hard
ware as an independent thread, permitting thread veri
fication techniques to be leveraged. However, this ap
proach abstracts away timing information, preventing 
timing requirements from being verified. Timing con
straints are not only important in device drivers, but also 
embedded systems often have timing constraints as part 
of their top-level specifications. For example, an auto
motive brake-by-wire system might be required to begin 
brake drum actuation within 50 ms of receiving a brake 
pedal input.

Let’s look at a more detailed example: a hypothetical 
embedded system with two peripherals. One is a device 
that collects data from the environment at a fixed rate and 
stores a sample into a hardware FIFO every s cycles. The 
driver for this sensor copies a sample from the FIFO to 
a buffer in memory, which costs sd cycles. The other 
device is a transmitter that sends out of its own hard
ware FIFO, one sample every t  cycles. Its driver copies a 
sample from the memory buffer into the transmit FIFO,
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which costs td  cycles.
Assume that the drivers are called in a synchronous 

fashion from a tight loop that repeatedly reads a sample 
and then transmits a sample. The loop body executes in 
sd +  td  +  c cycles, where c is the loop overhead.

For a simple system without added synchronization, 
t  <  sd +  td  +  c <  s must hold or else samples will 
be dropped. If t  >  sd +  td  +  c, either the buffer in the 
transmitter will be overrun or the buffer in memory will 
be overrun. If sd +  td  +  c >  s, either the buffer in the 
sensor will be overrun or the buffer in the memory will 
be overrun.

To specify and verify properties like this, a rather low- 
level model of the interaction between devices and their 
drivers are needed. The rest of this paper describes such 
a model.

3 Modeling a Processor with Devices

This section describes our system model, which makes 
it possible to plug devices into an existing model of an 
ARM processor core. Our device model, like the ARM 
model, is formalized in HOL4. All theorems listed in this 
paper have been proved in HOL4.

3.1 Background: Cambridge ARM seman
tics

Our work is based on Fox et al.'s formal model of the 
ARMv4 instruction set architecture [14,23]. It includes 
banked registers including special purpose registers, ex
ceptions, status flags, co-processors and a data bus. A 
system model with no co-processors and no interrupt 
handling is built by extending the core model with mem
ory through the data bus. Its next-state operation is at 
the instruction level; it takes the system state as the input 
and returns the next state. There are tools to automati
cally prove theorems about the semantics of individual 
concrete ARMv4 instructions.

3.2 System model
We model an embedded system using this record:

{n e x t : sta te  ^  s ta te , undefed  : sta te ^  bool} (1)

^  is used to represent function types. state is the type of 
the state of the system. next is used to encode the tran
sition of the system, which includes fetching and pars
ing the instruction, fetching data, computing, updating 
registers, memory and the state of devices. The undefed  
predicate tests if the state is erroneous. The system en
ters an erroneous state when the processor core encoun
ters an exceptional condition (our work does not consider

the handling of interrupts or processor exceptions), when 
the processor accesses the memory addresses which are 
mapped to some device which is not present in the sys
tem, or when a device-specific error is encountered (for 
example, reading a device register that is in an indeter
minate state or writing to a read-only device register).

We require that:

V s . undefed  s undefed  (n ex t s ) (2)

That is, the erroneous state is sticky and we are not con
cerned with the system's subsequent behavior. One of 
our goals will be to prove that device drivers cannot put 
the system into an erroneous state.

A function step describes the effect of consecutive ap
plication of next:

step n  s =  if n  =  0 then s

else nex t (step  (n  — 1) s) (3)

For step to describe a running system, memory values 
including both instructions and data must be part of the 
system state. But that is not enough. For example, the 
processor can use values obtained by a sensor device 
from the environment to change the memory content. For 
cases like this, we require the state of the related device 
contain input streams, which need to contain the infor
mation from the future.

3.3 Specifying properties
We use the following construct to specify the properties 
of a state for the system:

sysjpred  (P, I , Q ) =

V s. P  s A —undefed  s

3 1. Q (step  t  s) A 

(V n. n  <  t  = ^

I  (step  n  s ) A 

—undefed  (step  n  s))  (4)

This is a shallow embedding of Hoare logic [13,16] with 
P, I, Q as the predicates of precondition, global invariant 
and postcondition with type sta te  ^  bool. Note that this 
is about complete correctness.

To use this construct to describe the properties of a 
program, the program must be specified in terms of the 
current program counter and instruction memory. The 
value of the program counter and the instruction mem
ory should be specified as part of P . We represent the 
program as a set of pairs of an instruction and its ad
dress. We use code p  s to indicate a program p  is part of 
the memory in a system state s .

In most cases, the part of memory which holds the pro
gram should be left unchanged at every moment. That 
should be part of I.



3.4 Abstract device model
A peripheral device runs in parallel with the processor 
core. Its state can change with or without interacting with 
the core or with the external world. The core interacts 
with devices using memory-mapped I/O: a collection of 
dedicated registers that are mapped into the processor's 
address space. From the perspective of the core, these 
registers are accessed like memory locations, though of 
course device registers do not in general contain the last 
value written to them, and both reads and writes may 
have side effects.

Based on this observation, we design an abstract type 
to represent a generic peripheral:

{m a p p ed  : addr ^  bool, 

m a p p ed R e a d  : addr ^  t  ^  (w o rd  * bool * t ), 

m a p p e d W r ite  : addr ^  w o rd  ^  t  ^  (bool * t ), 

t r a n s i t  : t  ^  t , w e l l fo r m  : t  ^  bool} (5)

Here addr  and word  are types for memory addresses and 
data. t  is the type for the state of the device, which varies 
depending on the individual device. * is used to construct 
a tuple. m apped  describes if an address is mapped to 
this device. m appedRead  and m appedW rite describe the 
effect of read and write commands from the processor 
core. Possible side effect on the device states is captured 
by t  in input and return types. The flag with bool type 
indicates if an error occurs during the memory-mapped 
access of the device registers. transit describes the au
tonomous transition of the device itself without the com
mand from the processor core. wellform  tells if a state of 
the device is wellformed.

A concrete device such as a UART is modeled as an 
instance of this abstract model. t  is instantiated with a 
concrete type, and all the members are assigned func
tions which model the concrete device.

3.5 Extended system model

An embedded SoC is a processor core plus a collection 
of peripherals. We start with a processor core that is ex
tended with a null device whose m apped  function returns 
false for all addresses. We can then build a realistic SoC 
by adding more devices on top of this bare one, as shown 
in Figure 1. Device models can be repeatedly composed 
as long as they fail to share mapped registers (real de
vices have this property, generally).

The state of a system with devices can be modeled us
ing this record:

{re g s  : r e g n u m  ^  w o rd , m e m  : addr ^  w o rd , 

d e v S t : t , u n d e f  : bool}.

processor clock

device clock

Figure 1: System with devices

Here regnum  is the type of a register, regs represents the 
register store, which includes the data registers and spe
cial purpose registers such the program counter. We use 
r0 to indicate register 0, r14 to indicate register 14, etc. 
p c  is used to indicate the program counter. They are all 
of regnum  type. mem  represents the memory. devSt rep
resents the state of the devices. The system is in an erro
neous state when undef is set.

Given a state s , undefed s =  s.undef. next should im
plement the execution of the processor core and transit 
for the device in parallel. They are independent of each 
other except when the instruction is a command to the 
device. In this scenario, the processor core commands 
the device to run m appedRead  or mappedW rite and reads 
data from or writes the data to the specific device regis
ter. It may set undef based on the results of these op
erations. At the same time, when running mappedRead  
or mappedW rite the device updates its state. The device 
finally updates its state again with transit.

This theorem establishes that adding a new device 
does not break a system that was previously working: 

Theorem 1: If a system s does not run into an erro
neous state in a n steps running a program p , it will not 
run into an erroneous state in n steps running p  with de
vice d  plugged in.

Proof: It is obvious that p  does not access the ad
dresses mapped to d  in these n steps. Otherwise it would 
have run into an erroneous state. So there is no chance 
for d  to introduce errors to p  in these n steps, since s and 
d  are independent of each other in these n steps.

Also, if we can verify a property of a program in a 
system with only some set of peripherals, the property 
still holds when more devices are added:

Theorem 2: For any system s with device deva, if 
sy sp re d  (P, I, Q) holds on it, then it holds for the system 
with one more device devb added, considering only the 
state components which resembles the state of s .

Proof: sy sp re d  (P, I, Q) actually specifies a se



quence of transitions of the system. Similar to Theorem 
1, in the new system, those components resembling s and 
devb are independent of each other in the sequence. So 
the sequence specified by sy sp re d  (P, I, Q) is still same.

4 A Realistic UART Model

We instantiate the abstract device (5) with a model of 
the UART0 from an NXP LPC2129 chip [17]. This is a 
popular embedded processor based on the ARM7TDMI 
architecture. It targets industrial control applications.

4.1 UART model
Our UART model is conservative: while it does not 
model all behaviors of the real device, it should be the 
case that any code that is verified against the model will 
also work when running on the hardware. Table 1 sum
marizes our model’s coverage of the UART’s register set, 
where dlab  stands for divisor latch access bit which con
trols if registers D LL  and D LM  are accessible. It is the 
7th bit in the LCR  register. Our model omits interrupts 
and modem functionality. The model has an internal 
buffer with size of one for receiving and transmitting. 
It does not model line errors or wire encoding since it is 
assumed that whole characters are transmitted. It does 
not model the break function.

In our model, a register access can lead the system into 
undefined states in the following scenarios:

1. When the register is not modeled. For example, ac
cess of the addresses reserved for the modem func
tion is undefined.

2. When a write-only register is read, or when a read
only register is written.

3. When a reserved bit is accessed.

4. When data corruption may occur. For example the 
receiving buffer register is read when its value is 
indeterminate.

The state of such a UART model is represented with a 
record:

{ R B R  : byte , T H R  : b y te , S C R  : byte ,

D L L  : byte , D L M  : b y te ,

dlab : bool, rdr : bool, oe : bool,

thre : bool, te m t : bool, clk : n u m ,

in  : n u m  ^  byte o p tio n ,

out : n u m  ^  byte o p tio n }; (7)

Here byte is the type for 8-bit byte. num  is the type 
for the natural number. Note that registers LCR  and LSR

are broken down into boolean flags. Access of FCR  is 
modeled as side effect only. THR and out form the output 
queue, and RBR  and in  form the input queue.

One important feature is that its speed is parameter
ized relative to the core speed. We are not modeling 
the exact baud rate. But in a similar fashion we use the 
16-bit word value from D LM  and D LL  as a slow-down 
factor b  unless its value is 0, in which case we set b  to 
be 1. For a UART state ps, slowFac p s  returns b. The 
UART only performs meaningful state transition every b 
cycles. To do so, clk is incremented for each instruction 
cycle. But it will be reset to 0 when it reaches b . Only at 
that moment the device performs transmitting and receiv
ing function, updates its registers and shifts its input and 
output streams. At other moments when clk < b — 1 , 
the UART only updates clk  for book-keeping purpose. 
However, The memory-mapped access from the proces
sor core however can occur at any clk value.

The incoming and outing data streams are modeled as 
functions in  and out from natural numbers to byte op
tion. An option type has two constructors, THE and 
NONE. THE x wraps x into the particular option type, 
while NONE indicates nothing is wrapped, which is suit
able to describe that at some moments the input or output 
stream are idle with no characters transmitted. With ev
ery b cycles of instruction execution, the two streams will 
shift. The new value for in is

At. in  (t +  1) (8)

the new value for out is

At. if t  =  0 then d else out (t — 1) (9) 

where d  is the character just sent out.

4.2 Describing the property of UART
We describe the property of the UART device in terms of 
strings extracted from the output queue and input queue. 
Only non-empty strings are considered. The predicates 
are defined in Figure 2. Suppose hd , tl return the first 
character and the tail of a string respectively, and TRUE  
stands for boolean value true. UART states which are not 
well-defined are excluded by the wellform  function. An 
input stream can be shifted by cutStrm . For the transmit 
function, outStr s os describes that s is the most recent 
string in the output stream os . And sentStr s p s  describes 
that s is the most recent string sent out by the processor 
in the UART state p s . For the receive function, inStr s is 
describes that s is the string in the input stream is . And 
inpStr s p s  describes that s is the next string to be re
ceived by the processor in the UART state p s . inInp m c 
p s  describes that a character c is at most at slot m  in the 
input stream of ps. shifted ps2 ps1  is a weak invariant for



Register Address
offset

Function Access When is read 
undefined?

When is write 
undefined?

Side-effect 
of read

Side-effect of write

RBR 0 receiver buffer when
—dlab

R no data received never reset data 
ready flag

none

THR 0 transmit holding when
—dlab

W never no room for 
transmission

none reset empty transmis
sion queue flags

DLL 0 divisor latch LSB 
when dlab

RW never never none none

DLM 4 divisor latch MSB 
when dlab

RW never never none none

FCR 8 FIFO control W always overwrite re
served bits or 
disable FIFOs

none reset transmission or 
receiving queue and 
flags

LCR 12 line control RW never never none assign dlab flag
LSR 20 line status R never always reset overrun 

flag
none

SCR 28 scratch pad RW never never none none

Table 1: UART model coverage. R indicates read only registers; W indicates write only. RW indicates no restriction 
on access. The first four columns are from the LPC2129 manual.

wellform ps = (—ps.tem t V ps.thre) A (—(ps.clk = 0 ) V ps.thre) A ps.clk < slowFac ps 
cutStrm  n s = Xx.s (n +  x )
outStr s os = 3n.(os n =  SOME (hd s )) A (Vl.l < n  = ^  (os l =  NONE)) A outStr (tl s)(cu tS trm  (n  +  1) os)
sentStr s ps =  if —ps .thre then (ps .TH R = h) A outStr (tl s ) ps .out else outStr s ps .out
inS tr s is =  3n .(is  n  =  SOME h) A (Vl.l < n  = ^  (is l =  NONE)) A inS tr (tl s ) (cutStrm  (n  +  1) is )
inpStr s ps =  if ps .rdr then (ps .R B R  = h) A inS tr (tl s ) ps .in  else inS tr s ps .in
inInp m  c ps = ps .rdr A (c = ps .RB R ) V 3n .n  < m  A (ps .in  n  =  SOME c)
shifted ps2 ps1 = 3n .(ps2 .in  = cutStrm  n ps1 .in ) A if ps2.rdr then inInp n p s2 .R B R  ps1 else TRU E  (10) 

Figure 2: Definitions used to describe the property of the UART device

the receive function. It describes that the input queue in 
ps2  results from the one in p s i  after some time.

5 Correctness of a UART Driver

We started with a freely available driver for the 
LPC2129’s UART0 that is implemented in C, and com
piled it to ARM assembly using GCC 4.1.1. We made 
one change to the compiler’s output, which was to 
change the “bx” instruction that implements a return- 
from-function to a “mov” instruction. We did this be
cause “bx” is not modeled in our current ARM tool 
which does not support the THUMB mode. We proved 
full correctness for three functions which interact with 
device registers: the putch  function transmits a charac
ter, the getch  function which attempts to read a character 
from RBR, and the getchW  function which performs a 
blocking read from RBR. The code is shown in Figure 3.

5.1 UART model soundness
Our correctness claim is based on the correctness claims 
of other components. We assume that the ARM model in

HOL4 is correct (this ARM model has been used in sev
eral projects, and an earlier version was verified against 
a specific instance of the ARM hardware). Then we de
pend on the fact that the abstract device model attached 
to the ARM model is sound as shown in Section 3.5. The 
soundness of the UART model is proved in the process. 
For example, We have proved the following properties 
regarding the transmitting function, among others:

Theorem 3: No character will be appended to the out
put under any following conditions:

1. no memory-mapped read or write occurs,

2. a read occurs,

3. a write occurs but the THR  register is not accessible 
or not written, and the FCR  register is not written 
(to reset the transmission queue).

In fact, the only scenario in which a character is ap
pended to the output is when the THR  register is written 
with thre set.



<Putch> : <G etch>: <GetchW>:
l d r r 2 ,  #0xe000c000 l d r r2 , #0xe000c000 l d r r2 ,  #0xe000c000
ld r b r 3 ,  [ r2 ,  #20] ld r b r3 , [ r2 ,  #20] ld r b r3 ,  [ r2 , #20]
t s t r 3 ,  #32 t s t r3 , #1 t s t 1#3,r

b eq <Putch> ld rn e b r3 , [r2 ] beq <GetchW>
and r 0 ,  r 0 ,  #255 mvn r0 , #0 ld r b r0 ,  [r2]
s t r b r 0 ,  [r2 ] andne r0 , r3 ,  #255 mov rlc,p
mov rlc,p mov p c , l r

Figure 3: The ARM assembly code fo rputch, getch and getchW

5.2 Memory safety and control flow in
tegrity

To prove the full correctness we need to prove memory 
safety and control flow integrity of the driver code. They 
are a useful part of the safety properties from the cor
rectness specification, and also they are important for 
proof management. Memory safety requires that only 
a given range of registers in the ARM core and memory 
is accessed. This implies compliance to the calling con
vention. So it is useful when proving the callers of the 
driver functions. It also implies the separation of instruc
tion memory, which is essential to prove control flow in
tegrity.

Ideally, we could know what addresses or registers are 
accessed in an ARM instruction when it is decoded. Here 
we use a different approach by examining the change of 
content in the memory and registers. Since the access 
which could cause side effects is limited to access of 
memory-mapped device registers, of which we already 
take care, this approach serves our purpose well. Func
tion sepM em accSet s1 s2 just does this. It checks two 
system states s1 and s2 to see if any address not in the 
set addrSet have the same content. sepReg regSet s1 s2 
does the same thing for the registers across two states. 
These two predicates are rather naive, an embedding of 
separation logic here would be nice.

Control flow integrity specifies that only some cer
tain sequences of PC values can occur in the execution. 
For example, when putch  is busy waiting, it just strictly 
follows the loop. Control flow integrity is necessary to 
prove the loop invariant, or generally any data flow, and 
thus helps us to sequentially compose the theorems about 
segments of the execution together to prove the final the
orem. In the final theorem we did not include the step
wise specification of the control flow.

5.3 Correctness of the UART driver
We proved the full correctness theorems of three func
tions: putch, getch, and getchW . putch  first waits for thre 
being set. It will then copy the byte from register r0 to 
THR. getch  copies the byte from RBR  to register r0 if rdr

is set. Otherwise it returns 0xff. getchW  first waits for 
rdr being set. It will then copy the byte from RBR  to reg
ister r0. Note that if getchW  is used to receive a string, 
character may be dropped if the UART is too fast.

The correctness property includes both liveness and 
safety properties. For all three functions, the basic live
ness property states that the function will return to its 
caller. And the basic safety property states that mem
ory safety is observed, the operating configuration of the 
UART device is not changed in terms of its speed (de
scribed by the slow-down factor) and the controlling bit 
dlab , and the system does not run into any erroneous 
state. The following three theorems states the correct
ness of the three functions.

Theorem 4: putch  will successfully appended the 
character from r0  to the string already sent out in the 
output queue. The basic safety and liveness properties 
hold in the process.

Theorem 5: getch will successfully read a character 
from the input queue or return 0xff. The basic safety and 
liveness properties hold in the process.

Theorem 6: If there is a string in the input queue, and 
the UART is slow enough, function getchW  will success
fully read the next character from the input stream. In the 
process, no overrun error occurs to the UART, and the 
basic safety and liveness properties hold.

The correctness of getchW  depends on the speed of the 
UART device relative to the ARM core, and the latency 
caused by the driver code. The driver code must be effi
cient enough and the UART must be slow enough so that 
no buffer overrun error can occur. Our approach allows 
such constraint to be expressed, while the previous work 
is rather awkward at this [1].

The tight timing properties in Theorem 6 will be help
ful when proving the string level receiving function, 
which calls getchW  repetitively. The string can be re
trieved completely without overrun, as long as the inter
val between the consecutive return and entry of getchW  
is bounded by delay , which is bounded by the difference 
between the slow-down factor of the UART and the la
tency introduced in getchW , which is 9 instruction cycles. 
This guarantees that oe is not set when getchW  is entered



putch getch getchW
A — (length str = 0) A 

9 + delay < (slowFac s0 )
P As. (code p s) A 

(s.regs pc = 0x28c) A 
(s.regs r14 = reAddr) A 
(wellform s.devS t) A 
—s.devSt.dlab A 
(LSB (s . regs r0 ) = c) A 
(sentStr str s.devSt)

As. (code p s ) A 
(s.regs pc = 0x314) A 
(s.regs r14 = reAddr) A 
(wellform s.devS t) A 
—s.devSt.dlab A 
—s .devSt .rdr

As. (code p s ) A 
(s.regs pc = 0x334) A 
(s.regs r14 = reAddr) A 
(wellform s.devS t) A 
—s.devSt.dlab A 
(inpStr str s.devS t) A 
—s .devSt .oe

I As. (sepM em lpcMapped s0 s ) A 
(sepReg putchReg s0 s ) A 
—s.devSt.dlab A 
(wellform s.devS t) A 
(slowFac s = slowFac s0)

As. (sepM em lpcMapped s0 s ) A 
(sepReg getchReg s0 s) A 
—s.devSt.dlab A 
(wellform s.devS t) A 
(slowFac s = slowFac s0 )

As. (sepM em lpcMapped s0 s ) A 
(sepReg getchWReg s0 s ) A 
—s.devSt.dlab A —s.devSt.oe A 
(wellform s.devS t) A 
(slowFac s = slowFac s0 )

Q As. (s.regs pc = reAddr) A 
(sentStr (c :: str) s.devS t)

As. (s.regs pc = reAddr) A 
((LSB  (s.regs r0 ) = 0 x ff) V 
3m. inInput m  (s.regs r0 ) 

s .devSt)

As. (s.regs pc = reAddr) A 
(LSB  (s.regs r0) = el 0 s tr ) A 
(inpStr (tl s tr ) s.devS t) A 
—s.devSt.rdr A
s.devSt.clk  +  delay + 1 < (slowFac s )

Table 2: The assumption A, precondition P, invariant I  and postcondition Q for UART driver functions putch, getch 
and getchW . They are intended to be used in A sysjpred  ( P , I , Q ). s0  indicates the initial state at the entry of 
the respective functions. p  indicates the respective function body. reAddr indicates the return address.

next time, thus the precondition of getchW  is met.

5.4 Proof method
All the theorems about the execution we proved are in 
the form of sy sp re d  (P, I, Q). The details are listed in 
Table 2. We use LSB  to extract the least significant byte 
from a register, which is 32 bits wide in the ARM model 
that we use. c::str appends a character c to the head of 
a string str. The modifiable register sets are defined in 
putchReg = getchW Reg = {R0, R2, R3, p c}  for putch  and 
getchW , and getchReg = {R0, p c}  for putch  respectively. 
Set lpcM apped  indicates all the memory addresses which 
are mapped to devices in a LPC2129 SoC.

putch  and getchW  work in the polling mode by testing 
for certain conditions with a busy-waiting loop. Termi
nation of the loop depends on the state of the device, and 
needs to be proved. One difficulty in proving loop ter
mination is that the device is not synchronized with the 
ARM core at a known rate. In the proof, we provide the 
witness for the existentially qualified t, then use induc
tion on time n as in definition (4).

Use putch  as an example. We break the execution se
quence into three parts. With each part we prove a cor
rectness lemma in the form of sy sp re d  (P, I, Q). The con
trol flow and data flow assertions are encoded in I . The 
first part is the busy waiting until thre is set in the UART. 
The length of this waiting depends on the speed of the 
UART and the UART state at the point of entry of pu tch .

When thre is set, the program counter could be at any 
instruction of the loop. The second part is the break of 
the loop from the point where thre is set to the exit of the 
loop. The third part is the sequential execution to copy 
the character to the register THR  and return. In classic 
cases when no devices are concerned, the first two parts 
are treated as one, since it is at a static instruction point 
that the condition triggering the break of the loop is met.

putch, getch and getchW  are used to implement string 
level transmitting and receiving functions. Proving the 
correctness of these functions do not need to work at the 
level of device details. Sophisticated program logic [11, 
23, 24, 32] may be needed to deal with scaling and more 
complicated control flow. The state of device can be triv
ially plugged in the proof based on Section 3.5. Our the
orems already imply the calling convention. It should not 
be difficult to translate them into appropriate format and 
integrate them into high level proof.

6 Related Work

Device drivers are typically written in unsafe program
ming languages and live in the kernel's address space. 
Driver bugs can corrupt or drop data, cause peripherals 
to malfunction or become wedged, and crash the OS [6].

Device driver verification: In previous work on ver
ifying functional correctness of device drivers [1,2,22], 
parallelism is modeled as concurrency between the driver



code and device transitions, and the cases of interleaving 
were reduced by considering the net effect of the inter
leaving on the state of the system. This approach allows 
one to take advantage of methodologies used in verify
ing concurrent programs [5,10,12,19,26]. However, it 
has difficulty dealing with some timing constraints on the 
driver code [1]. In contrast, we modeled the speed of the 
serial device so that some timing properties can be rea
soned about; the accuracy depends on the details of the 
instruction set architecture model that is used.

Device driver synthesis: One approach to improve 
the reliability of device drivers is to mechanically gen
erate “correct by construction” drivers from a high-level 
formal specification of a device and its environment [7, 
21,28,31,33]. By avoiding languages like C and by 
checking some properties, bugs can be avoided. This ap
proach has advantages, such as making it easier to gen
erate drivers for multiple platforms. However, the result
ing driver is not verified (the code generator and compiler 
are trusted) and synthesis of high-performance drivers re
mains challenging.

Property checking: Using model checking to verify 
temporal properties of device drivers for commodity op
erating systems is well studied [3,4,27]. Most of these 
works are at the source code level and focus on the in
terface between the drivers and the kernel, as opposed 
to focusing on correct interaction with the device. The 
main goal of most of these works are to keep drivers from 
crashing or hanging the OS. Source-level model check
ing can be difficult to use in the context of embedded 
systems [30]. Model checking of embedded C code [9] 
and assembly code [8,29] has been done. In these works, 
specific hardware details are considered. However, the 
works are largely limited to bug hunting instead of pro
viding correctness guarantees.

7 Conclusion and Future Work

Our goal is to prove full correctness, including timing 
properties, of device drivers for an embedded system in 
terms of a model of a CPU plus its peripheral devices. 
We introduced an abstract device model that can be in
tegrated with a formal model of a processor core and we 
instantiated it with a realistic model of the UART from 
a commonly-used ARM processor. We then proved full 
correctness of the transmit and receive functions from an 
open-source driver for that device.

Our work is intended to provide a platform for veri
fying embedded systems in a modular way with regard 
to its hardware devices. It allows us to prove the cor
rectness of the driver for one device at a time, and claim 
validity for a system containing multiple devices. For 
the existing proof about ARM code in HOL4 which does 
not consider devices, this allows the support for devices

being added without repeating most of the proof.
We have three things planned for the future. The first 

is to finish the proof of the full correctness of the UART 
driver for the receiving and transmitting function and in
tegrate it with an existing proof. The second one is to 
design a program logic on top of the existing work to 
support the devices in a modular way, which will make 
the reasoning of large programs more scalable. The logic 
should have separation logic support for the main mem
ory. The third one is to design a framework to support 
the reasoning about drivers that handle interrupts.

References
[1] A l k a s s a r , E., H i l l e b r a n d , M., K n a p p , S., R u s e v , R., 

a n d  T v e r d y s h e v , S. Formal device and programming model 
for a serial interface. In Proc. o f the 4th Intl. Verification Work
shop (VERIFY) (Bremen, Germany, July 2007), pp. 4-20.

[2] A l k a s s a r , E., a n d  H i l l e b r a n d , M. A. Formal functional 
verification of device drivers. In Proc. o f the 2nd Intl. Conf. 
on Verified Software: Theories, Tools, Experiments (VSTTE) 
(Toronto, Canada, Oct. 2008), pp. 225-239.

[3] B a l l , T., B o u n i m o v a , E., C o o k , B., L e v i n , V., L i c h t e n - 
b e r g , J., M c G a r v e y , C., O n d r u s e k , B., R a j a m a n i , S. K., 
a n d  U s t u n e r , A. Thorough static analysis of device drivers. In 
Proc. o f the 2006 EuroSys Conf. (Leuven, Belgium, Apr. 2006), 
pp. 73-85.

[4] B a l l , T., a n d  R a j a m a n i , S. K. Automatically validating tem
poral safety properties of interfaces. In Proc. o f the 8th Intl. SPIN 
Workshop on Model Checking Software (SPIN) (Toronto, Canada, 
May 2001), pp. 103-122.

[5] C h a k i , S., C l a r k e , E., G r o c e , A., J h a , S., a n d  V e i t h , H. 
Modular verification of software components in C. In Proc. o f the 
22nd Intl. Conf. on Software Engineering (ICSE) (Portland, OR, 
May 2003), pp. 385-395.

[6] C h o u , A., Ya n g , J., C h e l f , B., H a l l e m , S., a n d  E n g l e r , 
D. R. An empirical study of operating system errors. In Proc. 
of the i8 th  ACM Symp. on Operating Systems Principles (SOSP) 
(Banff, Canada, Oct. 2001), pp. 73-88.

[7] C o n w a y , C. L., a n d  E d w a r d s , S. A. NDL: A domain- 
specific language for device drivers. In Proc. o f the 2004 Conf. 
on Languages, Compilers, and Tools fo r  Embedded Systems 
(LCTES) (Washington, DC, June 2004).

[8] F e h n k e r , A., H u u c k , R., R a u c h , F., a n d  S e e f r i e d , S. 
Some assembly required - program analysis of embedded system 
code. In Proc. o f the 8th Intl. Working Conf. on Source Code 
Analysis and Manipulation (SCAM) (Beijing, China, Sept. 2008), 
pp. 15-24.

[9] F e h n k e r , A., H u u c k , R., S c h l i c h , B., a n d  T a p p , M. Auto
matic bug detection in microcontroller software by static program 
analysis. In Proc. o f the 35th Conf. on Current Trends in Theory 
and Practice o f Computer Science (SOFSEM) (Spindleruv Mlyn, 
Czech Republic, Jan. 2009), pp. 267-278.

[10] F e n g , X., a n d  S h a o , Z. Modular verification of concurrent 
assembly code with dynamic thread creation and termination. In 
Proc. o f the 10th ACM SIGPLAN Intl. Conf. on Functional Pro
gramming (ICFP) (Tallinn, Estonia, Sept. 2005), pp. 254-267.

[11] F e n g , X., S h a o , Z., G u o , Y., a n d  D o n g , Y. Certifying low- 
level programs with hardware interrupts and preemptive threads. 
J. Automatic Reasoning 42, 2-4 (Apr. 2009), 301-347.



[12] F l a n a g a n , C., a n d  Q a d e e r , S. Thread-Modular model 
checking. In Proc. o f the 10th Intl. SPIN Workshop on Model 
Checking Software (SPIN) (Portland, OR, May 2003), pp. 213
224.

[13] F l o y d , R. W. Assigning meanings to programs. In Proc. of 
Symp. in Applied Mathematics (New York City, NY, Apr. 1966), 
vol. 19, pp. 19-32. Mathematical Aspects of Computer Science.

[14] F o x , A. Formal specification and verification of ARM6. In Proc. 
o f the 16th Intl. Conf. on Theorem Proving in Higher Order Log
ics (TPHOLs) (Rome, Italy, Sept. 2003), pp. 25-40.

[15] G o r d o n , M. J. C. Introduction to the HOL system. In Proc. 
o f the 1991 Intl. Workshop on the HOL Theorem Proving System 
and its Applications (TPHOLs) (Davis, CA, Aug. 1991), pp. 2-3.

[16] H o a r e , C. A. R. An axiomatic basis for computer program
ming. Communications ACM 12, 10 (Oct. 1969), 576-583.

[17] K e i l . NXP LPC2129. h t t p : / / w w w .k e i l . c o m / d d /  
c h ip / 3  6 4 8 .h tm .

[18] K l e i n , G., E l p h i n s t o n e , K., H e i s e r , G., A n d r o n i c k , J., 
C o c k , D., D e r r i n , P., E l k a d u w e , D., E n g e l h a r d t , K., 
K o l a n s k i , R., N o r r i s h , M., S e w e l l , T., T u c h , H., a n d  
W i n w o o d , S. seL4: formal verification of an OS kernel. In 
Proc. o f the 22nd ACM Symp. on Operating Systems Principles 
(SOSP) (Big Sky, MT, Oct. 2009), pp. 207-220.

[19] L a m p o r t , L. The temporal logic of actions. ACM Transactions 
on Programming Languages and Systems 16,3 (May 1994), 872
923.

[20] L e r o y , X. Formal certification of a compiler back-end or: pro
gramming a compiler with a proof assistant. In Proc. o f the 
33rd Symp. on Principles o f Programming Languages (POPL) 
(Charleston, SC, Jan. 2006), pp. 42-54.

[21] M E r i l l o n , F., a n d  M u l l e r , G. Dealing with hardware in 
embedded software: A general framework based on the Devil lan
guage. In Proc. o f the 2001 Workshop on Languages, Compilers, 
and Tools fo r  Embedded Systems (LCTES)/ The Workshop on Op
timization o f Middleware and Distributed Systems (LCTES/OM) 
(Snowbird, UT, June 2001), pp. 121-127.

[22] M o n n i a u x , D. Verification of device drivers and intelligent 
controllers: a case study. In Proc. o f the 7th Intl. Conf. on Embed
ded Software (EMSOFT) (Salzburg, Austria, Sept.-Oct. 2007), 
pp. 30-36.

[23] M y r e e n , M. O., F o x , A. C. J., a n d  G o r d o n , M. J. C. Hoare 
logic for ARM machine code. In Proc. o f the 2007 Symp. on Fun
damentals o f Software Engineering (FSEN) (Tehran, Iran, Apr. 
2007), pp. 272-286.

[24] M y r e e n , M. O., a n d  G o r d o n , M. J. C. Hoare logic for 
realistically modelled machine code. In Proc. o f the 13th Intl. 
Conf. on Tools and Algorithms fo r the Construction and Analysis 
of Systems (TACAS) (Braga, Portugal, Mar.-Apr. 2007), pp. 568
582.

[25] M y r e e n , M. O., a n d  G o r d o n , M. J. C. Verified LISP imple
mentations on ARM, x86 and PowerPC. In Proc. o f the 22nd Intl. 
Conf. on Theorem Proving in Higher Order Logics (TPHOLs) 
(Munich, Germany, Aug. 2009), pp. 359-374.

[26] O ’H e a r n , P. W. Resources, concurrency, and local reasoning. 
Theoretical Computer Science 375, 1-3 (May 2007), 271-307.

[27] P o s t , H., a n d  K U c h l i n , W. Integrated static analysis for 
Linux device driver verification. In Proc. o f the 6th Intl. Conf. 
on Integrated Formal Methods (IFM) (Oxford, UK, July 2007), 
pp. 518-537.

[28] R y z h y k , L., C h u b b , P., K u z , I., S u e u r , E. L., a n d  H e i s e r , 
G. Automatic device driver synthesis with Termite. In Proc. o f 
the 22nd ACM Symp. on Operating Systems Principles (SOSP) 
(Big Sky, MT, Oct. 2009), pp. 73-86.

[29] S c h l i c h , B. Model checking of software for microcontrollers. 
ACM Transactions on Embedded Computing Systems (TECS) 9, 
4 (Mar. 2010).

[30] S c h l i c h , B., a n d  K o w a l e w s k i , S. Model checking C source 
code for embedded systems. Intl. J. Software Tools fo r  Technol
ogy Transfer 11, 3 (Mar. 2009), 187-202.

[31] S u n , J., Y u a n , W., K a l l a h a l l a , M., a n d  I s l a m , N. 
HAIL: a language for easy and correct device access. In Proc. 
of the 2005 Intl. Conf. on Embedded Software (EMSOFT) (Jersey 
City, NJ, Sept. 2005), pp. 1-9.

[32] T a n , G., a n d  A p p e l , A. W. A compositional logic for control 
flow. In Proc. o f the 7th Intl. Conf. on Verification, Model Check
ing, and Abstract Interpretation (VMCAI) (Charleston, SC, Jan. 
2006), pp. 80-94.

[33] W a n g , S., a n d  M a l i k , S. Synthesizing operating system 
based device drivers in embedded systems. In Proc. o f the 
1st IEEE/ACM/IFIP Intl. Conf. on Hardware/Software Codesign 
and System Synthesis (CODES+ISSS) (Newport Beach, CA, Oct. 
2003), pp. 37-44.

http://www.keil.com/dd/

