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ABSTRACT 

This paper presents an algorithm that adapts the parameters of a 
Hammerstein system model. Hammerstein systems are nonlinear 
systems that contain a static nonlinearity cascaded with a linear 
system. In this, work, the static nonlinearity is modeled using a 
polynomial system and the linear filter that follows the nonlin­
earity is an infinite impulse response system. The adaptation of 
the nonlinear components is enhanced in the algorithm by orthog­
onalizing the inputs to the coefficients of the polynomial system. 
The linear system is implemented as a recursive higher-order filter. 
The step sizes associated with the recursive components are con­
strained in such a way as to guarantee bounded-input, bounded­
output stability of the overall system. Experimental results in­
cluded in the paper show that the algorithm performs well and al­
ways converges to the global minimum if the input signal is white. 

1. INTRODUCTION 

This paper describes the derivation and experimental performance 
evaluation of an adaptive algorithm employing a Hammerstein sys­
tem model. Hammerstein systems are cascade nonlinear systems 
comprising of a memoryless nonlinearity followed by a linear sys­
tem as shown in Figure I. There are many applications in which 
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Fig. 1. Block diagram ofa Hammerstein system. 

cascade nonlinear models are appropriate. Examples include the 
modeling of satellite communication systems [I] and biological 
systems [2]. The application that has motivated this work is that 
of modeling biological and chemical detectors. Such systems are 
known to be nonlinear and our prior work on modeling a US Army 
ICAM, an ion mobility spectrometer [3], has shown that they can 
be accurately modeled using a Hammerstein model in which the 
linear system has infinite impulse response characteristics. 

In our work, we model the memoryless nonlinearity using a 
polynomial input-output relationship, and the linear system has 
infinite impulse response characteristics. The input-output rela-
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tionship of the adaptive filter is given by 

N M 

d(k) = La;(k). ti(k - i) + Lbj(k). y(k - j), (1) 
.=1 

where y(k) is the output of a static polynomial nonlinear system 

y(k) = Pl(k) . u(k) + ... + pL(k) . uL(k) (2) 

and u(k) is the input to the adaptive filter. In the above equations, 
PI (k ), ai (k) and bj (k) represent the coefficients of the adaptive 
filter at time k. The objective of the adaptive filter is to update the 
coefficients during each iteration using a stochastic gradient proce­
dure so as to reduce the instantaneous squared estimation error dur­
ing each iteration. Our approach is unique in two respects: (1) We 
orthogonalize the input signal to the polynomial subsystem. This 
improves the overall convergence behavior of the method. (2) The 
adaptive IIR subsystem employs a step size sequence that guaran­
tees stability of the system. This work follows that of Carini, et. 
al. [4], in which the authors employ a Lyapunov stability crite­
ria to develop stabilization algorithms for adaptive IIR filters. The 
derivation is also based on an adaptive linear filtering algorithm 
[5] that converges to the global minimum of the error surface for 
white input signals. Even though this paper does not contain a 
proof of global convergence, experimental evidence indicates that 
the system performs in that manner for white input signals. 

2. ADAPTATION OF THE HAMMERSTEIN SYSTEM 
MODEL 

We consider the problem of estimating the desired response sig­
nal d(k) as the output of the adaptive Hammerstein filter as in (1) 
when its input is u(k). For this purpose, we employ a stochastic 
gradient algorithm that attempts to reduce the mean square error 
at each time. In order to improve the convergence behavior of the 
adaptive filter, we employ an adaptive Gram-Schmidt orthogonal­
ization procedure for the polynomial subsystem denoted by (2). 
Unlike the work in [4], the linear subsystem is implemented using 
the direct form structure, and the step size constraints that guaran­
tee stable operation of the filter at each time are derived online for 
the direct form system. Finally, in order to obtain a unique solu­
tion, we must constrain one of the coefficients of the polynomial 
or the numerator of the linear component to a fixed value. In all 
the experimental results described later, we used boCk) = 1 at aU 
times. Other constraints may be used if necessary. 
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2.1. Adaptation of Polynomial Subsystem 

Figure 2 shows the procedure for orthogonalizing the input to the 
static nonlinearity in the model. It is evident that 

Fig. 2. Orthogonalization ofthe nonlinear subsystem. 

vl(k) = u(k) (3) 

The rest of the orthogonalized signals vl(k) are computed as 

1-1 

VI(k) = ul(k) - Lgj,l(k)Vj(k). (4) 
j=1 

The coefficient update strategy for the coefficients of the Gram­
Schmidt processor using LMS adaptive algorithm can be written 
as 

where 

j 

ejl(k) = ul(k) - Lg.,I(k). v.(k). 
.=1 

Taking the derivative in (5), results in the update equation 

gj,l(k + 1) = gj,l(k) + J.tjl . ejl(k)· vj(k). 

Let 

z(k) = wl(k)· vl(k) + ... + wL(k)· vL(k). 

Then, 

N M 

(5) 

(6) 

(7) 

(8) 

d(k) La;(k)d(k - i) + Lbj(k)z(k - j). (9) 
;==1 j=O 

The coefficient update strategy for wl(k) has the following 
structure [6]: 

a(~ [d(k) - d(k)f) 
wl(k + 1) = wl(k) - VI aWI(k) , VI > O. 

The parameter VI is the step size of the adaptive filter, and it con­
trols the speed of convergence as well as the steady state and track­
ing properties of the system. Since only d(k) is a function of the 
coefficients, we evaluate the partial derivatives in the above ex­
pression as 

a(~ [d(k) - d(k)f) 

aWI(k) 
_ [d(k) _ d(k)] ad(k) 

. aWI(k) ' 

with 1 :5 I :5 L. Evaluating the derivative of (9) with respect to 
WI (k), and using the commonly used approximation 

ad(k - 8) ,..., ad(k - 8) 
aWI(k - 8)"'" aWI(k) , 

for sufficiently small VI, we get 

ad(k) ~ ad(k - 8) ~ 
aWI(k) ~ ~a.(k) aWI(k _ 8) + ~b.(k)vl(k - 8). 

(10) 

Thus we can write coefficient update equations for the nonlinear 
subsystem as 

w(k + 1) [ w1(k+1) w2(k + 1) ... WL(k + 1) 

= w(k) + diag [ 111 112 ... ilL ] • 

[ 8ci«lj 
8Wl/c 88!;(2j ... 8~cil(Lj ] . e(k). (11) 

where e(k) = d(k) - d(k). 

2.2. Adaptation of Linear IIR Subsystem 

The coefficient update strategy for the linear subsystem has the 
following structure [6]: 

and 

bj(k + 1) 

where the parameters Jl-i and Pi are the step sizes of the adaptive 
filter. We evaluate the partial derivatives in the above expressions 
[7] and make similar approximations as in Section 2.1. Assum­
ing that each of J.ti and pj are sufficiently small, and therefore the 
changes to the coefficients over any interval of duration N or less 
is very small, we can derive the following expressions: 

ad(k) . . t ad(k - 8) 
(12) 

aa;(k) 
~ d(k - z) +. a.(k) aai(k _ 8) 

.=1 

ad(k) . t ad(k-8) (13) 
abj(k) 

~ z(k - J) + a.(k) 8b.(k _ 8)" 
8=1 1 

Recursive time-varying homogeneous linear systems are exponen­
tially stable if I) its instantaneous poles are inside unit circle, and 
2) they are sufficiently slowly varying. 

Using the results of [8] and the idea employed in [4], where a 
new upper bound on the maximum allowable coefficient variation 
for the stability of a direct-form linear recursive filter is derived, 
the coefficients must satisfy the inequality 

Ilvee [Q(k + 1)] - vee [Q(k)] II < 1, (14) 

where 
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In the above expression, A(k) is the system matrix obtained when 
we transform the direct-form representation in (9) to the state space 
representation ignoring the feedforward terms ( i.e., the coeffi­
cients bj(k». 

Let the data vector and the coefficient vector of the linear sub­
system be given by 

x(k) = [ ri(k - 1) ... ri(k - N) z(k) ... z(k _ M) ]T 

and 

O(k) = [a1(k) ... aN(k) bo(k) ... bM(k) r, 
respectively. The coefficients are updated in this method as 

O(k + 1) = O(k) + A(k)· R-1(k + 1) ·4J(k), 

where A(k) is a time-varying step size matrix of the adaptive filter 
defined as 

A(k) = diag [ J.t(k) ... J.t(k) p(k) ... p(k) 

and the information vector 4JT (k) is given by 

In the above expression q-1 refers to a unit delay operator. The 
matrix R(k) is an estimate of the autocorrelation matrix of the 
information vector, and is recursively computed as 

R(k) = '\R(k -1) + (1- ,\)4J(k)4JT(k), (16) 

where 0 < < ,\ < 1. Its inverse may be evaluated recursively 
using the matrix inversion lemma as 

While implementing (17) care should be taken to ensure the sym­
metry of R -1 (k + 1) in (17). We now have all the equations nec­
essary to implement the adaptive filter. During the operation of the 
adaptive filter, the step sizes are selected such that it is the smaller 
of a pre-selected maximum or the maximum value that maintains 
the inequality in (14). 

3. EXPERIMENTAL RESULTS 

In this section we present the results of an experiment conducted to 
evaluate the performance capabilities of the adaptive filter derived 
in the previous section. The adaptive filter was used in a system 
identification problem where the linear component ofthe unknown 
system satisfied the input-output relationship 

H(z) = 1 - 1.3334z-1 + 1.6667z-2 - 2.665z-3 + 1.9666z-4 

1 - 1.2z 1 + 0.74z-2 - 0.14z 3 + 0.02Z-4 
(18) 

H(z) = D(z)/Y(z) and the input-output relationship of the mem­
oryless nonlinearity was y(k) = OAu(k) -0.3u2(k) +0.2u3(k). 
The input signal u(k) of the adaptive filter was white with zero 
mean value and unit variance. The desired response signal d(k) 
of the adaptive filter was obtained by corrupting the output of the 

Table 1. Coefficients of the unknown system,.mean values of the 
adaptive filter coefficients and their variances after convergence. , 

Coefficient True value Mean Variance 
al 1.2 1.2011 0.0039 
a2 -0.74 -0.7404 0.0035 
a3 0.14 0.1392 0.0030 
a4 -0.02 -0.0192 0.0019 
bo 1 - -
b1 -1.3334 -1.3338 0.0092 
b2 1.6667 1.6677 0.0144 
b3 -2.6665 -2.6677 0.0242 
b4 1.9666 1.9672 0.0207 
P1 0.4 0.3982 0.0137 
P2 -0.3 -0.2986 0.0028 
P3 0.2 0.2011 0.0021 

unknown system d(k) in (18) with additive white noise with zero 
mean value and variance such that the output SNR was 30 dB. 
Twenty independent experiments using 8000 data samples each 
were conducted. The results presented are average values over 
these twenty experiments. 

The adaptive filter was implemented with the step size of the 
recursive part to be the minimum of J.t = 0.01 or the bound sug­
gested by the conditions. The moving average part of the linear 
subsystem was normalized with forgetting factor 0.95. Similarly, 
adaptation for the nonlinear part was normalized with forgetting 
factor 0.99. The step sizes for the gj,j{k) coefficients were con­
stant and equalto 10-4

• The system was initialized with Hinit(Z) = 
1/(1+0.0064z-4) andYinit(k) = 0·u(k)+0·u2(k)+0·u3(k). 
The coefficient bo is set to a value 1 and is not changed through­
out the simulation. This ensures the uniqueness of the solution. 
Coefficients of the unknown system, mean values of the adaptive 
filter coefficients, and their variances after convergence are shown 
in Table I. Coefficients of the polynomial subsystem PI were ob­
tained by conversion of the coefficients WI. Figure 3 depicts the 
evolution ofthe mean square estimation error of the adaptive filter 
using a semi-log graph. All experiments resulted in convergence 
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Fig. 3. Evolution of the mean-square estimation error. 

to the global minimum. The evolution of the mean values of the 
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Fig. 4. Evolution of the mean values of the step size for the adap­
tation of the denominator coefficients. 

step size for the denominator coefficients is shown in Figure 4. 
The evolution of the coefficients of the linear subsystem, as well 
as the evolution of the coefficients of the nonlinear subsystem is 
shown in Figure 5. 

The results indicate that step size selection using the condi­
tion in (14) results in stable operation of the linear IIR section of 
the adaptive filter. The initial values of step sizes are (usually) 
small since the initial estimation error is large. Combined with the 
large error, the initial values of the step size produced the largest 
changes possible that still maintained the exponential stability of 
the (linear) subsystem. For the stability of the entire Hammerstein 
filter, one should be also concerned about the stability of the poly­
nomial subsystem. This is ensured by constraining the step sizes 
associated with the nonlinear subsystem to be sufficiently small. 

4. CONCLUDING REMARKS 

This paper presented the derivation and preliminary performance 
evaluation of an adaptive nonlinear filter employing the Hammer­
stein system model. The model, consisting of a static nonlinearity 
followed by a recursive linear system, is useful in many applica­
tions including in the modeling of communications systems, bio­
logical systems, and chemical and biological detectors. First, an 
algorithm that uses constant step sizes was derived. Our system 
employs stability bounds on the step sizes for adapting the coeffi­
cients of the recursive linear part. The resulting time-varying step 
sizes guarantee stable operation of the adaptive filter. 

The error surface of the adaptive filter employing our model 
is not unimodal, and therefore our algorithm may converge to lo­
cal minima of its error surface if we do not use white input signal. 
However, the algorithm derivation is based on the derivation of an 
adaptive linear recursive filter that is globally convergent for sta­
tionary and white input signals [5]. We believe that the adaptive 
filter of this paper is also globally convergent for the same set of 
conditions on the input signals. Simulation results so far have not 
contradicted this conjecture. More detailed analysis of this prob­
lem is necessary. This, as well as means of avoiding local minima 
for colored input signals are currently under investigation. 
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Fig. 5. Evolution of the mean values of the coefficients. 
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