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Neuronal Interactions Improve Cortical Population Coding of 
Movement Direction

E. M. Maynard,1 N. G. Hatsopoulos,2 C. L. Ojakangas,2 B. D. Acuna,2 J. N. Sanes,2 R. A. Normann,1 and 
J. P. Donoghue2
1 Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, and dep a rtm en t of Neuroscience, Brown 
University, Providence, Rhode Island 02912

Interactions among groups of neurons in primary motor cortex 
(Ml) may convey information about motor behavior. We inves­
tigated the information carried by interactions in Ml of macaque 
monkeys using a novel multielectrode array to record simulta­
neously from 12-16 neurons during an arm-reaching task. Pairs 
of simultaneously recorded cells revealed significant correla­
tions in their trial-to-trial firing rate variation when estimated 
over broad (600 msec) time intervals. This covariation was only 
weakly related to the preferred directions of the individual Ml 
neurons estimated from the firing rate and did not vary signifi­
cantly with interelectrode distance. Most significantly, in a por­
tion of cell pairs, correlation strength varied with the direction of 
the arm movement. We evaluated to what extent correlated 
activity provided additional information about movement direc­
tion beyond that available in single neuron firing rate. A multi­

variate statistical model successfully classified direction from 
single trials of neural data. However, classification was consis­
tently better when correlations were incorporated into the 
model as compared to one in which neurons were treated as 
independent encoders. Information-theoretic analysis demon­
strated that interactions caused by correlated activity carry 
additional information about movement direction beyond that 
based on the firing rates of independently acting neurons. 
These results also show that cortical representations incorpo­
rating higher order features of population activity would be 
richer than codes based solely on firing rate, if such information 
can exploited by the nervous system.
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ment direction; correlation; cell assemblies

A major problem in understanding higher brain function is de­
termining how complex neuronal representations of sensory and 
motor information are constructed from the activities of individ­
ual neurons. Higher order sensory and motor representations 
appear to emerge from the firing of neuronal assemblies, but it 
has yet to be determined whether spatial and temporal interac­
tions contribute to these representations. Interactions clearly oc­
cur within the widespread network of synaptically modifiable 
horizontal connections in which cortical neurons are embedded 
(Huntley and Jones, 1991; Hess and Donoghue, 1994; Rioult- 
Pedotti et al., 1998). Although controversial, various forms of 
interactions among cortical neurons, including firing synchrony 
and local oscillations, have been considered as key to forming 
higher level representations (Singer, 1995; Vaadia et al., 1995; 
DeCharms and Merzenich, 1996; Riehle et al., 1997; Hatsopoulos 
et al., 1998b).

The representation of information by populations of neurons 
has been extensively studied in both sensory (Nicolelis et al., 
1995; Meister, 1996) and motor areas of cortex (Georgopoulos et
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al., 1988; Schwartz, 1993; Tanaka, 1994). A common observation 
is that the firing rates of single cortical neurons during repeated 
presentations of the same stimulus vary considerably (Henry et 
al., 1973; Tomko and Crapper, 1974; Heggelund and Albus, 1978; 
Rose, 1979; Dean, 1981; Lee et al., 1998; Shadlen and Newsome, 
1998). Whether this variability is meaningless noise, reflecting the 
stochastic nature of neurons, or carries information is widely 
debated (Richmond and Optican, 1990; Bair and Koch, 1996; 
Buracas et al., 1998; Lee et al., 1998; Oram et al., 1998; Shadlen 
and Newsome, 1998; Zhang et al., 1998).

The firing rate of primary motor cortex (MI) neurons broadly 
reflects the direction of arm-reaching movements (Georgopoulos 
et al., 1986). The broad tuning of individual cells to movement 
direction coupled with their firing rate variability (Lee et al., 
1998) have inspired theories of directional coding in which an 
accurate representation emerges as a result of averaging over a 
large number of cells (Georgopoulos et al., 1992; Salinas and 
Abbott, 1994; Sanger, 1994; Tanaka, 1994). Although these meth­
ods are quite successful in deriving movement direction, re­
sponse variability was treated as a simple random noise process. 
This assumption is called into question both because individual 
MI neurons nearly always represent additional motor variables 
(Kalaska, 1988; Fu et al., 1993) and because weak correlations 
have been encountered in the firing rate variability of pairs of 
cortical neurons (Gawne and Richmond, 1993; Zohary et al., 
1994; Lee et al., 1998). The contribution of correlated discharge 
has largely been dismissed as reflecting coding redundancy in a 
noisy system. However, correlations in response variability can 
provide additional information that is available only from the 
assembly (Deadwyler and Hampson, 1996; Hatsopoulos et al.,
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1998b; Oram ct al., 1998). In the present study we demonstrate 
that statistical dependencies in the trial-to-trial firing rates of 
pairs of neurons can be an additional source of information about 
motor behavior.

MATERIALS AND METHODS
Task. Two male monkeys (macaca fasicularis) were operantly condi­
tioned to perform an instructed-delay task consisting of visually guided 
planar reaching movements from a central holding position to a radially 
located target position (Georgopoulos et al.. 1986; Ilatsopoulos et al.. 
1998a). Animals moved a two-joint manipulandum in the horizontal 
plane to direct a cursor from a central hold position to one of eight 
possible radially positioned targets (1 cm2. 6 cm away from start position) 
viewed on a computer monitor. A  trial was composed of three epochs: a 
hold period during which time the monkey had to maintain the cursor at 
the hold position for 0.5 sec. a random 1-1.5 sec “instructed delay"’ period 
during which the target for the forthcoming action appeared but move­
ment was withheld, and a “go"’ period initiated by target blinking (mean 
reaction time. —365 msec). Manipulandum position was monitored using 
a digitizing tablet (Numonics) sampled at 72 IIz. Monkeys generally 
completed >30 movements in each of the eight directions during a 
recording session.

Array recordings. When >85% correct trials were attained, an array of 
100 microelectrodes was implanted in the MI arm representation, medial 
to the spur of the arcuate sulcus in the mediolateral dimension, abutting 
the central sulcus in the anteropoterior dimension. The microelectrode 
arrays (Bionic Technologies. Salt Lake City. UT) consisted of 100.
1.5-mm-long platinized tip. silicon probes arranged in a square grid (400 
ixm on center) with probe impedances between 200 and 500 kO (1 nA. 1 
kHz sine wave; Nordhausen et al.. 1996). Twenty-two in the central 
matrix of the 100 available electrodes were selected in advance for 
electrical connection to one of two percutaneous connectors using 25.4 
/un (1 mil) Teflon-coated platinum-iridium (10%) wire (10IR1T; Med- 
Wire. New York. NY). An extra wire (50.8 (im diameter. Pt-Ir 20%) with 
—5.0 mm of the terminal insulation removed was inserted subdurally and 
used as a reference. For added ease of handling, the 12 wires were held 
together in four or five spots with silicone elastomer (MDX4-4210; Dow 
Corning. Midland. MI). Each percutaneous connector consisted of a 
12-pin connector (FR-12S-6; Microtech. Pittsburgh. PA) set in a custom- 
designed titanium pedestal. The back of the array and percutaneous 
connectors were coated with silicone elastomer to mechanically protect 
the wires and maintain electrical insulation at the bond pad sites.

Animal care and surgical procedures used in the identification of the 
arm area in monkey MI are described elsewhere (Donoghue et al.. 1998). 
as are the procedures for implanting the array and closing the surgical 
defect (Rousche and Normann. 1992). All surgical procedures conducted 
for this study were in accordance with Brown University Institutional 
Animal Care and Use Committee-approved protocols and the Guide for 
the Care and Use of Laboratory Animals (National Institute of Health 
publication no. 85-23. revised 1985).

Recordings began after a 1 week period of postsurgical recovery. 
Custom shielded cabling carried signals from either 11 or 22 electrodes to 
a custom 16-channel amplifier (gain. 25.000; - 3  bB points 250 Hz and 7.5 
kHz; 5th order Butterworth anti-aliasing filter; input impedance. 10y 12). 
Signals were simultaneously digitized at 20 kHz (Experimenter's Work­
bench; DataWave Technologies. Longmont. CO) and processed to ex­
tract action potentials. All candidate action potential waveforms (-0 .5  to 
+ 1.5 msec around threshold crossing) exceeding — 2X background noise 
were stored for off-line processing and analysis. A  given data set included 
the simultaneously recorded neural responses from 16 electrodes and 
kinematic data in the form of the digitized x-y position of the 
manipulandum.

Array electrodes often recorded action potentials originating from 
more than one neuron (Nordhausen et al.. 1996; Maynard et al.. 1997) 
and ranged from multiple nonclassifiable units to well isolated potentials. 
Classification of the action potential waveforms was accomplished using 
a semiautomatic spike-sorting algorithm based on eight waveform pa­
rameters (Autocut; DataWave Technologies). The classification tem­
plates resulting from this process were subsequently verified and adjusted 
manually. In a small number of the identified neurons, it was likely that 
a few appropriate waveforms were excluded in the process of removing 
incorrectly classified waveforms. Units with stable, identifiable waveform 
shapes and a refractory period >1 msec demonstrated in autocorrelo- 
grams were considered to be well-isolated single units. Action potentials

Tabic 1. Summary of five data sets

Number
Data set ID Date recorded of trials Single units Multiunits

T051496 5/14/96 213 11 6
TO60696 6/6/96 416 13 2
T070296 7/2/96 124 16 0
T052897 5/28/97 379 9 5
E112197 11/21/97 303 10 0

Summary of five data sots used for analysis: the dates on which the data were 
recorded, the total number of complete trials, the number of isolated, single units, 
and the number of channels with multiunit activity.

were reduced to an event time series for further analysis. Based on the 
lack of a clear refractory period. 13 of the 85 (15.3%) recorded neurons 
were excluded from further analysis. Some of the remaining neurons 
showing a few events in the refractory period were nevertheless included 
in the analyses to maximize sample size and labeled as multiunit neurons 
(Table 1). As will be shown below, results from data sets that included 
these multiunits were similar to those sets with only single units.

For each identified unit, the mean firing rate during each movement 
trial was calculated from the number of action potentials present in the 
600 msec interval beginning 200 msec before movement onset and ending 
400 msec afterwards. This interval most commonly showed the greatest 
firing rate change from background for the recorded units. Movement 
onset was defined as the time that hand tangential velocity exceeded 1.0 
cm/sec.

Statistical analyses. The statistical significance of an observed correla­
tion coefficient for a pair of neurons was assessed by comparing it with a 
correlation coefficient computed after the sequence of trials associated 
with one neuron was randomly shuffled relative to that of the other 
neuron. Shuffling removes trial specific correlations and creates an “in­
dependent" condition similar to that which would be obtained in serially 
recorded (i.e.. one neuron at a time) data. For each cell pair in each 
movement direction. 10 unshuffled subsets of data (>29 movement trials 
per subset) were selected from the complete data set and used to 
compute 10 correlation coefficients and then averaged. The temporal 
sequence of these trials was then randomly shuffled, and a set of 10 
control correlation coefficients was computed. The observed average 
correlation coefficient for each pair of cells in each of the eight movement 
directions was assessed for significance by comparing it to the mean of 
the 10 control correlation coefficients using a two-sample t test ( p < 
0.01).

In practice, the covariance matrices that characterized the second- 
order multivariate Gaussian model used for classification (see Fig. 8) for 
more than two neurons were not always invertible because singularities 
result from small numbers of trials. To avoid this problem, we resorted to 
generating realizations of a multivariate Gaussian distribution with a 
covariance structure (and mean) given by the actual neural data using a 
pseudorandom number generator without having to invert the covariance 
matrix (Johnson. 1994). One hundred realizations were generated for 
each of the eight movement directions. Each trial of the actual neural 
data were then compared to the A'-nearest neighbor realizations (using a 
Euclidean distance measure) and assigned to the movement direction 
that generated the majority of the A'-nearest neighbor realizations. The 
nearest neighbor classifier error rate never exceeds twice that of the 
optimal Bayesian classifier and will approach the Bayes" error rate as the 
number of realizations and k  go to infinity (Duda and Ilart. 1973). A 
variety of values for k  were used and were found to generate qualitatively 
similar results. The results reported here were based on a value of 10. 
To ensure that the classifier was not overfitting the neural data used 
to construct it. the classifier was cross-validated by testing it on neural 
data that was not used to build it. Cross-validation was implemented 
by leaving one trial out and generating the mean and covariance param­
eters based on the remaining trials. This was repeated for all trials in the 
data set.

RESULTS
The data used for this study were obtained from five recording 
sessions in two monkeys made over a 1 year period. Most neurons 
demonstrated a marked modulation in their average firing rate
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Figure 1. A, Raster plots and pcricvcnt histograms of four simultaneously recorded neurons in monkey MI for movements in all eight directions. Each 
vertical mark in the raster trace is a single action potential attributed to a single neuron. Each row of the raster is a single trial in which the monkey moved 
from a central hold position to a radially displaced target position. Rasters and histograms are aligned to the onset of movement (dotted line) and show 
the interval from 1 sec before to 500 msec after the onset of movement. The instruction signal (solid square), go cue (solid triangle), and reward (solid 
circle) are also shown in the rasters. Each pcricvcnt histogram was constructed with a bin width of 20 msec and then smoothed. B, Distributions of the 
preferred directions for neurons recorded from one data set (top) and from all data sets combined (bottom). The preferred direction of cach unit was 
determined by fitting a cosine curve to the directional tuning function of the unit.

around arm movement but did not modulate their firing rate 
strongly if at all during the instructed-delay period (Fig. 1/4). To 
characterize the directional tuning of cach neuron, a linear re­
gression was used to fit a cosine function to the observed firing 
rates in the eight movement directions (Schwartz ct al., 1988). 
The directional tuning curves of 64 of the 72 (89%) units were fit 
by a cosine function (p  <  0.05). The peak of this cosine function 
identified the preferred direction of that cell (Schwartz ct al., 
1988). The aggregate of preferred directions did not uniformly 
represent the movement space (Fig. 1 R) in either monkey, par­
ticularly between 0 and 90°, over all five data sets (Fig. 1 B, bottom 
plot). This nonuniformity is most likely attributable to limited 
sample size because others have found directional tuning span­
ning the entire two-dimensional workspace (Georgopoulos ct al., 
1986).

Wc recorded data from the same location in one animal in 
sessions separated by 23, 26, and 329 days. A preliminary stability 
analysis based on the inspection of waveforms, autocorrelograms, 
and pcricvcnt histograms in one monkey suggested that >50% of 
the sites recorded action potentials from different neurons after a
I month period and 100%' after 14 months. Therefore, some of 
the recording sessions may have contained partially overlapping 
populations.

Variability in neural discharge
As is evident in Figure I A,  the modulation in MI firing during 
repeated movements in the same direction vary somewhat from

trial to trial. Response variability for the set of MI neurons was 
quantified by comparing the SD of the observed firing rates for all 
of the movements perform ed in a given direction to the mean 
firing rate for that direction. The relationship between the trial- 
to-trial variability of the response and the mean firing rate is best 
fit by a power function (Fig. 2). The dependence of the variability 
(SD) on the mean firing rate (M) is described by a power function 
of the form: SD = 1.44 M a5u (r2 = 0.85). This relationship is 
consistent with the findings of Lee ct al. (1998) who derived a 
relationship of SD = 1.21 M a5y (r2 = 0.77). The variance exceeds 
that predicted by a Poisson count in which the mean equals the 
variance. Although the origin of this excess variance is unclear, 
wc will show that some of this variability as revealed from pair­
wise correlations can be accounted for by the covariation between 
cells.

Covarying neural discharge
To study correlations among MI neurons, the following equation 
(Eq. I) was used to normalize responses to their respective 
z-scores on a trial-by-trial basis (Crow ct al., I960; Lee ct al., 
1998):

rd - 'Hk m
( 1)

In Equation I, i indexes a particular neuron, k  specifies the trial 
num ber, d  specifies the movement direction, m d is the mean.
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Figure 2. Trial-to-trial variability in the firing rates of individual neurons 
for each of the eight movement directions. The SD in the firing rate of 
each cell for each of the eight movement directions (open circles) is 
plotted as a function of the average firing rate of the cell in each direction. 
The dashed line is the result of fitting a power function to this distribution. 
The solid line is the relationship between the SD and mean predicted from 
a Poisson process.

$ 450

■0.8 -0.4 0 0.4 0.8
Correlation 
Coefficient

Figure 3. Distribution of response correlations between pairs of MI 
neurons that were significantly different (p  <  0.01) from the shuffled 
responses. The distribution is constructed from 2502 correlation coeffi­
cients calculated for each cell pair in each of the eight movement direc­
tions. The bimodal distribution is a result of the removal of the nonsig­
nificant correlation coefficients.

and <jd is the SD of the firing rates for movements in a given 
direction, d.

Although responses of single neurons were variable from trial 
to trial, this variability was correlated for many pairs of MI 
neurons. Figure 6A (left) depicts an exceptional example of cor­
related activity on a trial-to-trial basis for a pair of neurons 
simultaneously recorded from MI. The correlation strength 
across MI neuron pairs was evaluated by computing the correla­
tion coefficient, pyd, between the responses of neuron i and j  for 
each movement direction d, separately:

pi  = E [ z t  X zf ],  (2)

where E \ . . .  ] represents the expected value of the product of the 
firing rate z  scores for neurons i and j  for movement direction d. 
This expected value was estimated from the sample mean over all 
trials for one movement direction. A Fisher's z  transform was 
used to convert the correlation coefficients so that they became 
normally distributed and so that populations of correlation coef­
ficients could be more easily compared (Lee et al., 1998):

2 — transform^- = ^ ( ln ( l  + pJ-) — ln (l — pJ-)). (3)

Correlation coefficients were computed for each pair of cells, 
separately for each direction. The average correlation for all pairs 
of cells in the eight movement directions was 0.21 ±  0.34. The 
slight bias toward positive correlation in the trial-to-trial variabil­
ity is consistent with other reported correlations in cortical neu­
rons [e.g., 0.12 by Zohary et al. (1994) and Lee et al. (1998)]. In 
the entire population of simultaneously recorded MI neurons for 
each of the eight movement directions, significant correlations (t 
test; p  <  0.01) were found in 2538 of the 3976 (63.8%) pairs. 
Figure 3 shows the broad distribution of the 2502 significant 
correlation coefficients between pairs of simultaneously recorded 
MI neurons. Note that a few of the interactions present in the 
pairs of MI neurons for movements in a particular direction were 
quite strong (i.e., correlation coefficients of —0.8 or higher).

Correlation and directional preference
The dependence of the pairwise response correlation on direc­
tion preference was investigated. A strong relationship between 
the similarity of directional tuning and response correlation

fc Similarity of Preferred Directions

Figure 4. Mean response correlation coefficients plotted as a function of 
the similarity between the directional tuning curves. Each mean correla­
tion value is the average of all correlation coefficients within a 0.1 bin 
(over the .r-axis). A weak relationship exists between the strength of 
correlation and the similarity of the directional tuning of the cells. Error 
bars indicate SDs.

would be expected if the correlation resulted from redundant 
information about movement for cell pairs. Directional tuning 
similarity for each pair of simultaneously recorded MI neurons 
was evaluated by computing the dot product between the pre­
ferred directions of the two cells. This procedure gives a quanti­
tative measure of similarity between two vector quantities such as 
direction because the dot product is proportional to the cosine of 
the angle subtended by the two vectors. Thus, pairs of cells with 
a dot product near 1.0 have very similar preferred directions. 
Correlation coefficients between the responses of neuron pairs as 
a function of the similarity in their directional tuning curves are 
shown in Figure 4. Although a linear (slope = 0.09; r 2 = 0.74) 
relationship was found between the mean correlation coefficient 
and the similarity of the preferred directions, the variability in 
correlation strength was very large over different cell pairs. That 
is, different cell pairs could exhibit very different correlation 
coefficients even when the similarity in their preferred directions 
was common. Thus, there appears to be a weak relationship 
between the directional preference and correlation strength when 
correlations are measured on a broad time scale (i.e., 600 msec).

Correlation and interelectrode distance
Based on the distribution of MI afferents from other regions of 
cortex, cells that are close to each other have a higher likelihood
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Figure 5. Mean significant correlation coefficient values (averaged over 
each discrete distance) between the responses of two MI neurons as a 
function of the distance between the electrodes on which the neurons 
were recorded. No significant relationship between the strength of the 
correlation and the interelectrode spacing was observed. Error bars indi­
cate SDs. Note that, unlike Figure 4. mean correlation coefficient values 
are based on only those that were significantly different from zero. When 
all correlation coefficient values are considered, the relationship between 
the mean correlation and electrode distance remains flat and 
nonsignificant.

of receiving common inputs, thus modulation of the shared input 
could result in the observed correlation in firing of neuronal pairs. 
Shared input has been a common explanation for coding redun­
dancy when cell pairs are recorded on single electrodes (Gawne 
and Richmond, 1993). The possibility that correlations between 
MI neurons were the result of similar covarving inputs was 
investigated by plotting the magnitude of the correlation coeffi­
cients as a function of the cortical distance between the elec­
trodes on which the neurons were recorded (Fig. 5). For the 
significant correlations in our population of simultaneously re­
corded neurons, there was no significant relationship between the 
strength of the correlations and the cortical distance between the 
neurons (linear regression, p  < 0.36). As is evident in the plot, 
pairs of neurons recorded from the same electrode (distance = 0 ) 
were no more likely to be correlated than neurons separated by 
distances as much as 2 mm. This result suggests that these 
correlations emerge from spatially broad interactions and not 
from local common input.

Directional variations in correlation
Although correlated activity between cortical neurons has been 
previously observed, we discovered that correlation coefficients 
between pairs of MI neurons could vary with movement direction 
[see Hatsopoulos et al. (1998b), for directional changes in syn­
chrony measured on a fine time scale]. Notice how the same cell 
pair exhibits strong correlated activity on a trial-bv-trial basis for 
one movement direction (Fig. 6A, top) but much weaker corre­
lated activity for a different movement direction (Fig. 6A, bot­
tom). Figure 6 B  provides an example of directional variations in 
correlation between two MI neurons over all eight directions. As 
is evident from the firing rate tuning curves of the two cells, they 
have similar preferred directions of —135°; yet they engage in 
significant correlated firing for movements in the 45 and 270° 
directions. A one-way ANOVA for direction revealed that 78% 
(387/497) of the cell pairs exhibited significant differences in 
correlation with movement direction ( p  < 0.05). This finding 
indicates that correlation strength is not necessarily a fixed prop­
erty of neuronal pairs but rather can depend on movement 
direction.

A  135° direction

Trial Number

315° direction

Movement Direction

Figure 6. Variations in correlated activity with movement direction. A. 
A cell pair showing strong trial-bv-trial covariation in firing for move­
ments in the 135° direction (left) but much weaker covariation for move­
ments in the 315° direction. The normalized firing rates of one cell (open 
squares and dashed line) are plotted together with those of another cell 
(solid circles and solid line) over all trials in the recording session. Whereas 
the normalized firing rates are significantly correlated for 135° movements 
(/■y — 0.85; p < 0.001). they are not significantly correlated for 315° 
movements (/-y — 0.05; p < 0.79). B, Variations in the firing rates of two 
cells (top) and in their correlation coefficient (bottom) over eight move­
ment directions. The two cells fire maximally in the 135° direction, 
whereas their peak correlation occurs in the 45 and 270° directions.

Covarying neural discharge and directional coding
We evaluated whether correlations could contribute to direc­
tional coding by comparing the performance of statistical models 
that incorporate second-order relations with those that assume 
independence of neurons in the population. These statistical 
models were used to classify single trials of neuronal data into one 
of eight classes corresponding to each of the eight movement 
directions. Bayesian estimation techniques (Sanger, 1996; Oram 
et al., 1998; Zhang et al., 1998) as well as approximations to 
Bayesian estimation were used to determine the direction of the
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Figure 7. Classification of trials from one data 
set into one of two movement direction cate­
gories using a pair of simultaneously recorded 
neurons. Trials are classified correctly (solid) or 
incorrectly (hollow) as either 180° movements 
(circles) or 270° movements (triangles). Isoprob­
ability lines represent the joint probability of 
activity in the two cells conditional on either 
180° movements (dashed lines) or 270° move­
ments (solid lines). A, Trials are classified using 
the independent model in which the two cells 
are assumed to be uncorrelated. B, Trials are 
classified using the second-order model in 
which the covariances between the cells are 
incorporated into the model.

arm movement. Bayesian techniques use probabilistic descrip­
tions of the relationship between the firing rate of a neuron and 
the direction of arm movement to return the probability of a 
movement direction given the firing characteristics of a popula­
tion of cells within a trial. This probabilistic description was 
constructed by assuming that the number of action potentials 
across all the neurons in the population, T  for movements in a 
particular direction, cl, followed a multivariate Gaussian 
distribution:

P(T\cl)
1

(2^ w |e r
-1 Elf-iiifC* (4)

where N  is the number of neurons in the population, m d is the 
mean population response, and Cd is the covariance matrix for 
movements in direction, cl. The vertical lines surrounding the 
covariance matrix denote its determinant. The superscript T  
denotes the transpose operator. The population response on a 
given trial, T ,  and the mean population response, m d, were 
obtained directly from the experimental data.

To determine the direction of the arm movement from the 
response of the ensemble of MI neurons, Baves’ rule was used to 
transform the probability of observing a response in a particular
movement direction, P(T\cl), into a probability that a movement 
was performed in a particular direction given a particular pattern 
of neural firing (i.e., the neural "response”):

P(cl\T)
P(T\cl) X P(d) 

P I T )
(5)

where P(d) is the prior probability of a particular movement 
direction and P ( T )  is the prior probability of a population firing 
pattern.

For each trial, these eight probabilities were collapsed into a 
single estimate for the direction of movement by choosing the 
direction with the highest probability of occurrence (i.e., the 
maximum a posteriori estimate or MAP estimator). If the direc­
tion chosen was the same as the actual direction in which the 
monkey moved, then the estimation was successful (chance, 
12.5%). Because of the limited data available for these analyses, 
cross-validation of the model was performed by removing each 
trial from the data set, forming the various probability distribu­

tions on the remaining data, and estimating the direction of 
movement for the firing rates in the removed trial.

The role that the response correlations might play in direc­
tional coding was tested by comparing two versions of the Gauss­
ian model defined in Equation 4. The first model assumed that the 
responses of each of the neurons were conditionally independent. 
This was accomplished by setting the off-diagonal terms of the 
covariance matrix, Cd, to zero and only estimating on-diagonal 
terms, i.e., the variances of each of the neurons. In other words, 
the responses of all cells were assumed to be uncorrelated with 
each other and, therefore, independent of each other given that 
they are normally distributed. It is important to stress that this is 
a conditional independence assumption. That is, conditional on a 
particular movement direction, the probability that one neuron 
gives a particular response is independent of the probability that 
any other neuron gives a particular response. Clearly, cells with 
similar preferred directions are unconditionally dependent. The 
second model, on the other hand, incorporated the observed 
second-order correlations by estimating the off-diagonal elements 
of the covariance matrix. To illustrate the difference between the 
two models, data based on the activity of two neurons were 
classified into one of two possible movement directions using 
either the independent model (Fig. 1A) or the second-order 
model (Fig. IB). Trials from one data set are correctly classified 
(solid symbols) or incorrectly classified (hollow symbols) as 180° 
(circles) or 270° (triangles) movements. In addition, contour plots 
show the isoprobabilitv lines representing the joint probability of 
activity of two cells conditional on either the 180° direction 
(dashed lines) or 270° direction (sold lines). Notice how the 
second-order model (Fig. IB)  fits the data better resulting in 
fewer incorrectly classified trials.

The classification results for the independent and second-order 
models based on the complete ensembles of recorded cells (in­
stead of just pairs of neurons) are shown in Figure 8/1. The 
shaded bars in the figure show the success of the model that 
treated the neurons as independent encoders of movement direc­
tion in determining the direction of movement from a population 
of simultaneously recorded MI neurons. The dark bars show the 
success of the second-order model that incorporated the pairwise 
covariances in predicting the direction of movement from a 
simultaneously recorded population of MI neurons. In all cases, 
incorporating the second-order interactions between neurons im-
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Figure 8. A, Results of applying lwo models lo decode the direction of 
movement from the population of neural responses. Dark bars (second 
order) are the percentage of trials in which a model incorporating corre­
lations in the trial-to-trial responses of pairs of neurons correctly esti­
mated the movement direction. Hatched bars (independent) are the num­
bers of trials for which a model that did not incorporate the correlations 
between cells correctly predicted the direction of movement. These mod­
els were applied to five experimental data sets denoted by a seven 
a-numeric code. B, A comparison in performance of two versions of the 
second-order model. The improved classification performance of the 
original second-order model as compared to the independent model is 
labeled as the “variable covariance” model (black bars). In the other 
version, the covariance matrix used was fixed and was set to the average 
over the eight movement directions ( gray bars). Notice how the original 
second-order model does consistently better than the fixed covariance 
model over all data sets.

proved classification of movement direction (Fig. 8^4). On aver­
age, incorporating the covariance structure resulted in correct 
determination of movement direction in 72% ± 17% (±1 SD) of 
the trials; the model without the correlations correctly estimated 
the direction of movement in 61% ± 12% of the trials. The 
difference between these two populations (1 1 %) was significant 
(paired t test, t(4) = 3.97, one-tailed, p  < 0.05); this test demon­
strates that these correlations provide additional information 
about direction not present in the firing rates of individual neu­
rons treated as independent coding elements. In both cases, the 
models performed significantly better than the chance rate of 
12.5%.

We next investigated to what extent the observed changes in 
correlation with direction could account for the 1 1 % improve­
ment in the performance of the second-order model. If we treat

the correlation strength as composed of a fixed DC component 
and a variable AC component, the bulk of the improvement in 
directional estimation may be accounted for by incorporating the 
fixed correlational structure into the second-order model. On the 
other hand, the observed changes in correlation with movement 
direction may be contributing substantially to the improvement of 
the second-order model. To tease apart these two contributions, 
we compared the performance of the original second-order model 
having variable correlations to a second-order model whose co­
variance matrices were fixed to the average of their values over all 
eight movement directions. Figure SB  shows that the original 
second-order model does consistently better than the model with 
a fixed covariance structure. The model with fixed covariance 
performed only 5% better than the independent model compared 
to an 1 1 % improvement with the original second-order model. 
Thus, 55% of the improvement [(11 — 5)/ll] in performance of 
the second-order model is because of variations in correlation 
with movement direction.

The nature of information contained in covarying 
neural discharge
Correlations between the responses of neurons can either encode 
information redundantly, independently, or svnergisticallv 
(Gawne and Richmond, 1993). When information is redundantly 
encoded in a pair of neurons, there is less information in the 
simultaneous firing rates of the two cells than if the two neurons 
independently represented information (i.e., if one neuron indi­
cates a leftward direction with 1 0 0 % reliability, having a second 
neuron that indicates left is redundant). Likewise, when two 
neurons svnergisticallv encode information, the simultaneously 
recorded firing rates of the two neurons contain more informa­
tion than if the neurons were taken independently (i.e., the 
coactivation of a left direction and a right direction neuron may 
indicate a new movement direction). Because accurate estimates 
of information content in rate codes requires more data than we 
were able to collect (Golomb et al., 1997), we used statistical 
models that were constrained by the experimental data to deter­
mine the nature of information available from pairs of neurons.

The model was constructed using (1) the cosine directional 
tuning functions for neurons whose firing rate modulation was 
well-described by a cosine, (2 ) a model for the dependence of the 
response variability of a single cell on its mean firing rate (Fig. 2), 
and (3) the observed correlations in the responses of simulta­
neously recorded cell pairs. These three parameters were derived 
from the data and then used to create discrete bivariate Gaussian 
models, P(r\d), for pairs of neurons as well univariate Gaussian 
models for individual neurons. These models were similar to 
those used in the Bayesian classification analysis described above 
except that they used discrete instead of continuous normal 
distributions. Using Equations 5 and 6 , it was possible to compute 
the average mutual information l(D;R) between the joint re­
sponse of the pair of neurons and the direction of the arm 
movement. It was compared to the sum of the information from 
the two constituent neurons (Gawne and Richmond, 1993). If the 
correlations represent directional information redundantly, the 
ratio of the joint mutual information to the sum of the mutual 
information from the two constituent neurons treated separately 
is <1.0. If the ratio is >1.0, the correlations between the simul­
taneously recorded neurons contribute more information than is 
available from the two cells treated independently.
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Figure 9. Distribution of the information fraction for pairs of MI neu­
rons. The information fraction measures whether the simultaneously 
recorded responses of a pair of neurons contain more information than 
the sum of the information extracted from the two neurons treated 
separately. Fractions >1.0 indicate that the joint response of the neurons 
contains more information than the two neurons taken independently. 
Fractions <1.0 indicate redundancy in the representation of information 
in the pair of neurons.

I(D;R)  = ( S W k 'H o g :
P(d\r)~
P(d) (6)

where the angled brackets represent an average over neuronal 
responses. Figure 9 shows the distribution of the information 
fraction for 342 pairs of neurons. This distribution indicates that 
covarying discharges in a pair of MI neurons can synergistically 
encode information about movement direction, although for 
many cases the coding is redundant. The significant shift in the 
mean of this distribution (1.064 ±  0.006; p  <  0.001; Wilcoxon 
signed-rank test) suggests that that correlations in the trial-to-trial 
response variability of MI pairs as a group are more likely to 
increase than decrease information content. In some cases, the 
presence of correlations can increase the representational capac­
ity of the pair of neurons in excess of 30% over the independent 
case.

DISCUSSION
The present study demonstrates the capability of neuronal pop­
ulations to represent information in their joint activity. The 
second-order covariations in firing between MI neurons provide 
directional information above that found in single neuron firing 
rates. Directional classification of data on a trial-to-trial basis was 
consistently better when these interactions were considered. 
Information-theoretic analysis demonstrated that the joint activ­
ity of certain neuron pairs could provide >30%  additional infor­
mation about direction (Fig. 9). These findings suggest that 
higher-order ensemble codes that incorporate the interactions of 
a population of neurons can make important contributions to 
cortical representations [see Flatsopoulos et al. (1998a) for a 
comparison between ensemble and standard population codes] if 
these codes can be exploited. We have not demonstrated that 
these codes are actually used but that additional information is 
available when these interactions are considered.

Noise in single neuron firing rates
Although it has been shown that single MI neurons carry infor­
mation about movement direction in their average firing rate 
(Georgopoulos et al., 1982), the firing rate variability is higher 
than would be expected from a random Poisson process [Fig. 2;

see also Fig. 2 in Lee et al. (1998)]. Flowever, we know that 
precisely timed and controlled movements can be generated de­
spite this variability. To overcome the problem of random noise, 
precise movements could be represented by averaging the re­
sponses of a population of MI neurons (Georgopoulos et al., 
1986). When noise sources are statistically independent across 
different neurons, the effect of noise on the population average 
decreases by a factor of one over the square root of the number of 
neurons, thereby increasing the signal-to-noise ratio. This expla­
nation becomes less tenable as noise becomes more correlated 
across cells (Zohary et al., 1994). We have shown that this noise 
is partially correlated, in agreement with others (van Kan et al., 
1985; Gawne and Richmond, 1993; Zohary et al., 1994; Lee etal., 
1998), but unlike these studies we have emphasized that this 
correlated noise is not fixed but rather varies with behavioral 
condition, i.e., movement direction.

Our approach considered correlated noise as part of the signal 
and demonstrated that it carried additional information about 
movement direction above that obtained from the firing rates of 
individual neurons acting as independent encoders. Thus, rather 
than limiting the information capabilities of neural populations, 
correlations may be able to extend them as an additional type of 
signal. A  key feature of this approach is the finding that the firing 
covariation between neurons varies across different movement 
directions. As Figure 8B demonstrates, a major contribution to 
the improvement in classification performance of the second- 
order model was because of the fact that the directional variations 
in firing covariance among motor cortical neurons were incorpo­
rated into the model. That is, the firing covariances were pre­
served for each movement direction unlike other studies, which 
pooled the covariances over different stimulus or movement di­
rections (Zohary et al., 1994; Lee et al., 1998).

These findings complement other results from MI that dem­
onstrate that information can be obtained from correlated activity 
between neurons on a finer time scale. Riehle et al. (1997) have 
shown that synchronous pairwise firing on a millisecond time 
scale can signal the expectation of visual cues instructing the 
monkey to initiate a movement in the absence of rate modulation. 
In addition, results from our laboratory have demonstrated that 
directional information is available in fine synchronous interac­
tions of neurons that cannot be accounted for by independent rate 
modulation (Flatsopoulos et al., 1998b). We have not fully exam­
ined the relationship, if any, between broad correlations in spike 
count measured on the time scale of hundreds of milliseconds and 
fine synchrony measured on the millisecond time scale. Flowever, 
preliminary results suggest that they are relatively independent 
phenomena. The flat relationship between broad correlation and 
interelectrode distance (Fig. 5) is inconsistent with the relatively 
strong dependence of fine synchrony with distance that has been 
observed previously (Kwan et al., 1987; Flatsopoulos et al., 1998b, 
their Fig. I D). This also suggests that the two processes may be 
independent.

Our results suggest that the observed firing variability may be 
considered a potential signal when viewed in the context of an 
ensemble of neurons. This may be true not only in MI but 
throughout cortex. Studies in the hippocampus and somatosen­
sory cortex using different ensemble-based approaches have also 
found that classification of behavior or sensory localization im­
proves when higher dimensional features of a neural ensemble are 
incorporated (Deadwyler et al., 1996; Nicolelis et al., 1998).
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Source of correlation
Although correlated activity between cortical neurons has been 
widely detected, the source of these interactions has not been 
established. One possibility is that correlations are a consequence 
of common input from other neurons. Nearby neurons, which 
have been the focus of most recording studies, might be expected 
to be correlated because they would share thalamic projections (in 
MI, Shinoda and Kakei, 1989). However, the bulk of our neurons 
would not likely be driven by common thalamic sources because 
our electrodes were spaced by at least 400 /nm, which is a consid­
erable distance for two cells to receive strong, common input. 
Moreover, the observation that the correlation strength does not 
vary with distance argues further that common input is not a 
major source of correlation.

An alternative hypothesis is that correlations arise from large- 
scale reciprocal connections among cortical neurons (Juergens 
and Eckhom,1997). Neurons in motor cortex form a network of 
connections with each other with a high degree of lateral inter- 
connectivitv (Ichikawa et al., 1985; Huntley and Jones, 1991; Hess 
and Donoghue, 1994). Moreover, these lateral connections can 
become stronger with the acquisition of new motor behaviors 
(Rioult-Pedotti et al., 1998). Functional studies have also shown 
that a large, distributed area of the MI arm area activates when 
simple reaching movements are made, suggesting that motor 
cortex is not organized as a set of independent columns (Sanes et 
al., 1995).

Functional role of correlations
It is unclear what functional role these correlations may be 
playing, if any. One possibility is that they are the consequence of 
anatomical connections between cortical neurons that may be 
important in promoting population codes. Recent theoretical 
work has suggested that lateral connections could be useful in 
refining a coarse code among a population of cortical neurons 
(Pouget et al., 1998). A particular arrangement of lateral connec­
tions between directionallv selective neurons would reduce the 
effects of neural noise by creating a smooth “hill” of activity over 
the set of cortical neurons. According to the neural model they 
develop, the correlation between two directionallv selective neu­
rons is predicted to be proportional to the product of the deriv­
ative of their timing curves. Although this prediction has not been 
systematically tested with our data, the variations in correlation 
demonstrated in Figure 6 B  are somewhat consistent with it.

Another hypothesis specific to motor cortex is that these cor­
relations are used to create temporary synergies among muscle 
groups. Layer 5 pyramidal neurons in primary motor cortex form 
part of the corticospinal tract and, thus, directly and indirectly 
synapse onto motor neuron pools that innervate skeletal muscles. 
Hepp-Ravmond et al. (1996) have recently made electromyo­
graphic recordings from hand muscles that are active during 
precision grip movements. It was observed that particular muscles 
became correlated and, more importantly, the correlation 
strength varied with the overall level of force. These variable 
muscle synergies may be created by linking different neurons in 
motor cortex.

Methodological limitations
This work has demonstrated that the presence of second-order 
interactions in a population of MI neurons can significantly add 
to the representation of directional information. This is an initial 
step toward examining higher-order relationships among ensem­
bles of neurons. We restricted ourselves to a relatively simple

multivariate model (i.e., the Gaussian model) that considered 
only pairwise correlations between neurons. This was, in part, 
because of the limited amount of data that could be acquired from 
a behaving animal and is a major challenge in the endeavor of 
discovering neural ensemble representations. It is unknown, how­
ever, whether even higher-order moments may account for more 
of the response variability and, therefore, provide more informa­
tion about direction or any other parameter. As multielectrode 
recording becomes more prevalent, novel statistical methods will 
be needed that are mathematically sound and tractable, and which 
incorporate multidimensional interactions.

Although we have shown that higher-order representations 
provide more information about movement direction, these ex­
periments do not demonstrate that these higher-order represen­
tations are actually being used by the animal to control motor 
behavior. In fact, most if not all studies that postulate a coding 
scheme based on the firing rates of single neurons have the same 
problem. A recent study of olfactory coding in an invertebrate 
preparation has attempted to show that correlated neural activity 
as revealed by field potential oscillations is necessary for fine 
olfactory discrimination (Stopfer et al., 1997). This was accom­
plished by pharmacologically desynchronizing a population of 
neurons without affecting their individual firing properties and 
showing that olfactory discrimination was impaired. In the fu­
ture, similar perturbation experiments could be done in the cortex 
of mammals to determine whether higher-order interactions 
among neurons are necessary to guide behavior.

APPENDIX
The probability of observing a number of action potentials across 
an ensemble of N  motor cortical neurons, ~T, given the monkey’s 
movement direction, d, was modeled as a multivariate Gaussian 
distribution:

P( r \d)
1

(27T)N/’!Cd!IC‘
-1/217-m'')TC I' (4)

Eight of these distributions were specified, one for each direction. 
The parameters that fully specify each distribution are: (1) the 
mean spike count over the ensemble of neurons for a particular 
movement direction, 7rfd. This vector of mean values is /V-dimen- 
sional; (2) the covariance matrix, Cd, computed for a particular 
movement direction. This matrix is N  x  N. An element of the 
covariance matrix is computed as follows:

M'1
cij = ]l (Hj -

k= 1

where Md is the number of trials for direction d. The inverse of 
the covariance matrix is defined as follows: CdCd _ 1  where / is the 
identity matrix. The vertical lines in the denominator of the above 
equation represents the determinant of the matrix.

The mutual information, l(D;R), between the movement direc­
tion, D, and the response of the neural ensemble, R, is defined as 
follows:

KD: R) = ( 'ZP(cllr)log:
P(d\rY
P(d) (6)

The a priori probability of a movement direction, P(d), is deter­
mined by the experimenter and was specified to be uniform. The 
a posteriori probability of a movement direction given the re­
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sponse of the ensemble, P(d |7*), was estimated by using Bayes" 
rule (Eq. 5). This equation can be decomposed into three parts:
(1) the logarithm of the ratio of the a posteriori to a priori 
probability distributions (the term in the brackets). If the firing 
rates of the ensemble do not alter one's estimation of the prob­
ability of a particular direction, then the ensemble response 
doesn't provide information about direction. In this case, the ratio 
of distributions in Equation 6 will be l, and the log of l is zero, 
which confirms our intuition. On the other hand, if the ensemble 
response does alter one's estimation of the probability of a par­
ticular direction, then the ratio is not l. If the a posteriori prob­
ability is large, the ratio will be > l, which will give a positive log.
(2) The expectation or average of the information over all move­
ment directions conditional on the ensemble response (the sum 
sign and its terms). The information is weighted more for direc­
tions that are conditionally more likely. (3) The average over all 
ensemble responses (is represented with the angular brackets).
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