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ABSTRACT

Vactor quannzamn |s a very powerful technique for data
pression and it has d a lot of attention lately.
0na major drawback assomatsd with this approach is its extreme
computational complexity. This paper first considers vector
quantization that uses the L, distortion rr for its impl 1
The L, distortion measure is very attractive from an implementational
point of view, since no multiplication is required for computing the
distortion measure. Unfortunately, the traditional Linde-Buzo-Gray
(LBG) method for designing the codebook for the L, di ion measure
can become extremely time-consuming, since it involves several
computations of medians of very large arrays. Wa propose a gradient-
based approach for codebook design that does not require any
muttiplications or tati The codebook design algomhm
is then extended to a distortion measure that has piecewise-linear
charactaristics. Once again, by appropriate selection of the
parametars of the distortion measure, the encoding as well as the code-
book design can be implemented with zero multiplications. Finally, we
apply our techniques in predictive vector quantization of images and
demonstrate the viability of multiplication-free predictive vector
quantization of image data.

I. INTRODUCTION

The advantages associated with representing, transmitting,
and storing information in digital form are well-known. Perhaps the most
serious disadvantage associated with the conversion of information
from analog to digital form is the substantial increase in required
bandwidth. This disadvantage can be mitigated by operating on the
data with an appropriate data compression algorithm prior to
transmission or storage. Vector quantization is a particularly effective,
but computationally intensive, class of algorithms that has attracted a
lot of interest in recent years. These algorithms take their name from
the fact that they operate on entire k-dimensional vectors of waveform
samplas at once, rather than one sample at a time. They can be applied
1o a variety of waveforms such as speech [4}, images (7], and modem
signals [8], and they promise 1o be of great value in a variety of
applications invalving such waveforms.

The simplest form of a vector quantizer operates as follows.
First, a codebook of k-dimensional vectors is created using a training
set representative of the waveforms. Once the codebook is designed
and the representative vactors are stored, the process of encoding the
incoming waveform can begin. k consecutive samples of the waveform
are grouped together to form a k-dimensional vactor at the input of the
vector quantizer. The input vactor is successively compared with each
of the stored vectors and a metric or distance is computed in each
case. The representative vector closest to the input vector is
identified, and the index of the closest vector is available at the output
for transmission or storage.

Clearly, the full-search vector quantizer described above can
become computationally very intensive, depending on the distortion
measure employed. One very easy way of reducing the complexity of
vector quantizers is to use the L, distortion measure where the distance
between two vectors X and Y is computed as

k

d(X,Y) = z % -yl M
i=1
where x; and y; are the i-th elements of k-dimensional vectors X and Y.

It is evident from the above equation that vector quantization using the
L, distortion measure requires zero multiplication for its implementation.

However, the L, distortion measure may not be appropriate in all

applications. For such cases, we will consider a piecewise linear
distortion measure given by
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where fle) = Z o le| + Y, (3)
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is a piece-wise linear function and o and ;are functions of je| and can
take values from a finite set depending on which of the preselected
intervals contain |e]. Figure 1 shows a typical f versus e curve. Note
that if the skope values o.'s are selected to be integer powers of 2, the
vector quantizers that mai(e use of the distortion measure in Eq. 3 can
be implemented without any multipliers. Furthermore, by appropriate
choice of the thresholds T's in Fig. 1, we may be able to approximate
sevaral other distortion measures using the piece-wise linear distortion
measure, and therefore make the vector quantizer perform similar to
those that use other distortion measures and at the same time
implement it with highly reduced computational complexity

This paper deals with vector quantization using the L, and
piece-wise linear distortion measures. Wae first consider the design of a
codebook when the L, distortion measure is used. The traditional Linde-
Buzo Gray (LBG) algorithm [3) when used with the L, distortion measure
requires computation of the median values of several large sequences
and can become computationally very complex. We will present a
gradient-based approach that does not require any multiplications or
median computations for its implemsentation. We then extend this
method to the piece-wise linear distortion measure. Finally, we will apply
our method to predictive vector quantization of images. The
implementation of the predictive vector quantizer is made multiplication-
free by selecting the coefficients of the predictor to be (possibly
negative) integer powers of two.

Il. CODEBOOK DESIGN FOR THE L, DISTORTION
MEASURE

The traditional approach to codebook design for vector
quantizers is a clustering method known as the Linde-Buzo-Gray
algorithm. Given a representative training sequance and an initial
codebook, the LBG method consists of encoding the training sequence
and then replacing each code vector by the centroid of all the training
vectors that were mapped into the code vector. This is repeated until
convergence is achieved. For the L, distortion measure, the centroid is
the vector whose elements are the medians of the corresponding
elements of all the training vactors that were mapped into it. Calculation
of the madian of a large set of numbers can become very complicated
and time-consuming. We now propose a gradient-based algorithm that
works very well in spite of the fact that it does not reguire any
multiplications or median calculations.

radi lgorithm
tet {Y,, Yy, ..., Yp) denote the training sequence and C(0) =
{01, 02, .y C?A} denote the initial codebook. At the m-th iteration,
encode Y,, using codebook C(m-1). Let B, = Yy, - CT_M denote the
quantization error vector where C[H is the code vector closest to Y, in

C(m-1). The new codebcok C(m) is obtained by replacing CT_1 in G(m-1)
with

CH2673-2/89/0000-1747 $1.00 © 1989 1IEEE



m m-1 m-1
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L

= CT'1 + . sign {Bm} , )

where sign {s} is a vector consisting of the signum function of the

corresponding elements of (s}, and . is a small convergence constant.
Note that the implementation does not require multiplications or median
calculations.

Wae will first show that the algorithm converges to the optimal
code vector if the codebaok contains only one vector. When the
codebook contains M vectors we will show that the sequence of

debook vectors ge to a set that of the centroids of M
subsets of the training sequencs, each of which contains ail the training
vactors that got ped into the cor ding code vector index.
Finally, we will show that there exists a one-to-one mapping from the
above set to a set of optimal code vectors, and this mapping is such
that the long-term average of the distortion of the training vectors

produced during codebook daesign will be at most %klargar than the

average distortion produced by encoding the training vectors with
elements from the optimal codebook chosen using the mapping.

Note that the algorithm in Eq. 5 is very similar to the sign
algorithm [2,5] employed in adaptive filtering. In fact, the convergence
analysis here is an adaptation of the one in {2] to our particutar

ituation. The only ption that we will make is that as the number
of training vectors becomes very large, the number of training vactors
that are mapped into code vectors corresponding to each index (i = 1, 2,
..., M) will also become very large. This will eliminate the possibility that
only part of the codebook is used during the algorithm and the
optimization is effectively done for a smaller-sized codebook than what
is desired.

To start the ly

that the codsbook consists of

only one vecior. Let C',n denote the code vector after the m-th iteration.

Let Copt,1 denote the centroid of the training sequence. Also, define
the misalignment vector at time m as

m m
V1 =C1 'Copm . (6)

Now, CT = C':M +psign {Bn) . t)]

* Subtracting Copt, 1 from both sides of Eq. 7, we get
m m-1 .
VT =V usign {Ba} . ®
Taking the squared norm of both sides gives

2 2 T
-1 -
“v:“” - “v;11 e m (v:n 1) sign {B..}.

{9)
where (-)T denotes the transpose of (s). Note that

m-1 m-1
vy =Gy - copm = Bopt,m ~Bn ,

where ﬂopt,m is defined as the optimum quantization error in quantizing
Ym Then

2
m m-1
llv1|| =|IV‘ I

Recognizing that

B, sign B, =d, (Ym : CT“) (12)

is the distortion when Yy, is encoded using cr1n-1 and

(19)

2
2 T :
+pk+2 “Bom,m sign {Bm}
(n

-2u B; sign {Bm} .

T . T .
ﬁgp‘,m sign Bm < Bopt.m sign Bopt,m = d1 (Ym ' Copm) ,
(13)

and denating the distortion in Eq. 12 by e(m) and that in Eq. 13 by
Eopt(m)' we get the following result:

2
m m-1
Iterating further, we obtain

2 2 m m
“v:"" < "v‘:“ +ilmk—2p Y efi) +2“zf«2&
[N ]

(15)
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Since | |V';rl I lz 20, the above implies that

m 2 m
1 o1 DI uk 1 .
= — 1V - 16
mze(')sm“ ' | +2+m ;sopt(')' (8)

jm1
Taking the Yimit as m goes to infinity,
m
) 1 . k
lim sup ™ Z ey <C .+ Ez— , a7
M-300 jwl

where §mip, is the average distortion produced by the optimal codebook.
The above implies that if the codebook contains only one vector, the
long-term average of the distortion produced by the gradient method
exceeds the optimum average distortion by at most %k. If u is small,

the performance of this single code vector will be very close 1o that of
the optimal code vector.

Now, consider a situation where we have to design a codebook
with M code vectors. Let TS(i) denote the subset of the training
sequence that gets mapped to the i-th code vector during codebook
design. Obviously, the union of all TS(i)'s is the whole training
sequance. Also note that the i-th code vector is trained only on TS(i),
and therefore by the previous result, the i-th code vector convarges to
the centroid of TS(i), say C¢ j in the same sense as in Eq. 17. This
implies that the codebook sequence converges to a codebook that
consists of the vectors {Cg,j ; i=1.2.....M}.

Let CB(m) denote a vector of Mk alements formad by
concatenating the elements of C(m), i.e.,

T

T T T
cBm=q(cf) . (c5) o (ch) f - @

Also, let C,,; denote another vector of Mk elements formed by the
elemants of an “optimal” codebook that minimizes the total distortion in
encoding the training sequence. Note that any codebook that
minimizes the total distortion will suffice. Furthermors, the ordering of
the M optimal code vectors in G, can be arbitrary. Finally, let

V(m)=CB(m) -C,, (19)

As betore, let cf" denote the closest vector in C(m-1) to Y.
Define an Mk vector G{m) as

T
T
G(m) = {o. 0,... BT, 0... o} ) (20)
That is, G(m) is a vector of zero elsmants, except for the positions
corresponding 1o the codebook element in C{m-1) that is closest to ¥...
From Eq. 5 and the definitions above,
CB(m) = CB{m~1) + p sign {G(m)} (21)

where sign {0} is taken to be zero. Substracting Copy from both sides

and taking the squared norm of both sides, we can show that

[Iven] - [Iven-n]” «
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The last-term comes from the fact that every other element of G(m) is
2ero. Also, Copt,L denotes the L-th k-tuple in Gp(m-1).
Note that

m-1 Y -C m-1 _ _
CL - Copt,L = ( m op(,L)_(Ym CL =0, Bm ,
' (23)
where o, is the quantization error vector when ¥, is encodad using

Copt,L- . ) .
Proceeding as before, substitution of Eq. 23 in Eq. 22 yields

2 2
[vim|” < |[vim-0)]] + 1k -2 pegm) + 2 pe(m)

(24)

whare £(m) corresponds 1o the encoding distortion dq{Ym, Copt.L)'
This inequality when iterated m times gives the foliowing result:

2
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(25)
Taking the limit as m goes to infinity,
m
R 1 " w
—_ NS0+ 26
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where § is the average distortion produced by mapping the training
sequence into the optimal codebook. The mapping is such that
whenever a training vector Y, is closest to the i-th code vector of the
codabook C{m—1), it is mapped into the i-th k-tuple of the Mk vector
CO t- Even though this may not in general be the optimal mapping, the
above result shows that the algorithm converges and that there is a
one-to-cne ing from the codeb being d d and the optimal
codabook such that the long-term average of the distortion during
codebook design exceads that due to the above mapping into the

optimal codebook by at mosl%k. Note that the ordering of the optimal

code vectors in copt was arbitrary. In particular, if we choose the
above one-to-one mapping to be the "best” possible one that minimizes
the long-tarm average of tha distortion produced by the mapping on the
training sequence, the long-term average of the distortion produced by
the codebook during the design process will still not exceed the
performance of the optimal codebaok and the one-to-one mapping by
more than pk/2. Even though there is a possibility that this mapping
may be very different from the optimal one, all the experiments that we
have done have produced results that are comparable to that of the
LBG algorithm.

t. CODEBOOK DESIGN FOR PIECE-WISE LINEAR
DISTORTION MEASURES

Since in many data compression systems the ultimate
objective is to produce quantized signals with a minimum amount of
subjective distortion rather than produce quantized signals that
minimize certain quantitative distortion measure, we must keep in mind
that the L, distortion measures may not be the most suitabla one for
many applications. In order to overcome this limitation, we proposa the
use of piece-wise linear approximations for distortion measures that
give rise 1o more complex encoding procedures. The functional form of
the distortion measure is as given in Eqs. 2 and 3. As stated earlier, if
we choose the slopes oy's of the piece-wise linear functions to be
integer powers of two, the encoding can be done with only bit shifting,
additions, and comparisons.

The codebook design algorithm of Eq. 5 can be easily
extanded to this case. We will use the same notations as in the
previous section. Let B, be the quantization error vector that is due to
the code vector that minimizes the piece-wise linear distortion measurs
in Eq. 2. Let aj(m) be the slope of the piece-wise linear function in Eq. 3
that corresponds to the i-th element of By,. Define a diagonal matrix

A(m) as

A(m) = diag {or, (M), o), . oqm} e

Then the update equation for the gradient-descent codebook design
algorithm becomes

Can = C;_M + 1L A(m) sign {5,“} (28)
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Again, note that the codebook update algorithm can also be
implemsnted using zero multiplications.

Iv. APPLICATION TO PREDICTIVE
QUANTIZATION OF IMAGES

VECTOR

Researchars have found that predictive vector quantization
algorithms outperform direct vector quantization much as linear
predictive coding algorithms work better than PCM in scalar
quantization schemes [1,6,9]. There are two main reasons why
predictive vector quantization algorithms are attractive: First, the
prediction error sequence will in general have a smaller dynamic range
than the original input wavelorm, and the prediction srror sequence can,
in most cases, be done more effectively than the input waveform itself.
The second reason addresses a problem that is typical of all vector
quantization algorithms. Since the codebook is designed for a training
sequence that is representative of the input waveforms to the
quantizer, any variations in the structure of the input waveforms from
that of the training sequence will degrade the performance of the vector
quantizer. The prediction error sequences will have far less structure in
them than the waveforms themselves, and therefore a vector quantizer
working on prediction error sequences will be more robust to variations
in the structure of the input waveforms.

In this section we apply the results of the previous section to
predictive vector quantization of digital images. The block diagram of
the vector predictive vector quantizer is shown in Fig. 2. In the figure,
x(n,m) corresponds to the input image and B is an estimate of the mean
value of the image. The rest of the notations are self-explanatory. The
predictor coefficients are all chosen to be (possibly negative) integer
powers of two and therefore the structure is truly muttiplication-fres,

Note that the prediction fitter predicts the current input vector
using previous input vectors and the resulting arror sequence is vector
quantized. The codebook is designed from a set of training images.
The predictor coefficients for the images are first estimated. Starting
with an initial codebook, the mean-removed training image is quantized,
and the codebook is updated each time after an input vector is
quantized as described in Section lil.

We now present the result of an experiment that demonstrates
the good subjective quality of the predictive vector quantizer employing
the piece-wise linear distortion measure. The original image that is
quantized is entitled "woman" and is shown in Fig. 3. It consisis of 512 x
512 pixels with eight-bit resolution. The predictor equations are given in
Table I. The notations employed in Table | are shown in Fig. 4. Note that
these equations are the same as those used in [9]. The image
presented in Fig. 5 was obtained using 4 x 4 vectors and 512 code
vectors resulting in an effective data rate of 0.5625 bits/pixel. The
codebook was trained on the "woman” image itseif. The choice of
various parameters for the experiments, including the piece-wise linear
function that was employed is given in Table Il. We can see that the
quantizer performs very well even though its implementation requires no
multiplications.

V. CONCLUDING REMARKS

The usefulness and effectiveness of vector quantizers in
waveform compression is beyond doubt. Howaver, their computational
complexity has made their implementation a costly proposition. The
purpose of this paper was to propose an approach to multiplication-free
vector guantization, and then demonstrate its usefulness in predictive
vector quantization of digital images. Toward this end, we first
presented a gradient-based codebook design algorithm for vector
quantizers that required no multiplications or median computations.
With very mild assumptions, we showed that the algorithm converges,
and the long-term average of the encoding distortion can be made
arbitrarily close to that due to a certain mapping of the training
sequence into the optimal codabook. We exiended the approach to the
casa when a piece-wise linear distortion measure is employed. This
method was applied to predictive vector quantization of images and
experiments using this technique have produced images with good
subjective quality. The ease of implementation and the quality of
encoding associated with the methods suggest that they are very viable
candidates in waveform coding applications involving vector
quantization.
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Figure 1.  Anexample of a function that describes the
piece-wise finear distortion measure.
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Figure 2.  Block diagram for predictive vector quantization of images.

Figure 3.

Original "woman" image

Table 1. Predictor equations for the predictive vector quantizer.
~ denotes predicted quantities.

h=t+@+AS)M4=-AT2  1=(A3+AT)2
d =(h +A5)2 B =(1 +A3)2
M= (0 +Agy2 S=(1 + A2
g=(1 +h)2 Z=(T + A1+ A3+ A7)
P=(1+fy2 S=(1+A3+A5)3
T=(+py2 To(1 + A7+ A9)3
o=(M+p)2 B =1 + (A5 + AQY4 - A1/2
k=(T+h+h+py4 =T +( +A9)4-AR

Table 2. Parameters of the prodictive vector quantizer

Range of |e| Slope Intercept
0.0-1.0 1.0 0.0
1.0-7.0 8.0 70
7.0 - infinity 32.0 -175.0
At A2 A3 A4 A5
Al a b ¢ d 1, -1 -
A7 ) f g h
A8 i i ko0
%g(n.m) = ]
A9 m n [} P f

I

Pixels in this block
are not yet encoded.

{a) Pixel notation {b) Block notation

Figure 4.  Block and pixel notations for the predictive vector quantizer.
A1-A9 are decoded pixels in blocks already encoded. a - p
are predicted using A1-A9.

Figure 5.

Encoded "woman" image. Average distortion = 48.59
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