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ABSTRACT 

Vector quantization is a very powerlul technique for data 
compression and consequently, it has attracted a k>t of attention lately. 
One major drawback associated with this approach is its extreme 
computational complexity. This paper first considers vector 
quantization that uses the l1 distortion measure for its implementation. 
The l, distortion measure is very attractive from an implementational 
point of view, since no multiplication is required for computing the 
distortion measure. Unfortunately. the traditional Linde-Buzo-Gray 
(LBG) method for designing the codebook for the L1 distortion measure 
can become extremely time-consuming, since it involves several 
computations of medians of very large arrays. We propose a gradient­
based approach for codebook design that does not require any 
multiplications or median computations. The codebook design algorithm 
is then extended to a distortion measure that has piecewise-linear 
characteristics. Once again, by appropriate selection of the 
parameters of the distortion measure, the encoding as well as the code­
book design can be implemented with zero multiplications. Finally, we 
apply our techniques in predictive vector quantization of images and 
demonstrate the viability of multiplication-free predictive vector 
quantization of image data. 

I. INTRODUCTION 

The advantages associated with representing. transmitting. 
and storing information in digital form are well-known. Perhaps the most 
serious disadvantage associated with the conversion of information 
from analog to digital form is the substantial increase in required 
bandwidth. This disadvantage can be mitigated by operating on the 
data with an appropriate data compression algorithm prior to 
transmission or storage. Vector quantization is a particularly effective, 
but computationally intensive, class of algorithms that has attracted a 
lot of interest in recent years. These algorithms take their name from 
the fact that they operate on entire k-dimensional vectors of waveform 
samples at once, rather than one sample at a time. They can be applied 
to a variety of waveforms such as speech [41. images (7), and modem 
signals [81, and they promise to be of great value in a variety of 
applications involving such waveforms. 

The simplest form of a vector quantizer operates as follows. 
First, a codebook of k-dimensional vectors is created using a training 
set representative of the waveforms. Once the codebook is designed 
and the representative vectors are stored, the process of encoding the 
incoming waveform can begin. k consecutive samples of the waveform 
are grouped together to form a k-dimensional vector at the input of the 
vector quantizer. The input vector is successively compared with each 
of the stored vectors and a metric or distance is computed in each 
case. The representative vector closest to the input vector is 
identified. and the index of the closest vector is available at the output 
for transmission or storage. 

Clearly, the full-search vector quantizer described above can 
become computationally very intensive. depending on the distortion 
measure employed. One very easy way of reducing the complexity of 
vector quantizers is to use the L, distortion measure where the distance 
between two vectors X and Y is computed as 

k 

dl(X,Y) = l: IXi - Yi l ' 
i.1 

(I) 

where Xi and Yi are the i-th elements of k-dimensional vectors X and Y. 
It is evident from the above equation that vector quantization using the 
L1 distortion measure requires zero multiplication for its implementation. 
However. the l, distortion measure may not be appropriate in all 
applications. For such cases, we will consider a piecewise linear 
distortion measure given by 
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where 

k 

d !!.. (X,Y) = l: f(xi - Yi)' 
i-I 

k 

f(e) = l: a·lel +'Y; 
i_I I ) 

(2) 

(3) 

is a piece-wise linear function and aj and lj are fundtons of lei and can 
take values from a finite set depending on which of the preseleded 
intervals contain lei. Figure 1 shows a typical f versus e curve. Note 
that if the slope values a··s are selected to be integer powers of 2, the 
vector quantizers that m;ke use of the distortion measure in Eq. 3 can 
be implemented without any multipliers. Furthermore, by appropriate 
choice of the thresholds 1's in Fig. I. we may be able 10 approximate 
several other distortion measures using the piece-wise linear distortion 
measure, and therefore make the vector quantizer perform similar to 
those that use other distortion measures and at the same time 
implement rt wrth highly reduced computational complexity. 

This paper deals with vector quantization using the L1 and 
piece-wise linear distortion measures. We first consider the design of a 
codebook when the L1 distortion measure is used. The traditional Linde­
Buzo Gray (LBG) algorithm [3] when used with the L1 distortion measure 
requires computation of the median values of seve"ral large sequences 
and can become computationally very complex. We will present a 
gradient-based approach that does not require any multiplications or 
median computations for its implementation. We then extend this 
method to the pieC9-wiselinear distortion measure. Finally, we will apply 
our method to predictive vector quantization of images. The 
implementation of the predictive vector quantizer is made multiplication­
free by selecting the coefficients of the predictor to be (possibly 
negative) integer powers of two. 

II. CODEBOOK DESIGN FOR THE L, DISTORTION 
MEASURE 

The traditional approach to codebook design for vector 
quantizers is a clustering method known as the Linde-Buzo-Gray 
algorithm. Given a representative training sequence and an initial 
codebook. the LBG method consists of encoding the training sequence 
and then replacing each code vector by the centroid of all the training 
vectors that were mapped into the code vector. This is repeated until 
convergence is achieved. For the L1 distortion measure, the centroid is 
the vector whose elements are the medians of the corresponding 
elements of all the training vectors that were mapped into it. Calculation 
of the median of a large set of numbers can become very complicated 
and time-consuming. We now propose a gradient-based algorithm that 
works very well in spite of the fact that it does not require any 
multiplications or median calculations. 

Gradient Algorijhm for Codebook Design 
Let {Y" Y2 •...• Y.l denote the training sequence and C(O) -

{C~, C~, ...• C~} denote the initial codebook. At the m-th iteration, 

encode Ym using codebook C(m-1). Let ~m "" Ym - C~-1 denote the 

quantization error vector where C~-1 is the code vector closest to Y m in 

C(m-I). The newcodebook C(m) is obtained by replacing C~-I inC(m-l) 

with 
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(4) 

m-l . {R} = C L + IL sign Pm ' (5) 

where sign (.) is a vector consisting of the signum function of the 

corresponding elements of (e). and tJ. is a small convergence constant. 
Note that the implementation does not require multiplications or median 
calculations. 

pmo1 gf ConyarggocQ 

We will first show that the algorithm converges to the optimal 
coda vector if the codabook contains only one vector. When the 
codebook contains M vectors we will show that the sequence of 
codebook vectors converge to a set that consists of the centroids of M 
subsets of the training sequence, each of which contains all the training 
vectors that got mapped into the corresponding code vector index. 
Finally, we will show that there exists a one-to-<>ne mapping from the 
above set to a set of optimal code vectors, and this mapping is such 
that the long-term average of the distortion of the training vectors 

produced during codebook design will be at most ~ larger than the 

average distortion produced by encoding the training vectors with 
elements from the optimal codebook chosen using the mapping. 

Note that the algorithm in Eq. 5 is very similar to the sign 
algornhm [2.5] employed in adaptive fl~erlng. In fact. the convergence 
analysis here i. an adaptation of the one in [2] to our particular 
snuation. The only assumption that we will make is that as the number 
of training vectors becomes very large. the number of training vectors 
that are mapped into code vectors corresponding to each index (i • 1.2, 
"'. M) will also beoome very large. This will eliminate the possibilny that 
only part of the codebook is used during the algorithm and the 
optimization is effectively done for a smaller~sized codebook than what 
is desired. 

To start the analysis, assume that the codebook consists of 

only one vector. Let C~ denote the code vector after the m~th iteration. 

Let Copt,1 denote the centroid of the training sequence. Also, define 
the misalignment vector at time m as 

(6) 

Now, (7) 

, Subtracting Copt, 1 from both sides of Eq. 7, we get 

m m-l fR I 
VI = V

t 
+ IL sign jPm (8) 

Taking the squared norm of both sides gives 

"V~I r = "V~-1 W + 1l2k + 211 (v~-t) T sign {13m}, 

(9) 

where (o)T denotes the transpose of (0). Note that 

m-l _ Cm-l _ _ _ 
VI - 1 Copt. 1 - 13oPt,m 13m (to) 

where Popt,m is defined as the optimum quantization error in quantizing 
Ym. Then 

(11) 

Recognizing that 

(t2) 

is the distortion when Y m is encoded using c~~t and 

13!pt,m sign 13m S 13:Pt,m sign 13opt.m = d1(Y m ,COpt•1) , 

(13) 
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and denoting the distortion in Eq. 12 by elm) and that in Eq. 13 by 
£opt(m), we get the following r.su~: 

Ilv~1 r s Ilv~-11 r + 1L
2

k + 21L Eopt(m) - 21L e(m)_ 

Iterating further, we obtain 

Since II v~ 112 ,,0. the above Implies that 

1 ~ . 1 II 011
2 

ILk 1 - £.J e(l) S- VI +-+-
m i.l m 2 m 

Taking the "mit as m g08S to infinity, 

m 

lim sup ..!... L e(i) S ~min + ~k 
m-+oo m i.1 

(14) 

(15) 

(16) 

(17) 

where ~mln is the average distortion produced by the optimal codebook. 
The above implies that W the codebook contains only one vector. the 
long-term average of the distortion produced by the gradient method 

exceeds the optimum average distortion by at most ~ k. If II- is small, 

the pertormance of this single code vector will be very close 10 that of 
the optimal code vector. 

Now, consider a situation where we have to design a codebook 
with M code vectors. Let TS(i) denote the subset of the training 
sequence that gets mapped to the i-th code vector during code book 
design. Obviously, the union of all TS(i)'s is the whole training 
sequence. Also note that the i-th code vector is trained only on TS(i), 
and therefore by the previous result. the i-th code vector converges to 
the centroid of TS(i). say Ce,i in the same sense as in Eq. 17. This 
implies that the codebook sequence converges to a codebook that 
consists of the vectors {Cc,i ; i.l.2 .. ",M}. 

Let CB(m) denote a vector of Mk elements formed by 
concatenating the elements of C(m). i.e., 

{ 

T T T}T 
C8(m) = (C~), (C;) ,_'" (C:) 

(18) 

Also. let CoPt denote another vector of Mk elements formed by the 
elements of an ·optimal· codebook that minimizes the total distortion in 
encoding the training sequence, Note that any codebook that 
minimizes the total distortion will suffice. Furthermore, the ordering of 
the M optimal code vectors in Copt can be arbitrary. Finally, let 

V(m) = C8(m) - CoPt (19) 

As before. let C~-1 denote the closest vector in C(m-t) to Y m' 

Define an Mk vector G(m) as 

T 

G(m) = {O, 0, ... , 13:, 0 ,,_ O} (20) 

That is, G(m) is a vector of zero elements, except for the poSitions 
corresponding to the oodebook element in C(m-I) that is closest to Y m' 

From Eq. 5 and the definnions above, 

CB(m) • CB(m-t) + II- sign (G(m» (21) 

where sign {OJ is taken to be zero. Substracting CoPt from both sides 
and taking the squared norm of both sides, we can show that 

(22) 



The last-term comes from the fact that every other element of G(m) is 
zero. Also, Copt,L denotes the L-th k-tuple in Cop,(m-l). 

Note that 

C~-1 - Copt,L = (Y m-Copt,L)-( Y m-C~I)=lJlm - ~m' 
. (23) 

where CPOm is the quantization error vector when Y m is encoded using 

Copt,L' 
Proceeding as before, substitution of Eq. 23 in Eq. 22 yields 

222 
Ilv(m)11 ~IIV(m-l)1I +llk-2Ile(m)+2Ile(m), 

(24) 

where tIm) corresponds to tha encoding distonion dl (V m' coPt,d· 
This inequality when iterated m times gives the following result: 

2 

~ I,e(i) < IIV(O)II +1: k+~ f e(i) 
m ;"1 2 Ilm 2 m i-I 

Taking the limit as m goes to infinity, 

m 

(25) 

lim sup ~ L e(i) ~ ~ + % k , (26) 
m~~ m i-I 

where ~ is the average distortion produced by mapping the training 
sequence into the optimal codebook. The mapping is such that 
whenever a training vector Y m is closest to the i-th code vector of the 
codebook C(m-l), it is mapped into the i-th k-tuple of the Mk vector 
Copt. Even though this may not in general be the optimal mapping, the 
above result shows that the algorithm converges and that there is a 
one-to-one mapping from the codebook being designed and the optimal 
codebook such that the long-term average of the distortion during 
codebook design exceeds that due to the above mapping into the 

optimal codebook by at most ~ k. Note that the ordering of the optimal 

code vectors in Copt was arbitrary. In particular, if we choose the 
above one-to-one mapping to be the "best" possible one that minimizes 
the long-term average of the distortion produced by the mapping on the 
training sequence, the long-term average of the distortion produced by 
the codebook during the design process will still not exceed the 
performance of the optimal codebook and the one-to-one mapping by 
more than ~k.I2. Even though there is a possibility that this mapping 
may be very different from the optimal one, all the experiments that we 
have done have produced results that are comparable to that of the 
LBG algor~hm. 

111_ CODEBOOK DESIGN FOR PIECE-WISE LINEAR 
DISTORTION MEASURES 

Since in many data compression systems the ultimate 
objective is to produce quantized signals with a minimum amount of 
subjective distortion rather than produce quantized signals that 
minimize certain quantitative distortion measure, we must keep in mind 
that the L1 distortion measures may not be the most suitable one for 
many applications. In order to overcome this limitation, we propose the 
use of piece-wise linear approximations for distortion measures that 
give rise to more complex encoding procedures. The functional form of 
the distortion measure is as given in Eqs. 2 and 3. As stated earlier, if 
we choose the slopes a/s of the piece-wise linear functions to be 
integer powers of two, the encoding can be done with only bit shifting, 
additions, and comparisons. 

The codebook design algorithm of Eq. 5 can be easily 
extended to this case. We will use the same notations as in the 

previous section. Let ~m be the quantization error vector that is due to 
the code vector that minimizes the piece-wise linear distortion measure 
in Eq. 2. Let ai(m) be the slope of the piece-wise linear function in Eq. 3 

that corresponds to the i-th element of Pm. Define a diagonal matrix 

A(m) as 

A(m) = diag {a1 (m), a 2(m), ... , ak(m)}. (27) 

Then the update equation for the gradient-descent codebook design 
algorithm becomes 

m m-l . {II} CL = CL + Il A(m) sign I'm . (28) 
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Ag ain, note that the codebook update algorithm can also be 
implemented using zero multiplications. 

IV. APPLICATION TO PREDICTIVE VECTOR 
QUANTIZATION OF IMAGES 

Researchers have found that predictive vector quantization 
algorithms outperiorm direct vector quantization much as linear 
predictive coding algorithms work better than PCM in scalar 
quantization schemes [1,6,91. There are two main reasons why 
predictive vector quantization algorithms are attractive: First, the 
prediction error sequence will in general have a smaller dynamic range 
than the original input waveform, and the prediction error sequence can, 
in most cases, be done more effectively than the input waveform itself. 
The second reason addresses a problem that is typical of all vector 
quantization algorithms. Since the codebook is designed for a training 
sequence that is representative of the input waveforms to the 
quantizer, any variations in the structure of the input waveforms from 
that of the training sequence will degrade the performance of the vector 
quantizer. The prediction error sequences will have far less structure in 
them than the waveforms themselves, and therefore a vedor quantizer 
working on prediction error sequences will be more robust to variations 
in the structure of the input waveforms. 

In this section we apply the results of the previous section to 
predictive vector quantization of digital images. The block diagram of 
the vector predictive vector quantizer is shown in Fig. 2. In the figure, 
x(n,m) corresponds to the input image and B is an estimate of the mean 
value of the image. The rest of the notations are seH-explanatory. The 
predictor coefficients are all chosen to be (possibly negative) integer 
powers of two and therefore the structure is truly multiplication-free. 

Note that the prediction filter predicts the current input vector 
using previous input vectors and the resulting error sequence is vector 
quantized. The codebook is designed from a set of training images. 
The predictor coefficients for the images are first estimated. Starting 
with an initial codebook, the mean-removed training image is quantized, 
and the codebook is updated each time after an input vector is 
quantized as described in Section III. 

We now present the result of an experiment that demonstrates 
the good subjective quality of the predictive vector quantizer employing 
the piece-wise linear distortion measure. The original image that is 
quantized is entitlad "woman" and is shown in Fig. 3. h consists of 512 x 
512 pixels with eight-bit resolution. The predictor equations are given in 
Table I. The notations employed in Table I are shown in Fig. 4. Note that 
these equations are the same as those used in (9]. The image 
presented in Fig. 5 was obtained using 4 x 4 vectors and 512 code 
vectors resulting in an effective data rate of 0.5625 bitS/pixel. The 
codebook was trained on the ·woman- image itself. The choice of 
various parameters for the experiments, including the piece-wise linear 
function that was employed is given in Table II. We can see that the 
quantizer performs very well evan though its implementation requires no 
multiplications. 

V. CONCLUDING REMARKS 

The usefulness and effectiveness of vector quantizers in 
waveform compression is beyond doubt. However, their computational 
complexity has made their implementation a costly proposition. The 
purpose of this paper was to propose an approach to multiplication-tree 
vector quantization, and then demonstrate its usefulness in predictive 
vector quantization of digital images. Toward this end, we first 
presented a gradient-based codebook design algorithm for vector 
quantizers that required no multiplications or median computations. 
With very mild assumptions, we showed that the algorithm converges, 
and the long-term average of the encoding distortion can be made 
arbitrarily close to that due to a certain mapping of the training 
sequence into the optimal codebook. We extended the approach to the 
case when a piece-wise linear distortion measure is employed. This 
method was applied to predictive vector quantization of images and 
experiments using this technique have produced images with good 
subjective quality. The ease of implementation and the quality of 
encoding associated with the methods suggest that they are very viable 
candidates in waveform coding applications involving vector 
quantization. 
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Figure 1. An example 01 a lunctlon that describes the 
piece-wise linear distortion measure. 

Figure 2. Block diagram lor predictive vector quantization of images. 

Figure 3. Original "woman" image 
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Table 1. Predictor equations lor the predictive vector quantizer. 
- denotes predicted quant~ies. 

h = I +~ + AS)/4-A7/2 

d = (h +A5)12 

m=(n +A9)/2 

9=(I+h)/2 

]=(I+n)/2 

i = (h +p)/2 

0' =(n +P)/2 

k=(1 +h+n+p)/4 

1 = (A3 + A7)/2 

b=(1 +A3)12 

e =(1 +A7)12 

3=(1 +Al +A3+A7)/4 

<:=(1 +A3 + A5)/3 

i =(1 + A7 + A9)/3 

P = 1 + (AS +A9)/4-AII2 

n= 1 +(p+A9)/4-A312 

Table 2. Parameters 01 the predictive vector quantizer 

Range of lei 

0.0 -1.0 

1.0 -7.0 

7.0 - inflnRy 

AI A2 A3 A4 

AS a 

A7 9 

AS 

A9 m 

Slope 

1.0 

8.0 

32.0 

A5 

d 

p 

Intercept 

0.0 

-7.0 

-175.0 

i-l,j-l 

i ,j-1 

i-1,j 

i,j~ 

I 
Pixels in this block 
are not yet encoded. 

(a) Pixel notation {b) Block notation 

Block and pixel notations lor the predictive vector quantizer. 
Al-A9 are decoded pixels in blocks already encoded. a - p 
are predicted using Al-A9. 

Figure 5. Encoded "woman" image. Average distortion = 48.59 


