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The effect of the translational-diffusion mechanism on the low-field NMR spin-lattice relaxation time 
in the rotating reference frame is calculated for simple cubic, body-centered cubic, and face-centered cubic 
lattices. The results of these calculations suggest a new method for determining the preferred diffusion 
mechanism. Previously NMR has been able to provide a direct measurement of the activation energy only; 
a theory has always been needed to determine the jump frequency from the experimentally measured relaxa
tion time. Recently Slichter and Ailion developed a new technique for the study of ultraslow diffusion which 
is applicable when the mean time r between atomic jumps is less than the spin-lattice relaxation time T i. 
In their theory, an order parameter p appears in the relationship between the experimentally measured 
relaxation time and r. This parameter p depends upon the diffusion mechanism and the angle 6, which de
scribes the orientation of the crystal with respect to the external magnetic field. In this paper we have 
calculated p versus 9 for vacancy diffusion, interstitialcy diffusion, and interstitial diffusion in bcc, fee, 
and sc lattices for two cases. In the first case, we have assumed that Ti, the mean time that an interstitial 
atom occupies a particular site between jumps, is longer than T 2, the spin-spin relaxation time, and we 
have found that the angular dependence of p is quite different for different mechanisms. In the second case, 
we have assumed that n  <  r 2 and have found that the angular dependence of p for interstitialcy diffusion 
differs from the vacancy results by approximately 10% for the three lattices considered. These theoretical 
results, when combined with experimental measurements of the angular dependence of the low-field relaxa
tion time, provide a method for the direct determination of the mechanism responsible for diffusion in these 
crystals.

I. INTRODUCTION

O NE of the most powerful tools for studying atomic 
motions is nuclear magnetic resonance. I t has 

been used to study atomic diffusion1,2 and molecular 
rotations3 in a variety of substances. In many cases it 
has advantages over other techniques. For instance, it 
is not restricted to the study of the motion of atoms 
which have radioactive isotopes of convenient half-life, 
but can be used to observe the jumps of any paramag
netic nucleus regardless of whether or not that nucleus 
is radioactive. There are many nuclei which are para
magnetic, but which do not have convenient radioactive 
isotopes (e.g., Li7). A plot of the temperature depen
dence of the linewidth (or T2) or a plot of the spin- 
lattice relaxation time versus reciprocal temperature 
provides a direct determination of the activation energy. 
By applying a theory like that of Bloembergen, Purcell, 
and Pound4 (BPP) or that of Torrey,5 the jump fre
quency can be determined from the experimentally
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f This paper is based in part on the M.S. thesis presented by Pei- 
Pin Ho at the University of Utah, Salt Lake City (unpublished).

t  Present address: 49-2 Ho Chung Village, Tsoying, Taiwan, 
Republic of China.
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measured relaxation time. Even though the determi
nation of the mechanism responsible for the diffusion 
is one of the most important problems connected with 
atomic motions, nuclear resonance has not in the past 
been able to provide a direct determination of the 
mechanism. It is the purpose of this paper to describe 
a new method for studying motions which will provide 
direct information about the nature of the atomic 
jumping process.

The temperature range over which diffusion can be 
studied by NMR has been greatly extended to very low 
temperatures by the development of a new method6,7 
which measures the low-field spin-lattice relaxation 
time in a coordinate frame rotating at the Larmor 
frequency. The new technique is valid provided that 
r, the mean time between atomic jumps, is less than 
TV, the spin-lattice relaxation time due to all mecha
nisms other than diffusion; whereas previous NMR 
techniques apply only to cases for which t < T 2. Since 
2V<C2Y in a solid, this method has greatly extended the 
range of observation to very slow motions. The method 
has been applied to the observation of translational 
diffusion in metallic lithium8,9 in the temperature range 
from room temperature down to 185°K. At the latter 
temperature r  is of the order of 1 sec. The technique 
has also been applied to the study of molecular rota-

6 D. C. Ailion and C. P. Slichter, Phys. Rev. Letters 12, 168 
(1964).

7 C. P. Slichter and D. C. Ailion, Phys. Rev. 135, A1099
(1964).

8 D. C. Ailion and C. P. Slichter, Phys. Rev. 137, A235 (1965).
9 D. C. Ailion, thesis, University of Illinois (unpublished).
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tions in a number of chemical compounds10,11 and in 
gypsum.12

The above technique is based upon the realization 
that atomic jumping results in a loss of dipolar order 
and is thus a thermodynamically irreversible process. 
The loss of dipolar order resulting from a diffusion jump 
is a maximum if the nuclei are initially aligned along 
their individual local fields. Such alignment can be 
achieved by an adiabatic demagnetization of the sys
tem from a large external field to a small external 
field. This process results in the transfer of order from 
the Zeeman system to the dipolar system. After a 
nucleus undergoes a diffusion jump, it will in general 
find itself in a different local field and, as a result, there 
will be a loss of dipolar order. Following the jump, cross 
relaxation between the dipolar and Zeeman systems will 
transfer the loss of dipolar order to a loss of Zeeman 
order which can be observed experimentally as a de
crease in the magnetization.13

As mentioned earlier, a theory is needed to relate 
the experimentally measured relaxation time to r. The 
theories of BPP and of Torrey cannot be used in the 
case of weak fields as they are perturbation theories in 
which the dipolar Hamiltonian is treated as a pertur
bation on the eigenstates of the Zeeman Hamiltonian. 
This type of theory clearly does not apply when the 
external fields are less than or equal to the average 
dipolar fields. For this reason Slichter and Ailion 
developed a new theory7 which is applicable only if 
r^> r2. This theory, which thus complements the BPP 
theory, is based upon two assumptions. First, it is 
assumed that enough time elapses between any two 
diffusion jumps so that both the dipolar and Zeeman 
systems can be described by a common spin temperature 
prior to each jump. Since the time required for a spin 
temperature to be established is of the order of T% and 
since the time which any one nucleus spends on the 
average at any particular site is r, this assumption is 
equivalent to assuming that t5>T2. The spin-tempera
ture assumption allows us to use the density matrix 
and to formulate physical quantities as diagonal sums 
which can be evaluated without determining the eigen
functions.14 The second assumption is that the sudden

10 D. W. McCall and D. C. Douglass, Appl. Phys. Letters 7, 12
(1965).

11 D. C. Douglass and G. P. Jones, J. Chem. Phys. 45, 956
(1966).

12 D. C. Look and I. J. Lowe, J. Chem. Phys. 44, 2995 (1966).
13 It is experimentally difficult to demagnetize the spins from a 

large field (^10 000 G) to a field of order of the dipolar field 
(~ 1  G) in a time short compared to the spin-lattice relaxation 
time and yet long enough for the process to be adiabatic. For this 
reason, the nuclear relaxation is observed in a frame rotating at 
such a frequency as to exactly cancel the static magnetic field. 
[See C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 
(1961).] Such a treatment is justified by the work of A. G. Redfield 
[ibid. 98, 1787 (1955)], who showed that a nuclear spin system 
subject to an rf field which is strong enough to saturate the nuclear- 
resonance line should be described by a spin temperature in a 
frame rotating at the frequency of the rf field. This means that 
Curie’s law will hold in the rotating frame, and the magnetization 
will be parallel to the rotating field Hi. Since H i is typically only

approximation of quantum mechanics can be applied 
to the jumping process; i.e., we assume that the time 
the nucleus spends in the actual process of jumping is 
so short that, immediately after a diffusion jump, the 
spin will have the same orientation as it had immediately 
before the jump. Since the actual time which a nucleus 
spends in transit is of the order of the lattice vibration 
period ( ^ 10“ 12 sec) and the time required for the nu
cleus to change its orientation is of the order of the 
Larmor period (^1 0 “ 3 sec in a field of 1 G), this as
sumption is clearly justified. Were it not so and were 
the nucleus to jump so slowly that it would have time 
to align itself along the new local field during the actual 
jumping time, the jumping would not result in a loss 
of dipolar order and would not be observable by mag
netic resonance.

II. CALCULATION OF THE ENERGY CHANGE
Let us consider a spin system consisting of nuclei 

interacting with each other and with an external static 
field Ho and a strong rf field Hi. In a frame rotating 
with H h we then have an effective Hamiltonian 3C:

where

and

Also

where

3Cz — yfoZ(Ho— (co /7 ) ) I S-{ -H ilx } ,

3 C d °= iE 4 <Jfc(3/,</ iib- I <.I* )J
i,k

(l)

(2)

(3)

(4)

A i k —

1—3 cos20,-

R i k 3

(5)

Here, 3Cd° is the secular part of the dipolar Hamiltonian; 
i.e., 3C<2° is that part of the dipolar Hamiltonian which 
commutes with I z.

The assumption that, prior to each jump, the dipolar 
and Zeeman parts of the spin system can be represented 
by a single temperature is equivalent to assuming that 
initially the system can be represented by a density 
operator pi, given by

e x p [-  0Cd°+3Cs)/&0]
P i = ---------------------------------------- . (6)

Z

In the above formula, Z  is the partition function. After 
the jump the dipolar Hamiltonian has changed to 
3Cdf° and the temperature 0 has changed to 0'. However, 
since we are assuming that the spin orientation is the 
same right after the jump as it was immediately before, 
3Cs is unchanged. We then have

e x p [-  (JKV+Oe*)/£0']
P / = ----------------------------- -------------------------------.  ( 7 )

a few G, it will be much easier to demagnetize H i than to de
magnetize H 0.

14 J. H. Van Vleck, Phys. Rev.^74, 1168 (1948).
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qi qa

(b)
Fig. 1. (a) represents the situation in a bcc crystal before an 

interstitialcy jump and (b) represents the situation after the jump. 
n  and n  represent the initial positions of the jumping atoms and 
Qi and q% represent their final positions.

For a system described by a temperature we can calcu
late the average energy E  from

£ = T r ( 3 C p ) . (8)
The energy change which results from a single jump is 
then given by

AE =  Tr (3C/p/) — Tr (3C,-p*). (9)

The assumption that the spin orientation is un
changed as a result of the jump tells us that

Pf=Pi=P• (90
We then have, in the high-temperature approximation,

1
AE =  Tr (Wd ,° -  3C d°)p= --------------

kd(2I+ 1)N 
X £ r r M * - T r ( W J > H df°)'l' (10)

If there are N 0 jumping units each of which spends a 
mean time to between jumps, we have the result that 
the average rate of change of the dipolar energy due to 
jumping is

d{3Cd°) N 9 (X d°)
= — (A E ) ^ ~ ---- (11)

dt

Slichter and Ailion7 have shown that the time T c is the 
relaxation time that would be obtained if H i = 0 .

We can define a local field H l in the rotating frame by

C H l 2 T r (3 C < * 0) 2
------ = -------------- =  u  £ /  Aif  (12)

6 k d ( 2 I + l ) N u

where U is a factor involving the trace of the spin 
operators, N  is the number of atoms, and C is the Curie 
constant. The prime indicates that we are summing only 
over occupied sites. If we assume that the number of 
unoccupied sites is small compared to the number of 
occupied sites, then

C H l 2
------ Z Z N U X A J ,  (13) 

0 -----------*

where the sum now includes all lattice sites and N  
represents the total number of atoms. Also

T r ( 3 C  d ° 3 C d f ° )

--------------- = U 22' Ai3A ijf , (14)
k d ( 2 I + l ) N a

where A y /  is the value of A a after the jump. We then
noxrp f hnf

A E = U Z ' ( A i * - A ijA ijf).  (15)
id

III. DETERMINATION OF p  FOR (OR t , ) » T 2

A. Vacancy Diffusion
In this section we will assume that diffusion takes 

place as a result of nearest-neighbor jumps. Let us 
consider a particular jump. Let r represent the initial 
site of the jumping nucleus and let q represent the final 
site. Then

A E = 2 U Z '  (Air* - A irA i J , (16)

where we have used the fact that only the atom initially 
at r jumps. The factor of 2 arises since either i or j  
can be r.

Now in general there are a number G of different 
equally probable sites into which the nucleus at r can 
jump. (For nearest-neighbor vacancy diffusion, G is the 
number of nearest neighbors.) Since these are equally 
probable we should average over them. If we do so, we 
obtain

_ 2 U
(AE) = ----22' (Air2—Air A iq) . (17)

G i>Q

Since, for vacancy diffusion, the atom at r must have 
a vacancy next to it, we can replace the sum over oc
cupied sites by a sum over all lattice sites. If we subtract 
the term corresponding to i —q, we then get

2 U 2 U
(AE) — - 3 - 22 (A ir2—A irA iq)----— 22 A qr2

G
(18a)

2 U
2U 22 Air2------ 22 (Aqr2+ J 2  A irA iq) (18b)

i G Q i

CHl2 2

where
6 N  

1 

G

a - p ) ,

p ~ — 22 [Aqr2+lL2 A irA iJ  / 2 2  A ir2. 
G 2 • /  i

(18c)

(19)

This formula for p was first derived by Slichter and 
Ailion.7 If we substitute our expression (18c) into 
formula (11) we get

1 N v 2 2

1 C Tv Jy T
(20)

where we have replaced N 0 by N v and to by t v and have 
used the fact that some atom must jump whenever a 
vacancy jumps and thus

N  v/ t v= N / r . (21)

In the presence of a rotating field Hi, Slichter and Ailion 
have shown that the magnetization will decay with a
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time constant T given by
1 2 Ei?

- = - ( W ) -------------------------
T t  / / i 2 + / / i 2

(22)

(The T  used here corresponds to the T\p used by 
Redfield13 and others.10,11)

B. Interstitialcy Diffusion

Interstitialcy diffusion occurs when an interstitial 
atom collides with an adjacent atom occupying a 
normal lattice site with the result that the initially 
interstitial atom moves to the normal site and the 
initially normal atom has moved to a new interstitial 
site.15 We are regarding the diffusion to be a simul
taneous motion of the two atoms.16 This is shown in 
Fig. 1.

To calculate p we can use formula (IS) but we must 
recognize now that in interstitialcy diffusion two atoms 
will have their dipolar energies changed. If r\ and r2 
represent the initial positions of the jumping atoms and

and q2 represent their final positions, then the only 
terms which change are those for which either i or j  is 
ri or r2 (excepting, of course, the terms i —ri, j ~ r 2 and 
i —r2y j —r\, since the interaction term between the two 
jumping atoms does not change). We then get

2 U Y !  [(-4 in2- A  inA iqi)
i

~h (A i r2 A ir2A • (23)

If we assume that the number of interstitial atoms is 
small compared to the number of normally occupied 
lattice sites, we can delete the prime in Eq. (23) and let 
the sum range over all normal lattice sites. (We are thus 
neglecting interactions between two interstitial atoms.) 
However, in the jump, the dipolar energy between the 
interstitial atom and the atom at r2 does not change. 
Since this term has been included in the sum over i, we 
must explicitly subtract the term corresponding to i ~ r 2. 
We should further recognize that qi and r2 refer to the 
same normal site, and ri and q2 refer to interstitial 
sites. Let us replace the indices for the normal lattice 
site by q and the indices for the interstitial sites by r. 
Since we will average over different jump directions the

16 We have not performed our calculations for complexes of 
atoms like split interstitials, di-interstitials, or crowdions, but have 
limited our considerations in this paper to the motion of point 
defects like interstitial atoms and vacancies. However, if in a 
particular structure, complexes were thought to be responsible 
for the diffusion, the method of calculation considered here could 
be applied to that case.

16 We could alternatively regard the motion to consist of two 
steps, in each of which only one atom moves. In the first step, the 
normal atom moves to an interstitial site thereby leaving a vacancy 
between two interstitial atoms; in the second step, the initially 
interstitial atom jumps into the vacant site. If we calculate the 
energy changes for each step and add them, we will get the same 
total energy change as we get if we assume simultaneous motion 
of two atoms. We must be careful, however, to include the fact 
that the spin temperature prior to the second step is greater than 
it was prior to the first because of the heating which results from 
the first jump.

e
Fig. 2. Afplot of 1 /(1— p) versus 6 for n ' > T 2 in a simple cubic 

crystal, assuming (a)#vacancy diffusion, (b) interstitialcy diffusion, 
and (c) interstitial diffusion.

two interstitial sites can be treated equivalently. We 
then get

2 U
( A E ) =—  £  [ £  (Air2+ A iq2- 2 A irA iq) - A qr2l .  (24) 

G « i

We must also recognize that in a cubic crystal there 
may be a number Gf of different but equally probable 
sites in which the interstitial atom can be situated. (In 
a bcc crystal in which the interstitial atom occupies the 
center of an edge as in Fig. 1, <7=3, corresponding to 
the cases in which the lines joining the interstitial atom 
to its nearest neighbors lie along the x, y, or z directions.) 
If we average over these different sites, we get

_ 2U
((AE) )= — -]£ Q2 (Air2+ A iq2—2AirAiq) —A qr2).  (25)

GG r,q i

The sum over i is a sum over all lattice sites. Now

CH l 2

e

N U
N U Z A iq* =----  £  A iqK

i GG/
(26)

We get ((AE))  of the form (18c) only now p is given by

/ I  2 1
P = [ ----, Z A qr2+ ~  £  AirAf------V

\GG' r,q

1
- X A < S>. (27)
L r
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Fig. 3. A plot of 1/(1 — p) versus 6 for n >  in a body-centered 
cubic crystal, assuming (a) vacancy diffusion, (b) interstitialcy 
diffusion, (c) interstitial diffusion (to nearest-neighbor interstitial 
sites), and (d) interstitial diffusion (to next-nearest-neighbor 
interstitial sites).

In this formula, r represents an interstitial site, q 
represents the normal lattice site into which the inter
stitial atom jumps, i  ranges over all normal lattice 
sites, G is the number of atoms which are nearest 
neighbors to a given interstitial atom, and G' is the 
number of different sites in which the interstitial atom 
can appear.

C. Interstitial Diffusion

In this type of diffusion an interstitial atom jumps 
into one of the nearest-neighbor vacant interstitial 
sites. If we let r represent the initial site (an interstitial 
site) and q represent the final site (also an interstitial 
site), we then get for the mean energy change

2 U (

Gr r,t \

l \
A ir ■ ). 1 A irA iq J • 

G * /
(28)

Expression (28) can be written in the same form as 
Eq. (18c), if each term is multiplied and divided by 

A ^2 where the indices i and j  refer to normal lattice 
sites. Therefore

( (AE))=2U  2Z A^2

X ( - f Z A
- \ G  i.r

1
tr

GG' i.a.r
Z) A irA%q £  A a2 (29)

CEi?

Hence
d

NU Z  A i f .

Therefore

P = i E A IJ

CHl2 2
« A S » = ----------(1 - p )

6 N

5Z A irA iq XI A ir*\ /  
GG' i,r,q G' i,r  / /

(30)

(18c)

(31)

IV. DETERMINATION OF p  FOR ^  (OR t , ) « T 2

Only at very low temperatures will n  (or tv) be longer 
than T2, and at these temperatures it may be difficult 
to achieve an interstitial (or vacancy) concentration 
sufficiently great that r < 2Y, where r  is the mean time 
between jumps of a normal lattice atom. Only in a very 
pure sample will it be possible for T\ to be sufficiently 
long so that the conditions Ti>T% and t< 7 Y  can be 
satisfied simultaneously. For this reason we now extend 
our considerations to the region r»(or tv)<^T2.

A. Vacancy Diffusion

Since r®, the mean time a vacancy stays at a lattice 
site between jumps, is much less than r, the atomic 
jump time, we have the possibility that and
there will be a trail of “hot” spins left behind the
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d i f f u s i o n ,  a n d  ( c )  i n t e r s t i t i a l  d i f f u s i o n .
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vacancy. (This phenomenon is discussed in detail in 
Refs. 7 and 8 .) These “hot” spins will contribute con
siderably less to the dipolar energy than “cool” spins 
(i.e., spins at the mean dipolar temperature), so that we 
will have introduced an error by not distinguishing 
these spins from the normal “cool” spins. However, we 
can estimate an upper limit of the error introduced by 
omitting entirely these spins from the calculation of the 
dipolar energy. (This corresponds to assuming that 
these spins are at infinite temperature, certainly an 
upper limit.) We then find that the maximum error 
introduced by this source into the angular dependence 
of 1/(1  — p) is only a few percent, which is very small 
compared to the differences exhibited in the curves of 
Figs. 2-4, and is even small (though not very small) 
compared to the 10% effects shown in Figs. 5-7. 
Therefore, we will consider the vacancy calculation 
given in Sec. I l l  A of this paper to be essentially valid 
even if t v<<CT2.

B. Interstitialcy Diffusion
For interstitialcy diffusion there is a more serious 

error than the neglect of the trail of “hot” spins de
scribed above. In Sec. I l l  B, we assumed that both the 
interstitial atom and the lattice atom which jump are at 
the same temperature 0 prior to the “interstitialcy 
jump.” If T i < T 2, this treatment should not apply 
since, immediately before a jump, the lattice atom which 
will jump should be cool (as it has not jumped for a 
time r), but the interstitial atom should be hot as it 
just completed a previous jump (on the average a time 
t i previously) and has not had time to cool off.

In Eqs. (24) and (25) above, the factor U implicitly 
contains the temperature 0 in the denominator. Let

F i g .  5 .  A  p l o t  o f  1 / ( 1 — ^ )  v e r s u s  6  f o r  r t  < r 2 i n  a  s i m p l e  c u b i c

c r y s t a l ,  a s s u m i n g  ( a )  v a c a n c y  d i f f u s i o n  a n d  ( b )  i n t e r s t i t i a l c y

d i f f u s i o n .

1
1.6

1.4

I 1 2

l -p

0 .6

0.4

CX2

i — r *i— i— i— i— i— i— r 1 — !— T

BODY-CENTERED CUBIC LATTICE

Vacancy .
Interstitialcy (for X j < Tz )'

0  ___ I___ I___ I___ I___ I___ i___ I___ i___ i___ l___ L

Fig. 6. A plot of 1/(1 —p) versus 6 for n  <  T 2 in a body-centered 
cubic crystal, assuming (a) vacancy diffusion and (b) interstitialcy 
diffusion.

us define a constant K  by

U = K / 6 .  (32)

Then a correct expression replacing Eq. (25) would be
■V. a 2— Y  - A • A •JL̂% iq ■CL ir^iq2K

« a  S ) ) = — T,
GG r,q e

e'
. (33)

The first term represents the energy change of the 
initially normal lattice atom with respect to all atoms 
other than the neighboring interstitial, whereas the 
second term represents the energy change of the initially 
interstitial atom with respect to all lattice atoms other 
than the lattice atom which moves. 0 is the initial 
temperature of the lattice atom (presumably the spin 
temperature of the entire system), whereas 0' is the 
initial temperature of the interstitial atom.

In order to derive a formula for p, we must first 
calculate 0' in terms of 0. This can be done by recogniz
ing that the interstitial atom has been a lattice atom a 
time Ti earlier, on the average, so that 0' also represents 
the final temperature of a jumping lattice atom [We 
note that if we replace 0' bv 0 in Eq. (33) we get Eq. 
(25).] _ '  _

If we consider an atom at a lattice site q which jumps 
into an interstitial site r, we can calculate the mean 
energy ((2?/)) of the atom in the final site.
{ (# /))= Tr(p/3Cd/)

•2 K
E ( E ^ ^ 2- ^ « r 2)

LGGf r,q
0'. (34)
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Table I. Results for vacancy diffusion.

168

Simple cubic 

(100)

Body-centered cubic 
jump direction 

<111)

Face-centered cubic 

(110)

jC? Aqr2 (Y4ft4/®6) (3.0-2.25 sin220) (y4fi4/ a &) (0.0+4.74074 sin220) (yW /a*)  (12.0+9 sin220)

Z i Air2 ( t 4̂ 4/a 6) (3.33902 — 2.07366 sin220) {yHi, / a 6) (3.73129+2.59580 sin220) (y s¥ /a « )  (17.2327+7.36236 sin220)

q AirAiq (yW /aP)  (3.65865 -1.68193 sin220) ( y W / a 6) (6.99067+1.97785 sin220) (y4¥ / a 6) (29.2149+14.7679 sin220)

G 6 8 12

A
1.109775-0.655322 sin22S 6.99067+6.71859 sin220 41.2149+23.7679 sin220

p
3.33902 -2.07366 sin220 29.85032+20.76640 sin220 206.7924+88.34832 sin220

1/1 - p
3.33902—2.07366 sin220 29.85032+20.76640 sin220 206.7924+88.34832 sin220

2.229245-1.418338 sin220 22.85965+14.04781 sin220 165.5775+64.5084 sin220

However, a fundamental assumption of our theory is 
that the spin orientation of the jumping atom is the 
same immediately after the jump as it was immediately 
before. This means that p/=p». So, if we substitute into 
the above formula, we get

( ( E f ) ) = T r ( p M

V 2 K  ■
------- ] 2 2  2 2  A i r A i q

L G G  r , q  i  .

/  6. (35)

By equating Eqs/(34) and (35), we get

1  1  2 2 r , q  2 2  i  A i r A { q

Thus

« A  E ) ) =

6 '  0  2 2 r , q  ( S i  A i r 2  A  g r 2 )

(3 6 )

2 U

G G '

22 A iq2— 22 A  irA t q

. t , r , q t , r , q

+
2 2 i , r , q  A i r A t q

2 2 i , r , q A i r 2  2 2 r t q  A q r

X ( 2 2  A % 2 A q 2 22 A irA iq )
i , r , q  i , r , q  ,

(37)

2 U  (  2 2 i , r , q  A i rA
— (22 A iq*) l -
G G f  i , r , q  \

t q

2 2 i , r , q  A t q

X
2 2 i , r , q  A  i r A t q

Therefore
L . a  . 2 _ y  A  2

t ,  r , q S i % r  £ * r , q s * q r )■
(38)

2 2 i , r , q  A { rA t q 2 2 i , r , q  A i r A t q

22i,r,qAiq2 22i,r,qAir‘l 22q,r A
(39)

q r

This is the formula for p  which should apply to the 
case of interstitialcy diffusion when n < T 2. (Of course, 
we have neglected the fact that one of the neighbors 
of the interstitial atom is hot from previous jumping, as 
discussed above in Sec. IV A.)

C. Interstitial Diffusion

It should be observed that there is a fundamental 
difference between interstitial diffusion and the other 
two types of diffusion considered in this paper (vacancy 
and interstitialcy). In interstitial diffusion only the inter
stitial atoms jump and the normal stitial atoms do not 
jump, whereas in the other cases the normal atoms 
eventually jump. This means that, in the case of inter
stitial diffusion, there is the possibility of a “thermal 
bottleneck” in which the “hot” interstitial atom jumps 
again before it has had a chance to cool down. Never
theless, if Ti, the mean time between interstitial jumps, 
is long compared to T2, then the interstitial atom can 
“cool down” between jumps in which case each new 
jump will result in the energy change predicted in Eqs.

2 . 0  

1 . 8  

1 .6  

1.4

I t 2  

1 .0  

0 .8  

0 . 6  

0 .4

0 . 2  I -

t— i— i— i— r t— i— r t— i— i— i— r

FACE-CENTERED CUBIC LATTICE

l-p

Vacancy
Interstitialcy (for Ti <Tz )

0  » » > i » i t i i t i___ i___ i___ i— i— i...._ i ,
0° 10° 20°  3 0 °  4 0 °  5 0 P 6 0 °  7 0 °  8 0 °  9 0 °

6

F i g .  7 .  A  p l o t  o f  1 / ( 1 — p )  v e r s u s  0  f o r  n < T 2 i n  a  f a c e - c e n t e r e d

c u b i c  c r y s t a l ,  a s s u m i n g  ( a )  v a c a n c y  d i f f u s i o n  a n d  ( b )  i n t e r s t i t i a l c y

d i f f u s i o n .
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Table II. Results for interstitialcy diffusion for t<>7V

669

Simple cubic 

(111)

Body-centered cubic 
jump direction 

(100)

Face-centered cubic 

(100)

G' 1 3 1

G 8 2 6

(1/GG') Er , qA ^ (74*4/a 6) (0.0+0.592512 sin220) (74#4/a 6) (32.0—24 sin220) (74#4/o 6) (32.0—24 sin220)

(1 /GG') T . i , r , ,A irA iq ( y W M  (0.437010+0.123607 sin220) ( y W / a 11) (5.87674-0.891858 sin220) (yW /a*)  (19.5129-8.97069 sin220)

(1/GO Z i . r A i S (7 4fc4/o 6) (0.392772+4.66933 sin220) (74&4/o 6) (69.9881 -45.1034 sin220) (74*4A 6) (196.458-140.077 sin220)

(1/G) L i., A r f ( t4*4/« 6) (3.33902 -  2.07366 sin220) ( y W / a 6) (3.73129+2.59580 sin220) (y lW/a?) (17.2327+7.36236 sin220)

P
0.481248 —3.829604 sin220 -26.234620+19.319684 sin220 -125.432 +98.136 sin220

3.33902 — 2.07366 sin220 3.73129+2.59580 sin220 17.2327+7.36236 sin 220

1 /1~ P
3.33902-2.07366 sin220 3.73129+2.59580 sin220 17.2327+7.36236 sin220

2.857772+1.755944 sin220 29.965910-16.723884 sin220 142.665-90.774 sin220

Table III. Results for interstitialcy diffusion for t ; < 7'2.

Simple cubic Body-centered cubic Face-centered cubic
0.190978 +0.108035 sin220+0.015279 sin*20 34.53607 -10.48244 sin220+0.79541 sin420 380.7533 -350.0884 sin220 +80.4733 sin<20

V

1
1.311474 +12.798101 sin220 -8.453934 sin*20 
1.311474+12.798101 sin220-8.453934 sin*20 1

141.7446+19.8666 sin220 -54.7802 sin*20 
L41.7446 +19.8666 sin220 -54.7802 sin*20

2834.055 -789.521 sin220 -854.601 sin*20
2834.055 -789.521 sin220-854.601 sin*20

1 - p  1.120497 +12.690066 sin220 -8.469213 sin*20 107.2085 +30.3490 sin220 -55.5756 sin420 2453.302 -439.433 sin220 -935.074 sin*20
1  \  a

0.8936a 0.9611a 0.9527a(JL .) / ( — )  ■\ l  — P/m /  \1 —P/ 0~Q

a The minimum value of 1/(1 —p) occurs at 0 =25° for the sc and bcc lattices and at 0 =35° for the fee lattice.

(18c) and (31).17 However, in a real solid it may be 
difficult to satisfy r*> T% at temperatures high enough 
for the motion to have an appreciable effect on the 
relaxation time. In that case the strong-collision-type 
calculation described in Sec. I l l  C of this paper would 
not be valid. Nevertheless, if the mean time r  that a 
lattice atom must wait between successive encounters 
with interstitial atoms is long compared to T2, then the 
lattice atoms will achieve a common spin temperature 
prior to each encounter. We will thus get a narrowing of 
the resonance linewidth. However, the mean energy 
change of a lattice atom resulting from an encounter with 
an interstitial atom should be very much smaller than 
the energy change for vacancy or interstitialcy diffusion, 
since most of the atom’s dipolar energy is not changed 
in the former case. Thus more encounters would be 
required to relax the magnetization, with the result 
that the rotating-frame relaxation time will be much 
longer than would be predicted for the strong collision

17 This would be valid only for spin-| nuclei. For larger spins 
quadrupolar interactions should be taken into account. However, 
if Tt&ofl<$Cl, where do>Q is the quadrupolar splitting, then the quad
rupolar coupling will result in weak collisions for the jumping 
nuclei. These will be small compared to the strong effects of the 
dipolar coupling in the case of vacancy or interstitialcy diffusion.

cases.18 Also, more encounters would be required before 
motional narrowing could set in with the result that the 
“neck” of the T 2 curve will occur at a higher tempera
ture. The rotating-frame relaxation-time minimum will 
still occur at the onset of motional narrowing, but this 
should occur at a higher temperature for interstitial 
diffusion than would be expected for vacancy or inter
stitialcy diffusion. Hence, it would be possible to dis
tinguish interstitial diffusion from vacancy or inter
stitialcy diffusion only if the jump time r  can be 
measured by an independent technique (like radioactive 
tracers).

V .  C A L C U L A T I O N  O F  ( 1 / G ' )  r A i r 2 

A N D  ( l / G G ' ) X i , r , q A i r A i q  '

As we saw in Eq. (5),
1—3 cos20ir

A ir~ %y2h2-------------- , (5')
R i r Z

where 0*r is the angle between the applied field and the 
internuclear vector Rir.

18 The dependence of the mean time r between encounters upon 
the measured relaxation time could be calculated by a method 
similar to that described in Ref. 5.
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Now let us assume a rectangular coordinate system 
with axes parallel to the crystal’s (100) direction. Sup
pose the applied field Ho lay in the xz plane and made 
an angle 6 with respect to the z axis. Then

cos dir—
sin# Xir+cos0 Zir

R,
(40)

ir

where X ir and Z ir are the # and 2 components of Rir. 
If we restrict ourselves to cubic crystals for which terms 
linear in X ir and Z ir sum to zero, we get

T, ^ , 2= E
7  4h-

i,r
1 — 6 sin20( -

%r

\ R %r*

6 cos2#( —  + 9  sin40(
/ X t ' 4ir

'Rir'

+  9 cos40( —  1 +54 sin20 cos20(
\  R - 2 /'  * ' - i r  '  —1

• (41)

This is equivalent to formula (A4) of Ref. 8 . Because 
of the cubic symmetry, we have that

Y .  2  7 . 2^  %r
Z — = E
i,r R ir2 i,r R ir2

(42a)

and

z
IT

z
ir

i } ^ 1 %yT

(42b)

We then get

1 74*4
- Z A ir2= -----E
Gf i,r 4Gf i,r \ R

+ f  sin220

1 - 6

r X  ■ 7  ' 2%r̂  ir 7  \  4nir'

R  2±\~ir 'Ri
. (43)

Similarly for (l/GGOSt.r.g AirA iq we get

1 y 4¥
E  A irA iq— ; E

1

GG' i.r,q 4GG' i,r.q R irsR iq3
1 -3

/  Z{r\

\ R i J

’Z iq\ 2 f Z irZ iq\ 2- 9sin220 
-31 —  ) + 9

%qi \RirRiiriVig/ -J R 2R 2

X l l ( Z ir2- X ir2) ( X iq2- Z iq2) + X irX iqZ irZ iq-] . (44)

For noncubic crystals, there would be an extra term 
proportional to sin20 in both Eqs. (43) and (44).

V I .  R E S U L T S

We have calculated p versus 6 for bcc, fee, and sc 
lattices for vacancy, interstitialcy, and interstitial dif
fusion using the UN I VAC 1108 digital computer at the
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T a b l e  V. [1/(1 — /> ) ]0 = W 4 /[ 1 / (1  —^ > )]^ o  for different mechanisms
in different lattices for n > T 2.

Simple
cubic

Body-centered Face-centered 
cubic cubic

Vacancy 1.0409 1.05032 1.0267
Interstitialcy 0.23472 3.8372 3.9240
Interstitial 0.012603 4.4509 5.0365

(nearest neighbors)
Interstitial 4.9797

(next-nearest
neighbors)

University of Utah computer laboratory to perform the 
lattice sums. Each of the programs was checked by hand 
calculation out to at least one atomic shell. The inter
stitial results have been calculated for r { > T 2 only, 
whereas the interstitialcy results have been calculated 
for both cases: t { > T 2 and T i < T 2.

A. Vacancy Diffusion

For vacancy diffusion we assumed jumps to nearest- 
neighbor positions only. The results are summarized 
in Table I.

B. Interstitialcy Diffusion

For the sc lattice we assumed that the interstitial 
atom sits in the center of the primative cell. For both 
the fee and bcc lattices we assumed that the interstitial 
sites are at the center of the cube edges. Our results are 
contained in Table II (for ti> T 2) and in Table III 
(for n <  T2).

C. Interstitial Diffusion

For interstitial diffusion, we calculated our parame
ters for jumps to the nearest vacant interstitial site. 
In the bcc case, we also performed a calculation as
suming jumps to the next-nearest interstitial site. These 
results are summarized in Table IV.

The ratio of the maximum value of 1/1—p (at 0 = ^t ) 
to the minimum (at 0=0) for T i > T 2 is plotted in 
Table V.

VII. CONCLUSIONS

In Figs. 2-4, we have plotted 1/1 — p versus 0 for 
each type of mechanism considered in each of our

19 We note that, in zero field, the angular dependence of T  in 
Eq. (22) is identical to that of 1/(1 — ̂ ). {We should bear in mind 
that this is not the case if H i is nonzero, for in that case we would 
have to correct for the angular dependence of the local field. 
Alternatively, it is easy to perform an adiabatic demagnetization of 
Hi [see F. M. Lurie, thesis, University of Illinois (unpublished)] 
so that the relaxation is indeed observed in zero field.)

crystals. As we can see, in each crystal there are very 
striking differences among the results for the different 
mechanisms. These suggest a method for discriminating 
between different diffusion mechanisms for crystals 
with very long T%. The low-field relaxation time19 for 
a single crystal can be measured as a function of angle 
and compared with calculated results like the ones in 
Figs. 2-4. In this way incompatible mechanisms can 
be eliminated. (Of course, these results are valid only 
for spin-§ nuclei.17)

The results for vacancy and interstitialcy diffusion, 
valid for n < T 2, are plotted in Figs. 5-7. To distinguish 
these mechanisms from each other would require 
experimental precision of the order of 10% which is not 
too difficult to achieve. For T i < T 2, a measurement of 
the temperature dependence of the rotating-frame 
relaxation time may distinguish interstitial diffusion 
from the other two mechanisms as discussed in Sec. 
IV C.

Experimental departures from the results described 
above may suggest mechanisms other than the ones 
considered here,20 in which case additional calculations 
similar to those described in this paper would be neces
sary for these mechanisms.

Further calculations appropriate to other types of 
crystal structure are planned at the present time. In 
addition, experiments designed to verify these calcu
lations are in progress in our laboratory.
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