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ABSTRACT

The geometric modeling of solid objects is a major problen within 

the design analysis loop of the engineering design process. Models are 

analyzed by various computer programs to predict their performance. 

The format of each model is usually different for each analysis 

routine. The existence of several versions of a model, each of which 

may be independently modified, results in severe inconsistencies. The 

solution to this problem is to model the object at a higher level of 

abstraction. All other models are derived from the one high level 

model and all modifications are made to this model. The proposed form 

of the high level model is an extension of the parametric 

representation used for work with curves and surfaces. Representations 

of bivariate forms are extended to schemes for trlvariate forms.

The analysis of interest to this work has been the finite element 

method. The formulation of the finite element method was investigated 

to provide a geometric criterion for evaluation of the model for 

analysis. A new technique has been developed for deriving improved 

analysis models from the trivariate representation. Computer programs 

have been implemented to demonstrate these ideas and four examples are 

included. .



To my Father and Grandfather.



ACKNOWLEGMENTS

I would first like to thank Dr. Martin Newell for the many hours 

he has spent with me working on this dissertation. Dr. Henry 

Christiansen has been a great influence in ray life and I would like to 

thank him for the many years of friendship. The ideas for this 

research came from my work with him. Dr. Richard Riesenfeld provided 

me with the tools by teaching me about curves and surface 

representations and I thank him for the time he has spent. To. my 

fellow students at the University I would like to say thanks for the 

time spent and the friendships. In particular I thank Russell Athay 

for always asking challenging questions.

I am grateful to the Department of Computer Science and Mr. 

Stewart Ogden for the use of the PDP-llAS computer and the graphics 

hardware, for this research. Thank you also to the Department's 

Software Research Laboratory for the use ' of the Burroughs E172b 

computer and the programs for document preparation. Without a good 

text editor and the Publisher program, I am sure that this work would 

have taken months longer to accomplish. •

Support for this research has come from many sources. I would 

like to thank the University Research Committee for the Research 

Fellowship that has allowed me to work full time on this work for the 

last year. Portions of the research were accomplished during the 

summers while I was employed by the University of California, Lawrence 

Livermore Laboratory and Los Alamos Scientific Laboratories and the



Department of the Navy, Civil Engineering Laboratory. I thank the 

people with whom I spent those summers for having so many interesting

problems. In particular I would like to thank Drs. Gerald Goudreau and 

William Cook.

The largest thank you must go to my family and my wife, Patti,

who have always been behind me, helping and pushing for me to finish

this work, thank you. > '

vii



ABSTRACT......................................................  iv

A CK NOV/LEG HE NTS....................................... *....... vi

LIST OF ILLUSTRATIONS.........................................  X

CHAPTER 1 —  INTRODUCTION.....................................  1

Overview of the Engineering Design Process........ ......2
Present Process.....................*....................  4
Design Analysis Loop................................. .... 6
Summary......... *................'................. . 1U

CHAPTER 2 —  PROPOSED SYSTEM............ ...................  15

Introduction..................................... . 15
The High Level Model................. ..................  17'

CHAPTER ? MATHEMATICAL FORMULATIONS..... ................. 21

Introduction..............................................21
Space Curves........... .................. .............. .21
Surfaces...................... ............. ............ 23
Vclurces............................................ ......29
Higher Order Expressions................................ .35

CHAPTER 4 -- FINIE ELEMENT METHOD......................... . 37

Introduction................. ........................... 37
Formulation............ ...................... ..........  37
Calculating Elerv.ent Stiffnesses.............. .
Optimum Geometry...... ............. ..................... 42
Geometric Merit...... .............. ..................... !J4

CHAPTER ‘3 -- IMPLEMENTING THE SYSTEM............ ......... . 50

Introduction....... ................. ........... . 50
High Level Model.............. ................ ......... 50
Generating Nod a) Coordinates................. 53
Generating Elements................. ......... 57

r

TABLE OF CONTENTS *



Checking for Geometric Merit and Improvement

CHAPTER 6 —  RESULTS AND CONCLUSIONS

Introduction................ ..
Two-Dimensional Examples.......
Three-Dimensional Examples.....
Conclusions......... ...... ..
Future Work......... .

REFERENCES 

APPENDIX.. 

VITA.....



LIST OF ILLUSTRATIONS

1. A typical schematic of the engineering design process. 3

2. Classifications of finite elements......... 1......... 7

3. Hand generated model of fiber glass.................. 13

4. Side view of skull-brain model with face bones......  19

5. Open B-spline curve and polygon......................  23

6 . Bezier net and resulting surface................. 2$

7. Boundary curves for patch or surface................. 25

8 . Boundary curves with ..................... 27

9. Boundary curves with ........... ..................  27

10. Surfaces F(r,s,0) and F(r,s,1).......................  30

11. Surfaces F(r,s,0) and F(r,s,1) with P ........ . 30

12. Surfaces F(r,0,t), F(r,1,t), F(0,s,t), and F(1,s,t).. 32

13. Corner points of the volume..........................  32

14. Curves of the volune.................................  33
%

15. Eigenvalues of a 4 node quadrilateral element.... . 46

16. Quadrilateral element with floating node....... . 48

17. Trace of the siffness matrix plotted.... ......... . 48

18. Mapping of elements in x , y  space into r,s space.....  49

19. Cylinder in space...... .......................... . 52

20. Circular cross section of a cylinder.................52

Figures page



21. Plot of the function relating r and r with uniform ■
spacing of the resulting nodes...... . 56

22. Plot of the function relating r and r with nodal
spacing varying from small to large.... ........ 56

t23. Plot of the function relating r and r with nodal
spacing varying small, large and then small. . . . « ■ 5 6

24. Two dimensional mesh numbered largest first........ . 58

25- Two dimensional mesh numbered smallest first.... . 58

26. Parallelogram....................................... . 6 3

27. Trace of the stiffness matrix ploted with the
sine of the angle...............................  64

28. Bezier curve bounded reion discretized into 35
elements.............. ..........................  67

29- Parameter space of the model....................... . 67

3 0 . -Region discretized into 77 elements.................- 68

31. Non-uniform distribution of nodes......  .............69

32. Parameter space non-uniform distribution of nodes ... 69

33* Optimized mesh for the 35 element model.............. 70

3^. Parameter space for the optimized model..............70

35. Optimized model using the angle calculation......... 71

36. Boundary curves for the second example............... 72

37- Second example discretized into 32 elements.......... 72

38. Parameter spacc for the second example............ . 73

3 9 . Second example defined by 96 nodes............ . 7 3

40. Non-uniform elements for the second example......... 75 .

41. Non-uniform model's parametric space................. 75

42. Optimized uniform mesh........................... . 76

43. Optimized uniform mesh parametric space......... .... 76

iJiJ. Optimized non-uniform mesh......... ............... 77
xi



45. Parametric space for the optimized non-uniform mesh*. 77

46. Mesh after parameterization by arc length.......... - 78

47. Optimized mesh of the model parameterized by arc
length...................................... .....79

48. Parametric space for the optimized arc length model.. 79

49. Six surfaces defining the skull's exterior........ ..82

50. Skull-brain model [ 6 x 6 x 6 ].... ............... ...84

51. Skull-brain model [ 8 x 7 x 6 ]............ ........ ..85

52* Several layers of bricks from the skull-brain model.. 86

53- Optimized skull-brain model [ 6 x 6 x 6 ]
bottom layer...... ..............................8 7

54. Optimized midsagittal layer........ ».......... ....... 88

55. Twelve curves defining the epoxy matrix rtudel...... ..9C

56. Three views of the epoxy matrix model........... .....91

57. Selected slices of the epoxy matrix model.......... ..93

58. Optimized epoxy matrix model....... ................. 94

59. Optimized first parametric t layer of the epoxy
matrix model...... .............. ................ 95

Tables

1. Values of the Stiffness Measure and the Potential
Energy for the Second Example........... ......... 80

2. Values of the Stiffness Measure for the Skull-Brain
Model...............................................89

3. Values of the Stiffness Measure for the Epoxy Matrix
Model.............................................. .92

x l i



CHAPTER 1

The focus of this research has been upon the engineering des 

process for three-dimensional objects. This process inclu 

everything from the conception of an abstract idea to the product 

and final application of the physical object. Once the abstr 

thoughts are made somewhat concrete, analysis and modification of t 

may take place to refine the ideas. It is the design, analysis 

rc-design loop which is the specific concern of this work, 

refining of the proposed design is usually done by analyzing 

object using various computer programs. Each of the programs reouire 

mathematical model of the object in a slightly different format, 

the design analysis loop progresses each of these separate models v 

be independently modified. At the end all of these have to be combi 

back into one. Any changes made along the way ' to one of the moc 

should be reflected in all of the others. This Is not usually done 

results in severe problems of consistency. In the next section 

overview of the engineering design process is described as it exi 

today. Then more details of the design analysis loop is given. Fina 

the proccss and its problems are summarized.

Chapter 2 details a proposed system to take care of many of 

problems which will have been described. The main idea presented 

that a higher level of abstraction is needed for the objects that

• INTRODUCTION



designed and analyzed. This is called the high level model and from 

this model all other models are to be derived. In Chapter 3 the 

underlying mathematics of the high level model are formulated.. The 

ideas which have been developed to represent curves and surfaces are 

extended to the volume representation. • ■

The analysis of the model plays an important part in the design 

analysis loop. Reasonably good models must be available to analyze or 

the answers obtained will be questionable. Chapter 4 deals with the 

Finite Element Method for analysis of solids. Consideration is given 

to how the method is formulated and the assumptions which are made 

concerning the model. Knowing these assumptions, schemes have been 

developed that provide better models than were previously produced for 

analysis. . .. .

In Chapter 5 the implementation of the high level model is 

detailed along with the new schemes to be used to generate models for 

analysis. The focus of this work has been on three-dimensional 

objects, but two-dimensional approximations still play an important 

role, so both are discussed. The final chapter displays several 

examples of the work. The conclusions and thoughts on future work are 

also given. *

Overview of the Engineering Hesirn Process 

The engineering design process for structural objects is shown 

schematically in Figure 1. The general functions to be performed have 

not been chanpcd for many years. The amount, of time and money spent in 

each has chanfcd significantly. In the past the design analysis loop 

was minor and was performed empirically. The bulk of the effort and



3

IDEAS AND SHAPE INFORMATION

T
DESIGN

ANALYSIS

I
im. ^ G O OD RESULTS

YES

CONSTRUCTION OF MODELS

PHYSICAL TESTST
KO ^GOOD RESULTS^

YES

PRODUCTION1

Figure 1. A typical schematic of the engineering design process.

money was spent constructing physical models, testing, and

reconstructing the models. As the objects designed became larger andfe
nore corrpiex this construction testing loop became very expensive.

In the late 1950’s methods were developed by engineers to perform 

much of the structural analysis using the computer [953- Since then a 

greater emphasis has been placed on the design analysis loop. The 

numerous scale models and full size models have just about been 

replaced by the computer. Other types of analysis have also been 

developed which use the computer. These computer programs allow the



engineer to simulate almost any type of environment and give results 

predicting how the object will respond. . . .

Throughout the 1960's and into the 1970's the computer has been 

used in all phases of the engineering design process. Refering to 

Figure 1, the generation of the shape information is known as Computer. 

Aided Geometric Design [8,^5]. The analysis was originally-, the only 

portion which used the computer but now the data preparation 

(pre-processing) and the viewing of the results of the analysis 

(post-processing) rely heavily on the computer [16,78,92]. The 

fabrication and construction of physical models and the actual objects 

may be performed by the Computer Aided Manufacturing process [96]. It 

is even possible to have computer controlled robots do the assembly 

and testing of the object [30* '

Present Process

Today's engineering design process begins with a sketch or an 

idea of a three-dimensional object. This shape information is refined 

and with the help of a designer/draftsman, preliminary drawings are 

made. The drawings are looked at and checked by several people, any of 

whom could and do make changes. When the design is finally approved it
%

goes on for analysis.

Another situation is the re-design of an existing object. The 

engineer will start with a complete set of drawings and work from 

these. .

The types of analysis to be performed varies extensively. They 

could includc: 1) structural, static and/or dynamic,' 2 ) cost, 3 ) 

thermodynamic, H) mafrnfitic, 5 ) kinematic, and so forth. Most of the



analyses are done using various computer programs. The input to each 

program varies in type and form, but most require the shape data, 

material type and properties. ..

The structural, thermodynamic, and magnetic analyses are usually 

performed using the finite difference or finite element methods. Both 

of these methods require that the domain be discretized into hundreds 

and possibly thousands of sub-domains. The loading and boundary 

conditions must also be specified for each of the sub-domains. Then 

analysis may be performed.

Once any of the analysis routines is run the results need to be 

interpreted. If the analysis indicates that the design is bad, then 

the enginner must go back to the appropriate point and make changes. 

Usually more than one analysis program is run so these changes must be 

made in all of the input data for the routines, and the programs 

re-run. This loop continues until the engineer is satisfied with the 

design, or until time and/or money for analysis runs out.

When the design has made it through the analysis loop, the final 

drawings (blueprints) may be made. These are usually reconstructions 

of the three-dimensional object from the analysis models and the 

original drawings.
Q

The fabrication of the design, if it is a mechanical part rather 

than a building or other large structure, may be under computer 

control. If so the drawings must again be digitized for the 

numerically controlled machines [?4]. .This data is then fed into the 

machine and the object is cut or milled. After the object is 

fabricated, actual testing may be done. If it fails then the design 

process is re-entered at the appropriate point. When all of the "bugs"



At this point the engineering design process may be finished but 

sometimes this is not the case. The object, when put into use, may 

fail, necessitating a re-analysis. It may also be used in an 

application not originally considered in the design* For both of these 

cases the analysis loop roust be re-entered.

Design Analysis Loop 

Our specific area of concern is the design structural analysis 

loop. First the structural analysis process is discussed and then how 

it is performed will be detailed. The problems which exist will also 

be covered. .

Structural Analysis

There are three major types of structural analysis. They are the 

closed form solution, the finite difference method, and the finite 

element method. This research will be limited to working with the 

finite element method [9,35,^3,99]* Classification of the analysis 

within the finite element method will be done by the element type 

used, as shown in Figure 2.

The two-dimensional elements were the first to be developed. 

Several assumptions were made to simplify the mathematics. The plane 

stress element assumes that the object is thin and the distribution of 

forces through the thickness will be constant. The assumption for the 

plane strain element is that normal to the element the dimension is 

very large. This mean3 that any plane may be taken as "typical*1 or 

that the chance in the distribution of forces does not vary 

significantly in the norrr.al direction [Q1].

are worked out, the object may go into production.
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PLANE STRESS
AND ' 2 

PLANE STRAIN

TYPE DIMENSION

AXISYMMETRIC 2.5

THIN SHELLS 2.5

BriICK 3

Figure 2. Classification of finite elements*

, . . • .

The two and a half-dirensionai elements are called this because 

they represent the object in three-dimensions but only two independent 

variables are needed to define them. The thin shell elements 

collectively defining an object i;:ay be thought of as a bivariate 

surface. The axisyrmuetric elements are defined in an R-Z p lan e , and 

the ceo-etry does not change in the theta direction.

The first elements used were the two-din:ensional elements. The



three-dimensional structures to be analyzed were approximated by 

taking two-dimensional slices. These slices were analyzed ' and the 

engineer then estimated the distribution of forces between the 

calculated points. Some three-dimensional objects were very accurately 

analyzed in this fashion. More recently the structures to be designed 

have been complex and required more accurate results. For these 

structures the full three-dimensional analysis routines have been 

developed. Most of the finite element work today is still in the two- 

and two and a half-dimensional realm but the use of the 

three-dimensional analysis is growing.

The Two-Dimensional Case

The design analysis loop as previously mentioned consists of the 

data preparation, data checking, analysis, review of the results, 

modification of the design, data preparation, etc. The data 

preparation is performed by first taking the drawings and deciding 

which portions need to be analyzed. Here the engineer must use his 

judgment and select the important or significant areas. The specific 

portions are then discretized into hundreds or possibly thousands of 

small elements. At first this was a manual procedure. Now computer 

programs exist to aid in the model development [2,47,63,78]. These 

programs require that the boundaries be given for each region and some 

additional input to specify the number of points or elements to be 

generated. These model generation routines vary in the amount of input 

required. Some will run from a very small set of data while others 

will require large sets of data. The engineer must check the results 

of the. generation routines to be sure that the model represents the



original object accurately. His judgement and past experience are used 

to check that the mesh generated will be well conditioned for the 

numerical solution. Since only a finite number of elements are used it 

is desirable to have many elements in the regions where large stress 

gradients will occur, and fewer elements where the stresses will be 

low. This will usually give better results without spending more 

computer time on more elements. The engineer must also choose his type 

of element and be sure that it is the best suited for his problem. 

These factors all have some effect on the accuracy of the answers 

[15,38,80].

Usually each model or mesh generation computer program was 

developed for a specific analysis routine. Since there has been no 

standard for the input to the analysis routines, each one to be used 

requires its own mesh generation program to prepare the model. The 

editing, or modification, of the mesh is largely a manual operation. 

Most of the generation programs run as batch jobs and allow for no 

user interaction. Lately the use of computer graphics has helped ease 

the burden of model preparation but these routines are not universally 

available [20,21,84].

It was estimated in 1970 at Lockheed [16] that fifty percent of 

the time in the analysis loop was spent in the data preparation and 

checking. At Boeing the sane year the estimates were fifty percent of 

their Manpower and forty percent of their computer time in the design 

analysis loop for data generation [92]. The interpretation of the 

results were estimated to take forty percent of their manpower and ten 

pcrcent of their machine time. The situation today has changed 

somewhat. Since 1970 computers and the analysis programs have improved



considerably* These improvements have allowed more analysis runs to. be 

made using the same model while changing one or two variables. The. 

engineer will now set up his model and then make any number • of runs. 

The analysis routines can now perform dynamic and non-linear'- analyses 

of the model. Each of these take a factor of ten tiroes more computer 

time. The modeling time is the same for a static, dynamic and/or 

non-linear run. Very little progress has been made in the modeling 

area during the same time period.

The analysis routines usually output the results on line 

printers. There may be thousands of pages printed for each run. The 

engineer must look at these pages to obtain his answers. Computer 

graphics routines have been written to make pictures of the results. 

The results are basically pattern information and the pictures will 

convey this type of data quicker than a page of numbers. The 

calculated displacements may be displayed by warping the initial 

geometry. The other results such as pressure, temperature, and 

stress/strain components may be viewed with contour lines [22,66] or 

as continuous tone pictures [22,27,28].

The engineer must verify that the solution is good before he 

believes the results of the analysis. This is a very hard problem to 

solve. Usually the solution is judged to be good if the computer 

programs' answers were about what the engineer ■ expected. The 

interpreted results will indicate changes which should be made to the 

model. If the modifications are minor they will probably be made to 

the existing mesh. If the chances are major or a different mesh is 

needed then the mesh generator must be used again. The classical proof 

that the answers are good is to prove that they are converging. The



proof is usually performed by refining the mesh size and resolving the 

problem again. This should show that as the number of elements goes 

toward infinity the answers converge. Several problems Immediately 

appear. The first is the amount of time which the engineer has to 

solve the analysis. If the time is short any answer nay be taken. If 

time allows, then an attempt may be made to prove the worth of the 

answers. Most finite element programs have a definite limit on the 

size of problem which they can handle. To obtain the best answers the 

first time, the engineer will normally use as many elements as he can. 

This means that the program can not handle a mesh with twice as many 

elements. Alternatives to this classical way of showing convergence 

are being researched [24,3 8,48,68,9*0 .

The problems with the design analysis loop are many. Tbe first is 

in the discretization of the drawings. Here much of the information 

about the object is discarded by approximating the shape with straight 

sided polygons. Later when computer graphics routines are used to view 

the results of the analysis, information about the outline and other 

properties must be derived. Higher order elements exist which will 

capture more information about the object's shape, but these are not 

widely used and some automatic generation routines do not ‘produce 

them. Usually more than one analysis is performed on a model. Any 

changes to the model arising from one analysis roust be made in all 

models. This ripple effect is usually not performed unless the change 

is ir.ajor. Sometimes the analysis indicates that the model should be 

subdivided and portions examined in closer detail. Most present model 

generation routines do not have this facility. The reverse problem of 

concatenation of models is also a tine consuming manual procedure.

11



When the three-dimensional elements and their usage are discussed
r-

there is not as much experience to draw upon as in the two-dimensional 

case. The analysis routines have not been available for as long and 

the data preparation and result interpretation routines are- very few 

in number* The finite element routines require that the volumes be 

represented by hexahedrons (bricks). The mesh or model generation 

routines most commonly specify the external curves and surfaces, then 

derive the volume elements [ 1 ,3 ,  , 3 6 , 6 1 , 6H] .  Another way is by 

specifying the component volumes [10,17,16,19]. The majority of the 

model generation routines require that the object be broken into a set 

of logical cubes* These cubes are then broken down into the brick 

elements and combined to form the model. The models tend to have fewer 

total elements than their two-dimensional counterparts- because each 

element in three-dimensions has more degrees of freedom. Each linear 

hexahedron has twenty-four degrees of freedom as compared with eight 

degrees of freedom for the two-dimensional linear Quadrilateral. A 

separate equation is generated by the finite element method for each 

degree of freedom and the number of equations which may be solved for 

by a given analysis routine is limited. * ■

A major problem with thi3 work is in visualizing the models. 

There is no natural way to render a three-dimensional object on a 

two-diirensional medium (i.e. the plotter paper or the cathode-ray 

tube) [ 7 2 , 7 5 ] .  The computer programs required to view these 

three-dimensional models with the hidden portions removed have been 

the basis of much research [25 ,7*1 ,90 ,97  ] * Presently there are a number 

of routines available to view the three-dir.ensional models but they

The Three-Dimensional Case
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Most models used in three-dimensional analysis have been hand 

generated, see Figure 3* . •

take a large amount of computer time.

Figure 3. Hand generated model of fiber glass.

The model generation is the most difficult part of the design analysis 

loop. There are not many figures available as to the aaount of time 

spent on the model generation and checking, but an estiaate would be
%

over eighty percent of the effort. The number of elements used in the 

three-dimensional analysis is small so the accuracy of the 

representation must be checked carefully.

After the analysis is run the interpretation of the results may 

begin. The amount of printed output produced by the three-dimensional 

analysis routine is greater than that produced by a two-dimensional 

run. Here again there are several graphics routines available to 

display the results [22,28,6^,78]. Host of the viewing of the results



using the hidden portion removal packages will use more computer time 

than it took to obtain the results. This expense has not helped spread 

the use of three-dimensional finite element analyses. -

Another problem with any of the design analysis loops Is the 

re-entering of the loop at a future time. Since the exit from the loop 

may not be when the analysis is completed but rather when time or 

money runs out, the models used may be discarded or at least 

abandoned. To restart the analysis loop may be as hard as begining 

afresh.

Summary

The engineering design process and its problems as it exists 

today have been described. The major problem is that there are too 

cany partial models in the process. When changes are made to any 

particular model they need to be made in all, which is usually not 

performed. The models are also specialized to the particular 

application, so there is no common data form. Communication between 

the engineer and the model must be improved to increase the 

effectiveness of his work and to reduce the time requirements. In the 

next chapter a system is proposed which will help improve many of the»
problem areas of the engineering design process.



CHAPTER 2 ‘

Introduction

For any given design problem, one high level model rich enough in 

information could solve many problems in the engineering design 

process. This model would have all ocher models and representations 

derived from it. It could be generated using an interactive computer 

graphics terminal and be available to a wide number of engineers- The 

engineering design process might then be performed as follows.' ■

The engineer would sit down at an interactive graphics terminal 

and begin the program. He could start fresh or he could use what was 

previously generated by retrieving it from secondary storage. The 

shape information could be displayed on the graphics device at his 

will. He could then add to the existing definition or modify it until 

it met the specifications. At any time plots (hard copy) of the 

current view on the display could be made. The data preparation for 

analysis would be started by specifying a few global parameters. The 

program would then start discretizing the model into the selected type 

of elements. At any time the engineer could interact with the 

discretization and make changes globally or locally. If only a subset 

of the model needed to be analyzed then the engineer could specify 

this by interacting with a light pen or tablet and pointing at the 

area wanted. The program would then Just deal with r.his subsection.

PROPOSED SYSTEM : -



Tlie loading and the boundary conditions would be given logically by 

pointing at the areas and the values input from the keyboard. There 

would also be a process for recovering previous states of the model if 

a mistake were made. .

Once a model was ready for analysis the input to the specific 

routine, in the required format, would be prepared. It is probable 

that the analysis would not be performed on the same computer, so the 

input data and the results of the analysis would have . to be 

communicated between machines. The same type of graphics programs used 

to view the model in the generation stage would be used to view the 

results of the analysis. Various plots of the results could be made 

and viewed interactively or hard copy plots could be made to be viewed 

at' the engineer's leisure.

From the various views of the results the engineer could then 

decide what printed output he needs. Instead of getting thousands of 

printed pages he could specify the needed output and get it. The 

amount of time spent interpreting the results could be reduced by 

using the graphics first. ’

If modifications in the design are.indicated by the results, the 

engineer will make them to the high level model. By making the 'changes 

in this high level model, all subsequent models would have the changes 

reflected in them. Any number of specific models for analysis could be 

derived from the high level model. When changes are needed to be made 

it is only this one model which gets changed.

Once the design analysis loop is complete, the final blueprints 

‘for construction may be made from the high level rcodel The high level 

model could also be used to produce data for numerically controlled
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milling machines. Each part could then be cut or milled for assembly. 

It would even be possible to use the model to derive information to 

control robots in the assembly of the parts. -■

The engineering design process would then be complete and the 

high level model could be stored away until it was needed. TSaere would 

be no loss of information through time by the engineer cleaning out 

his office and throwing some of the data away because the model would 

be stored on secondary storage of the computer. ,

The High Level Model 

As presented the proposed system could be realized if a 

representation of complex three-dimensional objects can be expressed 

as a high level model. There are several different choices for the 

representation of the model. The model could be represented as a set 

of hexahedrons. This would be advantageous to the analysis routine 

since hexahedrons are the required input. The choice could be made to 

represent the object as a display file [75]. Most of the interaction 

with the model will be done via a graphics terminal so the model could 

be described in a form easily interpreted to generate the graphical 

display. Alternatively the model could be the commands required to 

mill the object on a numerically controlled machine, if it is a 

mechanical part rather than a whole building. Eventually it has to be 

built, so why not start at the begining with a representation which 

describes how r,o construct the object? This is by no means a complete 

list of posiblities. The high level model will have to provide 

information r.o each of the processes, the analysis, the display, and 

the production. The representation or rendering of the model for each
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is different so it could be concluded that the high level model must

be independent of the ways in which it will be used. This has been
r

expressed by P. F. Riesenfeld as the separation of the model from the 

rendering [8 2].

An approach which might work would be to represent components of 

the three-dimensional object in their natural form. Referring to 

Figure 3, this concept can be demonstrated. The object being modeled 

is a composite structural material which could be fiberglass [6 5 3 - 

Layers of fibers are set in an epoxy matrix with each layer placed at 

pi/2 radians to the previous layer. The model itself represents two 

fibers from different layers in the epoxy matrix. The cube is 

approximately 25 microns on an edge. The fibers are cylindrical and 

could be represented as such. The cube of the epoxy matrix is just 

that, a cube, missing the volume which the fibers take up. The most 

natural representation for this model would be two cylinders and a 

cube. This representation is very similiar to that which has been 

proposed by I. C. Eraid [17]-

A second example may be obtained from Figure l|. Here the human 

head is being modeled [87]. The model includes the skull, the brain 

and face. The skull is composed of three layers, the outer table bone, 

the middle layer of diploe, and the inner table bone. The ratio of 

adjacent layer's thicknesses is almost constant. Around the brair 

there is also the subarachnoid space, a fluid layer, which could be 

considered constant in thickness. The skull-brain model could bt 

represented as n surface enclosing a volume. There are a wide varietj 

of surface representations to choose from. One choice is a loca] 

approximating surface. The face in the model ws3 an afterthought. 11

. 18



19

Figure Side view of skull-brain model with face bones.

was added to provide the mass that exists in the actual skull. Since 

it is a polyhedral representation it could be left as such.

For the two objects presented, the computer program to implement 

the high level model would have to handle cylinders, cubes, 

polyhedrons, and approximating surfaces. If other examples are 

considered then spheres, interpolating surfaces, and some free form 

volume representations might be added. For each of these the ' program 

would have to provide the natural representation and be able to • handle 

the display of one at a time or all together, and produce hexahedrons 

for analysis. Such a program needs to be structured so that it is 

modular and easily changed. A procedure could be written to take the 

data for each of the primitives and do the necessary operations. The 

head will be modeled by a surface procedure and a polyhedron



procedure. The crossed fibers would be represented by a cylinder 

procedure and a cube procedure. T.his concept is not new and has been 

used successfully by M. E. Newell to display complex three-dimensional 

objects [73]- It is known as Procedure Models* The mathematics behind 

the high level model will be presented in the following chapter.



MATHEMATICAL FORMULATIONS - - ' ■ •

Introduction

This chapter develops a mathematical representation for the high 

level model. The requirements of the representation for the high level 

model are that the object being modeled must be represented ih a 

straightforward, natural form. The choice has been made to use a 

trivariate representation. This has many advantages and seems to be a 

general enough form for many applications. The generation of finite 

elements from the trivariate representation * is convenient. When the 

model needs to be displayed the outline may be found easily or the 

boundary surfaces derived very quickly. If the instructions for a 

cutting tool ai’e needed they can be derived and displays of sections 

for blueprints are possible. The formulation' is developed by first 

discussing space curves, surfaces, and then volumes. These are 

presented in their parametric form. Throughout the discussion linear♦ .
functions are used to simplify the presentation. In the last section 

extensions of the derieved expressions to higher orders will be 

discussed. • . - -

Space Curves

The representation of a space curve may take many forms. For work 

with the computer in the design and manipulation of geometry, the mo3t 

convenient form of representation has been parametric. The arguments

CHAPTER 3 . - •



for and against parametric representation have been discussed many 

times and can be found in [37,50,51,83]- Primarily parametric form is 

used because it is axis independent. There are several other reasons 

which make it even more attractive for use. The first is that the form 

may be multiple valued with respect to the reference coordinate 

system. Second it may be piecewise defined with specified continuity, 

so no attempt need be made to represent the complete structure with 

one equation. Finally it is convenient for generation of the nodal 

coordinates needed for the finite element models, this will be 

discussed in Chapter 5. For a space curve the parametric form is -

F(r) = [ X(r), Y(r), Z(r) ] . (3.1)

where r is the independent variable whose usual domain is [0,13. _

’ In the use of this form to represent an arbitrary curve in space 

defined by a set of points, the X(r) are often formulated as: '

22

X(r) = z A .(r)X. - (3-2)
i .

where A^(r) is an appropriate function and the X^ are the points in

space. Two similiar equations exist for Y(r) and Z(r). The choices for

A.(r) are many and varied. If interpolation is required they could be 1 *
the coefficients of a Vanderrnonde matrix [33,41]. For approximation

the X^ could be the defining polygon for a B-spline or a Bezier

scheme. For E-splines, see Figure 5, the A^(r) are the basis functions

[42,81]. If Bezier curves are used the A^(r) are the Bernstein

polynomials whose general form is given below [1 2]. - '

A (r) = ml r1 (1-r)m ( 3 - 3 )
i! (m-.l) 1

The alternatives are numerous nnd the reader is refered to references
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Figure 5* Open B-spline curve and polygon.

[2 6 jiJ1) ,^9 .7 7 ] for some of them. .

Surfaces

The parametric form of a surface is

F(r,s) = [ X(r,s), Y(r,s), Z(r,s) ] (3-1*)

where r and s normally have the range fro* 0.0 to 1.0. For 

interpolation and approximation the expression for X(r,s) is

X(r,s) = ? A i .(r,s) X. . ( 3 * 5 )

Here A^(r,s) is an appropriate function and the X^j are a set of 

points, also called a net. Similiar equations exist for Y(r,s) and 

Z(r,s) [8 6]. An example of a net of points and the resulting Bezier 

surface may be seen in Figure 6 .

Often the se>t of points for the surface will not be available. 

Instead the three or four boundary curves will be given as in Figure

7. Here interpolation of the data given is needed to define a surface.



Figure 6 . Bezier net and resulting surface.



Figure 7» Boundary curves for patch or surface.

In [37] S. A. Coons proposed his now well known solution. Later his 

work was expanded upon and formalized by many others [51,57,58,81]- A 

brief summary of the work will be given here.

W. J. Gordon in [5 6] presented the projector notation which will 

be used in the discussion that follows. A projector (a linear,

idercpotent operator) for the univariate case, interpolating two points 

F<0) and F(1), is defined as

?1F(r) = (l-r)F(O) + rF(1). (3-6)

The (1-r) and r are called weights or blending functions, and F(0) and 

F{1) are positional data. As r varies from 0 to 1, P^F(r) varies 

linearly from F(0) to F(1).

If four points F(0 ,0), F(0,1), F C1,0), and F(1,1) are given, a 

slmiliar bilinear scheme can be developed



PF(r,s) r (1-r) (1-s)F(0,0) (1-r)sF(0,1)

+ r(1-s)F(1 ,0) + rsF(1,1). ' <3.7)

This equation is known as the bilinear tensor product or cartesian 

product surface.

When two space curves F(0,s) and F(1,s) are given as in Figure ‘ 8 , 

a linear bivariate interpolant, between them can be defined, also 

known as a lofting projector [5 ,1 6]

P,jF(r ,s) = (1-r)F(0,s) + rF(1,s).

If the F(r,0) and F(r,1) curves given instead, (see Figure 9) 

equation in s may be expressed as

P2F(r,s) = (1-s)F(r,0) + sF(r,1).

Taking the product P^Ffr.s)

• P 1P2F(r,s) = (1-r)(1-s)F(D,0) + (1-r)sF(0,1)

+ r(1-s)F(1,0) + rsF(1,1) 

which is equivalent to (3*7). W. J. Gordon terms this the 

operator on F(r,s) because it interpolates only those pieces of data 

common to P^ and P^, namely the corners [57]. This interpolation
9

property is demonstrated below for one corner. The same procedure can 

be used to show that P^P2F(r,s) also interpolates the other three 

corners. *

Example for corner F(0,1)

P1P2F(0,1) = (1-0)(1-1)F(0,0) + (1-0)(1)F(0 ,1 )

+ (0)(1-1)F(1,0) + (1)(0)F(1,1)

= F(0,1)

Another way of combining P̂  and P^ to interpolate the given data 

is by taking the so called Poolean sum symbolized by the exclusive-or

symbol +

• 26

(3.8) 

a dual

(3-9)

(3.10)

minimal
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Figure 8 . Boundary curves with P^.

Figure 9* Boundary curves with P^.



or written out

(P1 + P2)F(r,s) = (1-r)F(0,s) + rF(1,s)
c

+ ( 1 - s ) F ( r , 0 )  + s F ( r , 1) ....

- ( 1 - r ) ( 1 - s ) F (0 ,0) - ( 1 - r ) s F (0 ,1)

- r ( 1 - s )F (1,0) - r s F ( 1 ,1 ) . (3-12)

This interpolates the boundary curves and therefore the corners are 

also interpolated.

Example for curve F(r,1)

Gordon has call this the maximal operator on F(r,s) because it 

interpolates everything which P and P2 each do. Note that the tensor 

product is a term of the Boolean sum.

The equation (3.12) should be recognized as the simplest -form of 

a "Coons Patch". It is also known as the transfinite bilinear Lagrange 

interpolant. The word transfinite is used because it interpolates a 

nondenumerable set of points on the boundaries [58]. For the 

rectangular patch the following usually hold

There have been many implementations of such equations ’in design

(P1 + P2)F(r,1) = (1-r)F(0,1) + rF(1,1)

+ (1-1)F(r,0) + (1)F(r, 1)

. - (1-r)(1-1)F(0,0) - (1-r)(1)F(0,1)

r ( 1 - 1 ) F ( 1,0) - r ( 1 ) F ( 0 , 0 )  '

(1 —r) F (0,1) + r F (1,1) + d)F(r,1) 

(1-r)(l)F(0,l)-rd)F(1,1)

F ( r ,1)

P1P2F(r,s) = P2P1F(r,s)

(P1 + P2)F(r,s) = (P2 + P1)F(r,s)

( 3 . 1 3 )

( 3 - 1 * 0



systems [1,4,29,58,77,85]. Only a skeleton of the work which has been 

done for surface representation has been presented. The projectors
° . 

and P^ as presented are linear expressions but this is not to prevent 

them from being higher order expressions, which are discussed later in 

this chapter. With this as background the volume representation will 

next be considered.

Volumes

The trivariate form of the volume is

F(r,s,t) = [ X(r,s,t), Y(r,s,t), Z(r,s,t) ]. (3*15)
#

The ranges of r, s, and t will be from 0.0 to 1 .0 . The X(r,s,t) will 

describe the x coordinate in the real space of the volume, as the r, 

s, and t vary in the parametric space. The interpolation or 

approximation formula to a set of points in space is expressed for 

X ( r , s , t )  as

X(r,s,t) = I Z E Aijk(r,s,t) X ^ .  (3-16)
i j k

These types of ecuations have not been used in general to represent 

volumes. A problem with this interpolation or approximation . scheme is 

that points are needed from within the volume. These may or may not be 

easy to obtain. Having the background of surface representation, 

volumes will be developed in a similiar fashion.

Initially two surfaces F(r,s,0) and F(r,s,1) as shown in Figure

10, will be given. Similiar to what was done for surfaces defined by 

boundary curves a projector P.F(r,s,t) will be defined to linearly 

interpolate between the surfaces as shown in Figure 11 [13,56].

P ^ r . s . t )  = (1-t)F(r,s,0) + tF(r,s,1) (3.17)
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Figure 10- Surfaces FCr^C) and F(r,s,1).

Figure 11. Surfaces F(r,s,0) and F(r,s,1) with



If the other four surfaces F(r,0,t), F(r,1,t), F(0,s,t), and F(1,s,t),

as shown in Figure 12, are given then two more projectors may be
c

defined . . . . . . . .

P2F(r,s,t) = (1-s)F(r,0,t) +sF(r,1,t) (3*18)

. P^F(r,sft)' = •( 1-r)F(0,s,t) + rF(1,s,t). ' ‘ '(3*19)

These three projectors can be combined to give a trilinear tensor 

product volume or the minimal operator on F(r,s,t)

(P.,P2P3)F(r,s,t) = (1-r)(1-s)(1-t)F(0,0,0) + (1-r) (1-s)tF(0,0 , 1)

+ (1-r)s(1-t)F(0,1,0) + (1-r)stF(0,1,1)

. + r(l-s)(l-t)F(1,0,0) + r(l-s)tF(1,0,1) .

+ rs(l-t)F(1,1,0) + rstF(1,1,1). , (3.20)

Here only the eight corner points are used (Figure 13). They are the 

only points in common with each pair of surfaces. A proof of the 

interpolation by substitution may be seen in the appendix.

The Boolean sum interpolant, the maximal operator on F(r,s,t) is 

defined as

(P1 + P2 + P3)F(r,s,t) = (P1 + P2 + P3 - P1P2 - P2P3

- P,Pj + P-|P2P3) F(r,s,t). (3.21)

If each term is written out then equation (3-21) becomes . -

(P1 + P2 + P )F(r,s,t) = (1-t)F(r,s,0) + tF(r,s,1) * . '

+ (1-s)F(r,0,t) + sF(r,1,t)

+ (1-r)F(0,s,t) + rF(1,s,t)

- (1-s)(1-t)F(r,0,0) - s(1-t)F(r,1,0) - (1-s)tF(r,0,1) - stF(r,1,1)

- (1-r)(1-s)F(0,0,t) - r(1-s)F( 1,0,t) - (1-r)sF(0,1 ,t) - rsF(1,.1,t) .■/?

- (1-r)(1-t)F(0,s,0) - r(1-t)F(1,s,0) - (1-r)tF(0,s,1) - rtF(1,s,l).
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Figure 12.

Figure 13* Corner points of the volume.

Surfaces F(r,0,t), FCr^t), F(0,s,t) and F(1,s,t)



w

+ (1-r)(1-s)(1-t)F<0,0,0) + (1-r)(1-s)tF(0,0,1) + (1-r)s(1-t)F(0,1,0)

+ (1-r)stF(0,1,1) + r(1-s)(1-t)F(1,0,0) + r(1-s)tF(1,0 ,1) .

+ rs(1-t)F(1,1 ,0) + rstFd >1T,l). (3.22)

The Boolean sum interpolant can be shown to interpolate the six 

surfaces, and therefore the twelve edge curves, see Figure 1*1,.
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Figure 1*1. Curves of the volume.

and the eight corner points will also be reproduced. This may be seen
• 1 ♦

by examining the terms in the expression. For interpolation of 

surfaces one of the first three terms will give the surface, while the 

other two will approximate it using the boundary curves. The second 

three terms will subtract off the approximation to the surface by the 

curves and will subtract an approximation to the surface using the 

four corner values. The tensor product term adds an approximation to 

the surface by the corner values which produdes surface interpolation.



These interpolation properties are demonstrated in the appendix by 

subsitution.

S.A. Coons described an "n-variate" form of his surface work 

which he called "hypersurfaces" [37]. Working out his expressions and 

substituting the projector's into it the expression becomes when nr3

(P1P2 + P2P3 + P3V F<r,s,t) = (P1 P2 + ?2?3 + P p - 2P1 P2P3 )F(r,s,t).

. (3.23)

Expanding each term

(P1P2 + P2P3 + PgP^FCr.s.t) =
(1-s)(1-t)F(r,0,0) + s(1-t)F(r,1,0) + (1-s)tF(r,0,1) + stF(r#1,1)

+ (1-r)(1-s)F(0 ,0,t) + r(1-s)F(1,0,t) + (1-r)sF(0,1,t) + rsF(1,1,t)

+ (1-r)(1-t)F(0,s,0) + r(1-t)F(1,s,0) + (1-r)tF(0,s,1) + rtF(1,s,1) '

-2((1-r)(1-s)(1-t)F(Cl0,0) +(1-r)(1-s)tF(0,0,1) + (1-r)s(1-t)F(0,1,0)

+ (1-r)stF(0 ,1,1) + r(1-s)(1-t)F(1,0,0) + r( 1-s)tF(1,0,1)

+ rs(1-t)F(1,1,0) + rstF(1 ,1,1) ). (3*24)

As before values of r, s, and t may be substituted into (3-24) to see

what it interpolates and this is done in the appendix. For

interpolation of curves, one of the first three terms will interpolate

the given curve. The other two terms will approximate the curve using

the corner values. The tensor product will also approximate the curve

using the corner value and the minus two multiplier makes the sum

equal to one curve. When a surface is considered, two of the first

three terms will approximate it using boundary curves and the other

will approximate the surface using the corner values. The tensor

product term subtracts off two approximations to the surface using the

corner data. Equation (3 .2*0 has interpolated the curves and therefore

the corners, but not the surfaces. The surface eauntion produced is



equivalent to (3.12) for the face of the logical cube in question- So 

equation (3.2^) is called an intermediate operator on F(r,s}t). ■

These three interpolants can be used to represent most all 

volumes which are needed. The implementation of these will be 

discussed in Chapter 5. ' '

Higher Order Expressions 

If in addition to positional data derivative data is available 

then all of the previous equations may be extended to reflect the 

higher order. Alternatively higher order equations may be developed if 

additional positional data within the body are given. In the area of 

design the next higher order expressions of interest to many are the 

cubics. Cubics provide c"* continuity between segments of piecewise 

defined curves, surfaces and volumes. For the cubic univariate case 

six pieces of data at each end point would be provided. In the linear 

case, equation (3 *6 ), only three pieces of data, the coordinates, at 

each end point were supplied. The positional data will be called F(.i), 

and the derivative data F'(i). The i will take on values of 0 and 1 

depending upon which endpoint is being used. Equation (3*6) is often 

written as

P 1F(r) = \  A.(r)F(i) (3-25)

where the A^(r) is the blending function.' The expression for the cubic 

projector is

P?1F(r) = z± Ai(r)F(i) + \  E,(r)F'(i) (3-26)

in which /^(r) is the blending function for positional data and B^(r) 

is the blending function for the derivative data.

Likewise if derivative data is available for the curves defining
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the boundary of the surface, equation (3*11), the Boolean sum

interpolant may be expanded. The interpolation properties of the
c

Boolean sum will also increase to include the derivative data- In a 

similiar fashion the trivariates may be extended. '

The next chapter presents the finite element method. The high 

level model will be used to derive the input for analysis by this 

method. The method makes several assumptions about the model which 

need to be taken into consideration when models for analysis are 

generated.



CHAPTER H

Introduction

This chapter considers the formulation of a displacement based 

finite element method. While other bases have been developed, this was 

the first and is the most commonly used. This displacement based 

formulation considers a body divided into numerous sub-domains. Within 

each sub-domain, or finite element, an approximation to the 

displacement field is made. From these displacements the strains and . 

stresses are then calculated. The development of the isoparametric 

element is briefly given along with its numerical integration. The 

optimum geometry, or placement of nodes, for a given number of degrees 

of freedom is also derived. Alternatives to this optimum are discussed 

in the last section.

Formulation

For a linear elastic material the expression for potential energy 

may be written as

PE = I + E (H.1)P P
where I is the potential energy due to the internal work and isP P .
the potential energy due to the external work. We assume, in the 

Initial state, that the stresses and strains are zero. When the 

external loads are applied, the body will deform so work has been done ■ 

on the body by these external loads. As deformation of the body takes

FINITE ELEMENT METHOD ■



place internal work or strain energy is stored within the body. The 

expression for this internal energy is

Ip = 0.5 Jy [e]T[T]dV • ... (4.2)

in which ,

[e] is the column vector listing of the independent components 

of the strain tensor, •'

[T] is the corresponding listing for the stress tensor,
.■Cy'i. T3 j.q:c'

and V is the body's volume. ■

The expression for the external work, is

Ep = - /y [u] [Fb]dV - Js [us] [Fg]dS - Ui F± (4.3)

in which ‘ _

[u] is the displacement field,

[F^] is the body force,

[u 1 is the displacement field due to the surface traction,

[F 1 is the surface traction,

[U.] is the displacement field due to the concentrated load, • .
P, -

is the concentrated load, *

and S is the boundary over which the surface traction is applied. 

Substituting (4.2) and (4.3) into (4.1) produces
♦ .

PE = 0.5 /v [e] [T]dV - Jv [u] [Fb]dV - Jg [ug] [Fg]dS - Sj, Ui
(4.n)

The principle of minimum potential energy states: The 

displacement fields statisfying internal compatibility, the boundary 

conditions, and equilibrium, have a stationary value of potential 

energy. Further if the stationary value is a minimum then the 

equilibrium is stable [5Jlj. So the solution to this variational



problem is obtained by finding a displacement field [u] which 

minimizes the potential energy. We will approximate the displacement 

field [u] by a function [H] and a set of parameters [U] (normally a 

set of nodal displacement components) or

[u] = C H ] t U ] • (*1.5)

This should be recognized as the classical Ritz approach to the 

solution of variational problems [70]. The [H] function will be an 

interpolant between displacements calculated at a discrete set of 

points. It is also called a shape or blending function.

Two other relationships are needed to solve the problem. The 

first is the stress strain relationship or

[T] = [C][e] (4.6)

in which [C] is a square symmetric (for linear elastic materials) 

constitutive matrix, also called the elasticity matrix. Also required 

is the relationship between the element strains and the displacement 

field in the form

[e] = [B][U] (4.7)

in which [B] is a matrix of linear operators and algebraic 

expressions.

Substituting (4.5), (4.6), and (4.7) into (4.4)

PE = [U]T0.5 Jy [B]T[C] [B]dV [11] - [U]T Jy [H]T[Fb]dV

-[U]T /s [H]T[FsJdS - ZL UiTFi. (4.8)

If the body is then divided into m finite elements, an energy 

equation for each element Ciin be written. The total potential energy 

for the body would then be the sum of all elemental energies or •



PE = [U]T Im /y [B ]T[C j[B ]dV [U] - [U]T Zm Jy [H ]T[FbB3dV

- [U]T En, / s [V [Fsm]dsm - Ei " i h  •
c

The [H] and the set of displacements [U] must be chosen such that 

element compatibility is achieved and the approximation converges

[ 9 , 9 9 3 .  •• -

To obtain a minimum potential energy implies that the partial 

derivatives with respect to the parameters U are equal to zero, that 

is

9PF = 0 (4.10)

which applied to (4.9) is .

^  - 1*  ° ‘ 5 / ™  [B  1 [C 1[B ldV [U] - Em /v  ' Ht J  ' F b ^ dT9 U -

- Zm L  = 0*0* (4.11)m ' s sm sm m 1 1

Rearranging (4.11) .

^ 0 . 5  [B ] [C ][B ]dV [U] = /.„ [Hm: [Fbm]dVm ■

+ rm -fsm ĤsnlT[Fsm-l'lsm * Ei Fi • (H.12)

Letting the right hand side be equal to [R] which we call the applied 

loads, and setting
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then

[K] = m 0.5 f [B 1T[C][P ]dv (4.13)m ' vm m m m

[K][U] = [R] (4.14)

in which [K] is known as the global stiffness rcatrix.

The steps required to perform finite element analysis are

1) Divide the domain into ra finite elements



2) Determine the applied loads [Ii] .

3) Using material properties calculate the element stiffness .

4) Combine the element stiffnesses to form the global • - 

stiffness matrix . . • ■ - .

5) Solve equations (4.14) for [U] ' • •

6 ) Use equations (4.7) and the (4.6) to find the element 

strains and stresses. . . .

This then is the basic procedure for the finite element method. 

The next section is concerned with one general family of elements and 

how they are used. ,

■ Calculating Element Stiffnesses '

As shown in the previous section, to develop the element 

stiffness matrix [Kg] the formula is ■ . . ...

[Ke ] = 0.5 Jv [Be]T[Ce][Be]dVe (4.15)
e

where the e subscript denotes element related quantities. If the same 

interpolating function is used to represent • the coordinates, as is 

used for the displacements (4.5), then the formulation is call 

’'isoparametric1' [46,62]. Isoparametric elements are the most commonly
’ ♦

used elements for solving three-dimensional problems. Assuming we have 

isoparametric elements, and choosing to represent our element., in a 

curvilinear coordinate system we could write

[x] = [H][X] (4.16)

where the [X] are the nodal coordinates in the x,y,z coordinate space, 

and possibly other parameters, [H] is an interpolation function, and 

the [x] is a function of our coordinates r,s,t. Then tiV may be
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represented as - 'j

dV = dx dy dz = |jj dr ds dt (i|.17 )

in which |j| is the determinant of the Jacobian matrix (the 

transformation between derivatives in x,y,z and r,s,t spaces).

Substituting (4.17) into (4.15) we have •

[Ke] = ° * 5 Ir  Is I t [Be]T[Ce][Be] M  dt ds dr* (U*l8)

If r, s and t are restricted to the range -1 to 1 and 

Gauss-Legendre quadrature is used to numerically perform the 

integration, then (4.18) can be written as

[Ke] = 0.5 \  Z k [Be]T[Ce][Be] |j| w(r,s,t)iJk (4.19)

where w(r,s,t)„k is an appropriate weighting function [9,413- In this 

expression the matrix [Bg] and the determinant of the Jacobian matrix, 

jjl , are both functions of r,s,t, therefore we have

G(r,s,t)..k = [Be]T[Ce][Ee] |j| (4.20)

which, when substituted into (4.19) produces a formula for the element 

stiffness matrix

^ e 3 = Zi Zj \  G(r»s>t)ijk w(r>s>t)ijk* (*».2 l)
♦

The evaluation of the element stiffness is then reduced to calculating 

a summation of two functions.

Optimum Geometry

When a body is discretized into finite elements, the placement of 

the nodes is somewhat arbitrary. From experience it is known that some 

nodal configurations produce better answers than others for the same 

number of degrees of freedom [15,67]. We could think of the placement



of both the displacement field and the nodal positions. For a true
c

minimum potential energy to be achieved both of the following 

equations must be satisfied. ' ' -

3 PE = 0 (4.10)
3 U .

and •
3 PE = 0 (4.22) *
3 X . .

in which X are the nodal positions. Equation (^.10) produced (4.14) 

and (4.22) produces

1  [U]T 3 fKl [U] - [U] 3 rRl = 0.0. (4.23)
2 3 X 3 X

We now have a system of nonlinear equations to solve. " “ ' ' ■

The situation is similar to the chicken and the egg problem. To

find the displacements we need to have specified the nodal positions.

To solve (4.23) for the nodal positions we need to have the

displacements. E. R. A. Oliveira was one of the first to work on this

problem [76]. He found that the solution of (4.23) required the nodes

to be placed on contours of constant strain energy, called

isoenergetics. G. M. McNeice and others have been developing

algorithms to accomplish this [68,94]. Basically they have used an

iterative scheme. First they solve for the displacements with a

regular rcesh. Using the displacements they find the new nodal

positions along the isoenergetics. Then they go back and solve for the
■aft 'X

displacements again. The loop may be repeated any number of times and 

the answers for each successive try will be better. The expense in 

solving for the new nodal positions is about equal to the solution

43
of the nodes within a body as variable. Then (4.9) would be a function



u

time for the displacements so each iteration costs twice as much as 

the usual analysis. This is for static problems in the elastic range 

C933 - D* J* Turke and G. M. McNeice suggest that a coarse mesh be 

first analyzed. The isoenergetics are then found and a finer mesh is 

generated [94]. These methods will all produce optimum geometry for 

the specific analysis problem. If the loading or boundary conditions 

change, so must the nodal coordinates. The next section considers an 

alternative to this procedure. ■

Geometric Merit Function 

The idea of a geometric merit function is developed as an 

alternative to the more formal geometric optimization presented in the 

previous section. Here we want to consider criteria based solely upon 

geometry and thus independent of possible loading systems. This - 

decoupling of the geometry from the loading is done because at the 

outset the engineer may not know what loads and boundary conditions he 

will impose upon the model. In fact, he will probably wish to consider 

several loading and boundary conditions during this phase of the 

design process. Since the isoenergetics are functions of the loads and 

the optimal placement of the nodes a function of the isoenergetics, 

the engineer will probably not want to generate a separate mesh for 

each test ease. To take care of the modeling requirements we want a 

model for analysis which will produce good results independent of the 

loading. There have been several papers published which indicate that 

the geometry of an individual element has significant effect on the 

reliability of the answers [15,23,53,59,89]. Distorted elements, or 

elements departing from a rectangular shape, have been shown to give



very poor answers especially when the isoparametric formulation is 

used ([15] and references cited therein). We now will consider how the 

geometry affects the displacements calculated. ,

Since the approximated body can only be deformed into shapes 

which are superpositions of the displacement function terms, if the 

displacement function includes terms which coincide with the actual 

body deformation, there will be no error. Otherwise the potential 

energy minimum which we obtain will be higher than the actual 

potential energy of the body with resulting behavior of excessive 

stiffness.

R. W. Clough suggests that a measure of the stiffness of an 

element may be obtained from the eigenvalues of the element stiffness 

matrix [30]. The lower the eigenvalues, the more flexible the element. 

These eigenvalues represent the element deforming in its orthogonal 

modes of free vibration. For a four node planar quadrilateral element 

the stiffness matrix is an [8x8 ], having eight eigenvalues. Hiese are 

shown in Figure 15. The first three eigenvalues are zero corresponding 

to the three rigid body modes associated with plane motion (i.e. in 

plane translations and rotation about an axis normal to the plane). 

The fourth and fifth are flexural modes, the sixth is a shear saode and 

the seventh is a streching mode. The eighth and final is the uniform 

extension node. Instead of calculating the eigenvalues for each 

stiffness matrix, Clough proposes that the sum of the eigenvalues be 

used as a measure of the element's stiffness. The sum of the 

eigenvalues is equal to the trace of the coefficient matrix in the 

eigenvalue problem. This trace is equivalent to the trace of the 

stiffness matrix (for homogeneous materials) because the matrices are

*»5
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similar in a linear algebra sense and the trace is an invariant 

property of similar matrices (theorems 3-7-1 and 6.8.9 of [71]). 

Figure 16 shows an-element in which the position of node number three 

is variable. The trace of the stiffness matrix as a function of the 

node's position is plotted in Figure 17. We see from Figure 17 that 

the stiffness of the element is at a minimum when the element is a 

square and it increases as the element's shape departs from the 

square. '

This increase of the stiffness may be accounted for when the 

displacement. field represention is considered. For linear 

isoparametric elements the assumption is that the displacements will 

vary linearly in the r and s directions. Whatever the shape in the x,y 

space, the element is always mapped to the square in r,s space, see 

Figure 18. To find the displacement functions in terms of the x,y 

space the mapping must be inverted. For the rectangular element in 

Figure 18 the displacement function will correspond to a linear 

function in our x,y space. When we consider the distorted element, the 

resulting function in x,y is very non-linear and unnatural for 

displacements of linear materials.

Figure 17 has shown that the trace of the stiffness matrix For 

the rectangular element has a lower value than the trace for the 

distorted element. If the trace of the stiffness matrix is used as the 

geometric merit function the analysis model can be checked and the 

very stiff elements found. Having a stiff element the location of the 

nodes defining the element can be modified to minimize this trace. The 

next chapter discusses how the high level model is used to produce 

initial nodal coordinates for the analysis model. The iterative

**7
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procedure for model improvement by relocation of nodal positions 

then defined.

Figure 18. Mapping of elements in x,y space to r,s space.



CHAPTER 5

Introduction ' '

In this chapter the high level model creation is discussed using

the equations developed in Chapter 3. The high level model is used to

produce the initial nodal coordinates in a uniform or non-uniform way.

The numbering of the nodal coordinates contributes to the efficency in

obtaining the eventual solution and this effect is illustrated- T h e
i

final section deals with the checking of the elements f o r  t h e i r  

geometric merit based upon the criteria developed in the previous 

chapter. Having a check the nodal coordinates are modified to improve 

the element's geometric merit.

. High Level Model

This section deals with the implementation of the h i g h  level 

model. The first type of volume representation discussed is the u s e  o f  

the component volumes. Next the more general free form* v o lume 

representations are covered.

Component Volumes -

Examples of the component volumes are spheres, cylinders, ' cones, 

and the like for which analytical expressions exist to d escribe 

positions within the volume. These expressions are usually g i v e n  i n  a 

"natural" coordinate system, such as spherical coordinates or

IMPLEMENTING THE SYSTEM . .



cylinderical coordinates. To use these component volumes they need to 

be transformed into the parametric representations, equation (3.15).

£
This will be demonstrated using the cylinder shown in Figure 19. The 

cylinderical coordinates are R (radius), THETA (angle), and H 

(height). We will express Z(r,s,t) as simply .

Z(r,s,t) = t H ■ . (5.1)
IJI3X

To develop X(r,s,t) and Y(r,s,t) we consider the circular cross 

section of the cylinder shown in Figure 20. V.’e need to find an 

expression for the X(r,s,t) and Y(r,s,t) in terms of r and s, t will 

be constant for any one cross section. To do this we will use the 

equation of a circle in polar form and the Boolean sura interpolant 

(bivariate form) equation (3 .1 1 )* ■

X(r,s,te ) = (P1 + P2 )F(r,s,tc ) . (5*2)

The c subscript on t is to remind us that t is constant. K e  recall 

that the expressions for the curves F(0,s,tc ), F(1,s,t ), F(r,0,tc )

and F(r,l,t ) are used in (3*12). For X(r,s,t ) they are •
^ c

F(0,s,tc ) = Fn,ax cos(0.5Pl(-s) + 1.25PI)

F ( 1 , s ftc ) = Pmax cos(0.5PI( s) - 0.25PI)

F(r,0 ,t ) = R cos(0.5Pl( r) + 1.25PI) (5*3)
C  Ilia A .

F(r,l,tc ) = Rrrax cos(0.5PI(-r) + 0.75PI) -

The four positions (corner values) needed F(0,0,t ), F(1,0,t ),
C V

F C1,1 , fc ), and F (0,1 , t ) may be found by s u b s i s t i n g  values o f  r and s
v  V

appropriately set to 0 and 1 into the above expressions. The equation 

for Y(r,s,t^) is found by s u b s i s t i n g  the sine function for t h e  cosine

function in the above equation;;. This is just one of many w a y s  which 

the* cylinder could be represented. If the structure is more complex
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Figure 19. Cylinder in space.

Figure 20. Circular cross section of a cylinder.



piecewise logical cubes to represent the object. . \

• i
Other Volumes ,

If explicit equations do not exist to describe positions within 

■che volume then we need to interpolate or approximate the data given. 

When only positional data is available then the trivariate should take 

the form of the tensor product (3*20). The cross fiber epoxy model 

model, Figure 3, could be developed by giving the twelve edge curves 

and then using the Coons volume equation (3*23) to interpolate them. 

The skull model, Figure *1, uses the trivariate Boolean sum (3*21). 

Each of the six surfaces was defined as a Bezier surface. The net o f  

points for each surface consisted of *19 points (7 x 7). One of the six 

surfaces defining the skull in Figure 4, is shown in Figure 6 with its 

control net.

Generating Nodal Coordinates

Uniform "

The volume has been parametrized in an approximately uniform 

manner if a uniform step of delta, taken anywhere in the body, 

produces an approximately uniform step in our x, y, and z space. The
%

nodal coordinates can be generated by taking uniform steps in each of 

the r, s, and t directions, plugging these into our trivariate 

expression and calculating our x, y, and z coordinates. This is a 

major advantage of the parametric formulations, it provides a simple 

way to generate nodal coordinates. For example if uniform steps in the 

■r direction are desired the an expression for r could be

V i  = rn + dr ' ' ■ (5* ^  ’
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in which dr = 1.0/(number of nodes in r -1). The number of nodes 

calculated in each direction is under user control. If the elements 

generated are to be approximately cubes then the number of nodes 

should be a function of the arc length in each parametric direction. 

This also assumes that the arc length of all curves in the same, 

parametric direction are of approximate equal length. When the 

parameterization is non-uniform then the next section's ideas can be 

used to obtain uniform spacing of the nodes.

Non-untform

There are several ways in which a non-uniform spacing o f  nodes in 

x, y, and z may be specified using our r, s, and t coordinates. 

Probably the most common in mesh generators has been to make each' 

succeeding nodal point spaced progressively further away or closer to, 

than the preceeding nodal point [36,63]. An expression for r to 

achieve this is

rn+1 = rn ♦ (rn ‘ rn - 1 > * FAC (5‘5)

in which F*AC is greater than 1.0 to space the-nodes further away, or

less then 1 . 0  to space them closer.

J. I. Gill in his research on interactively designing bivariate

%

surfaces uses the idea of an element density function [55]- The user 

of his system provides a value for the element density at each corner 

of the surface. The spacing of the nodes is then calculated b y  

linearly interpolating between the corner values. When the density 

function is high in a region then more nodes and hence more elements 

are generated. This allows the user to specify more nodes in the 

regions where he thinks that high stress gradients will occur- Both of
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these methods only allow for the nodal spacing to vary from small to

large or from large to small. If the variation desired is small

spacing then larger spacing and finally smaller spacing, or the

inverse, these methods can not produce this directly.

The method implemented in this system was developed to allow for

the above variation and the previous linear variation. We know that

our r, s, and t can only vary form 0.0 to 1.0. We can define another

* £
set of variables r , s , and t which will always vary from 0 . 0  to 1 . 0

in a uniform manner, and a function to relate our r, s, and t to them.

£
A graph of the relationship for r and r when it is linear is shown in 

Figure 21. If more elements were wanted when r was close to zero t h e  

function could look like that in Figure 22. For the small spacing, 

large, and small again, it would look like Figure 23. The ide a l  

situation would allow the user to sketch in the relationship- wanted. 

The program would then use the defined function and produce the 

required nodal spacing. For strictly two-dimensional problems this m a y  

be the best way to go because of the relatively large number of 

elements used. In three-dimensions we have to use fewer -elements 

because of the large number of degrees of freedom for each element. A 

practical compromise between complete freedom and uniform spacing 

might be a cubic relationship. A planar cubic requires four pieces of 

data, four positions or two positions and two derivatives. I f  we 

choose the latter we could use the planar Hermite formula. The 

positions are already specified at (0 ,0 ) and (1 ,1 ) so the o n l y  input

we require are the derivatives at each end point. The equation for r

- - *  .i-.., 

in terms of these derivatives and r is -
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«
Figure 21. Plot of the function relating r and r with uniform

spacing of the resulting nodes.

Figure 22. Plot of the function relating r and r with nodal 

spacing varying from small to large.

«
Figure 23* Plot, of the function relating r and r with nodal 

spacing varying small, large and then small.
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r = P HF(r# ) = r*3 (F'(0)-2+F'(D) + r*2 (-2F'(0)+3-F'(1)) + r*F'(0).

(5.6)

For Figure 21 the F'(0)=F'(1)=1 and we have a constant (uniform) 

variation. If the derivatives are reduced from one towards zero the 

the nodal spacing is also reduced toward zero, Figure 23. The 

alternative is to increase the derivative beyond one and this 

increases the nodal spacing, Figure 23. Using such a scheme will allow 

a wide range of variation of the nodal coordinates in our body. The 

system implemented requires that the derivatives be specified for each 

direction r, s, and t at the corners, and no derivative specifed is 

taken to mean 1.0, or uniform variation. Examples of this are 

presented in Chapter 6 .

Generating Elements 

Once the nodal coordinates are specified the required element 

lists may be generated. The stiffness matrix resulting from our model 

will be a sparse symmetric matrix. The number of zero and non-zero 

elements of the matrix is constant but their location within the 

matrix is a function of the node numbering. Being, a sparse symmetric 

matrix if the non-zero elements can be kept close to the diagonal then 

only the banded portion of the matrix needs to be stored [9 3. To store

p
the whole matrix of order N we need M locations. Taking advantage of

p
the symmetry reduces this to N /2. If we have a banded matrix we will 

only need N*S locations Vhcre B is the semibandwidth. To demonstrate 

this let us look at a two dimensional truss system, Figure 24. The 

semibandwidth for a truss system is given by

B = 2 + 2* ABS(MAXPXF) (5.7)
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Figure 24. Two dimensional mesh numbered largest first. 
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Figure 25* Two dimensional mesh numbered smallest first-

in which MAXDIF is the maximum difference of node numbers defining an 

element [35]* For Figure 21! B is equal to twelve. If instead of 

numbering the nodes in the longest direction first we number in the 

smallest direction first then B is reduced to eight (Figure 25). 

Equations of a similiar nature exist for models made up of two- and 

three-dimensional continuum elements. The general rule is: number
»

nodes first in the smallest direction, then in the next smallest and 

finally in the largest direction. For many problems there isay be no 

obvious way to number the nodes to reduce the bandwidth. In these



cases other programs have been developed to minimize the bandwidth by 

renumbering the nodes [3 2 ,3 9 ,*10]. .

Checking, for Geometric Merit and Improvment

First the previous schemes which have been developed and used 

will be considered. These are mostly for two-dimensional meshes but a 

few have their counterparts for the three-dimensional model. In 

Chapter the idea of checking the stiffness of an element was 

developed. This is expanded upon and the implementation of the testing 

is discussed along with an alternative. Finally the actual movement of 

the nodes to minimize the stiffness is discussed.

i&ri
Previous Schemes

There have been many schemes to check the geometry of a me s h  

before analysis and possibly adjust the nodes of the mesh when they 

are found to be bad. One of the most commonly used methods takes 

Laplace's equation for two (or three) dimensions and solves it by 

difference approximations. From the resulting equations, we get that a 

node's position should be the average of its four or six neighboring 

position values. Eecause the equation was solved by a difference 

scheme this only works for regular meshes and further it only works 

well for convex regions. To use the Laplacian scheme most 

implementations specify all nodal positions on the boundaries and then 

allow the interior positions to be calcualted iteratively. There is no 

guarantee that the final positions will be within the specified 

boundaries, when they are outside it is known as overspill [6 3 3 .

To correct some of the faults of the Laplacian scheme, 

A. E. Winslow used implicit differentiation to solve Laplace's
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equation [9 8]. His scheme is called the "equipotential" method and 

works for many non-convex regions but it still requires a regular 

mesh. L. E. Herrman has another alternative, he has taken a linear 

combination of the isoparametric interpolant for bivariates an d  the 

differenced Laplacian to come up with a mesh generator [60]. The 

constants applied to each terra are under the control of the user. 

Again this works well for convex regions. -

0. C. Zienkiewicz has stated that since numerical integration is 

used for most element stiffness calculations, the determinant of the 

Jacobian transformation ( |J|) should exist and be positive throughout 

the model [99]. R. Taylor in his FEAP (Finite Element Analysis 

Program) series of codes has a checking routine which calculates J 

at each node point of each element. If any are found . to be zero or 

negative the program halts after checking the mesh. No provision has 

been cade to try and fix the bad element once it has been found. In a 

recent paper by B. Mujerkij a measure of the element's warp called the 

Distortion Index was presented [70]. This value is zero for elements 

whose opposite sides are parallel and non-zero when they are not 

parrallel. This could also be used as a check for georotric merit. .

«•

I r p l p p c n t P - d  S c h e m e s

In Chapter U the idea of a geometric merit criterion based upon 

the eigenvalues of an element stiffness matrix was developed. This has 

been ir.plerr.ented in the system. The procedure has been to generate the 

nodal positions, then check the mesh by calculating the trace of each 

stiffness matrix. Summing all of the traces we arrive at an overall 

measure for the stiffness of the model. To. improve the model each node



is considered in turn and a location which would minimize the

stiffness of the elements in which the node is used is found.

c
Additionally the node's parametric values are checked to assure that 

they are not outside of the boundaries, so no overspill m a y  ever 

occur. Since the high level model is kept around the boundary nodes 

are not considered as permanently fixed at their original location. 

During optimization they may be moved about the boundary.

The actual moving of the nodes to minimize the stiffness locally 

has been implemented using a Sequential Simplex Search method [11]. 

This method was used, as opposed to a conjugate gradient method, 

because analytical expressions for the derivatives of the trace o f  the 

stiffness matrix were too complicated to calculate. The simplex method 

needs no derivative data and is simple to program which made i t  very 

attractive. The basic idea is that for a function of N variables, N+1 

sample points are chosen and the function we are m inisizing is 

calculated at each point. For two dimensions the three sample points 

are taken to be the vertices of an equilateral triangle. F o r  three 

dimensions a tetrahedron is used. The function of two variables to be 

minimized could be thought of as a surface. This surface is 

approximated by a plane (the equilateral triangle). The "most, uphill" 

(largest, value of the function) point of the triangle is found and 

then reflected about the other two points. It is hoped that this is in 

a downward direction. The process is then repeated for t h e  new 

triangle just generated. There are several restrictions which m i s t  be 

met. The first is that no return may be made to a previously 

calculated point. Second if the best vertex (minimum value) remains 

the same for seme predetermined number M of iterations, then tiie size
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of the triangle is reduced and the process is repeated. This is a 

the halting criterion, when the triangle size is smaller than •

f
error tolerance, we stop. Seme research has been done on what ' 

optimum value of M should be. The results have been expressed in 1 

following equation

M = 1.65N + 0.05N2 (5.1

where N is the number of dimensions [8 8 ]. The simplex schi 

implemented does the optimization in the parametric space- When 

boundary node is being considered, the optimization scheme is redu< 

by a dimension. This assures that the node will not be moved off 

the boundary. Eecause the optimization is done in the parametric sp. 

the overspill problem is eliminated by restricting the possi 

parametric values to always fall within the prescribed range. This 

different from all other known schemes for modifying the noc 

coordinates after they are generated. The other schemes work with 1 

nodes in the real space and they must keep the boundary nodes fixed.

S.fter implementing the simplex scheme to minimize the trace 

the element stiffness, it was found that the calculation of t 

element stiffness was relatively time consuming. A less expensj 

calculation was needed. If we examine the components of the ,stiffm 

calculation (4.19) we see a number of values multiplied by t 

determinant of the Jacobian matrix. Ke know that if we have 

parallelogram in two dimensions, (see Figure 26) then the area of
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y

Therefore the stiffness is a function of the angle.

In Chapter H the variation of the trace of the stiffness was 

demonstrated as a node was moved in space, (Figures 16 and 17). We 

repeated the calculation adding the calculation of the sine of the 

angle between the r and s axes at the Gauss point where the stiffness 

was calculated. The stiffness trace and the sine of the angle are both 

plotted in Figure 27. It clearly shows that the sine has a maximum
■ % ■ 

at the same position in space of the varying node, as the trace has a 

minimum. The calculation of the sine is very easy and faster than the 

stiffness calculation so it also was implemented and used. The next 

chapter will demonstrate the results of using both schemes along with 

examples of the other features described. •
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CHAPTER 6

RESULTS AND CONCLUSIONS 

Introduction

Two systems were developed as a result of this research. The 

first was a two-dimensional system, and the second was a two- and 

three-dimensional system. The results of the two-dimensional system 

are presented using two different models. The first of the 

two-dimensional models has boundaries defined ' by four- cubic Bezier 

curves. The user specifies the polygon defining each of t h e  curves as 

input to the high level model. The second model is after one used by 

R. E. Jones of Sandia Laboratory, in his documentation o f  QMESH [63]. 

This model is used to generate distorted elements t o  test the 

optimization schemes. The three-dimensional models used t o  test the 

second system were the skull-brain model (Figure 4) a n d  the epoxy 

matrix from the crossed fiber model (Figure 3)» These were chosen 

because the models h2ve been used for actual analysis a n d  had been 

generated by hand. The conclusions are then presented followed by a 

section suggesting directions for future work.

Two-Dimensional Examples *

Bezier Curve Pounded ftegjon ■

The curves used to define the region were shown in Figure 74 

These were the input to the Boolean sum interpolant.. (3_12) that was 

used as the high level model. Figure 28 shows the d i s cretization of



the model into 35 elements. Figure 29 shows the logical or parameter 

space for the model. The parametric space is shown so the u s e r  may see 

the distribution of nodes in the parametric directions. Aft e r  

optimizing the model this parametric space plot will help show where 

the nodal coordinates have been modified. The number of nodes and 

hence elements which may be generated is arbitrary. Figure 30 shows 

the high level model discretized into 77 elements. Both th i s  and the 

model in Figure 28 were generated in a uniform manner.

Non-uniform element distribution is specified by supplying ' the 

program with the derivative information at the parametric corners. 

These derivatives are then used in the cubic equation presented in the 

previous chapter, equation (5 .7 ) , to generate the nodal positions. 

Figure 31 demonstrates this option using the 77 element d i s c retization 

of the model. In the R direction the derivatives on S=0 were specified 

to be 3.0 and 0.1, on S= 1 they were 2.0 and 2.0. The S  direction 

derivatives were, along R=0, specified as 1.0 and 1.5, and the same 

along R=1. The distribution of the nodes in the parameter space is 

shown in Figure 32. We can see that very complex distributions of 

elements may be specified using these eight derivative values.

The 35 element model was then checked for geometric m e r i t  and the 

nodal coordinates adjusted to improve the model. Recall from C h apter *1 

that a measure of the stiffness of an element could be calculated by 

taking the trace of the element stiffness matrix. A me a s u r e  o f  the 

model's stiffness is obtained by taking the trace of the global 

stiffness matrix. For the model shown in Figure 26, the stiffness 

value was calculated as 182.5. If optimization is performed 

considering each node in turn and using the sequential simplex

66
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Figure 2 8 . Eezier curve bounded region discretized into 3 5 elements.

Figure 29. Parameter space of the model.



Figure 30. Region discretized into 77 elements.

algorithm to find the location of the node to minimize the trace, the 

value calculated is 130.5. This was after 15 iterations. Figure 33 

displays the optimized mesh and Figure 3^ shows the parameter space 

after optimization. .

The process of optimizing the model using the trace o f  the 

stiffness matrix takes a relatively large amount of time. As "developed 

in Chapter 5 an alternative to using the trace is to try to maximize 

the angle between the r and s axes in each element. Figure 35 shows 

the model after it has been optimized using the angle calculation. The 

value of the stiffness trace for this optimized model is 135.*1



69

Figure 31* Non-uniforro distribution of nodes.

Figure 32. Parameter space non-uniform distribution of nodes.
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Figure 33* Optimized mesh for the 35 element model.

Figure 3^* Parameter space for the optimized model.
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. Figure 35- Optimized model using the angle calculation.

Second Example '

The second example was defined by a series of straight lines and 

circular arcs. As was the case with the Eezier curve bounded region, 

these boundary curves were used in the Boolean sum interpolant (3.12) 

to form the high level model. Figure 36 shows these curves. The first 

discretization of the model was performed using points 1, 2, 3» and 

as the parametric corners. Five nodes were specified in the R 

direction and nine nodes in the S direction. The resulting model 

contains 32 elements and is shown in Figure 37. The initial parameter 

space is displayed in Figure 3 8 . Again the model could be discretized 

into any number of elements and Figure 39 shows a model derived using 

96 nodes [ B x 12 ]. If the engineer thought that the mid-region of
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Figure 36- Eoundary curves for the second example.

Figure 37. Second example discretized into 32 elements.
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Figure 3 8 . Parameter space for the second example.



the body would have a higher stress gradient, after loading, then a 

non-uniform generation scheme, could be used. The total number of 

elements will not be changea only the distribution within the body. 

The 32 element model was regenerated having smaller elements in the 

mid region and the result is shown in Figure 40. To obtain this 

distribution all four derivatives specified in the R direction w e r e

1.0. In the S direction they were given as 2.0. The parameter space 

for the non-uniform nodal spacing model is displayed in Figure 41.

The optimization of the model was performed next. Figure 42 shows 

the uniform 32 element mesh after four iterations. The parameter space 

is seen in Figure 43. For this optimized mesh the stiffness measure 

value was calculated to be 179-9 down from 196.1 for the initial 

configuration, Figure 37- The graduated mesh may also be optimized. 

The initial value of the stiffness measure was 202.3, after four 

iteration of the optimization, (Figures 44 and 45) it was 184.8. The 

method used to optimize the model will result in the same final nodal, 

configuration regardless of whether the starting configuration was 

specified uniformly or non-uniformly. Only when the optimization is 

halted prematurely will the initial configuration have any influence 

on the nodal coordinates.

If instead of using points 1,2,3, and 4 on Figure 36 as the 

parameteric corners, points 1,2,3, and 5 are used, then the initial 

mesh looks like Figure 46. The parameter space of this model is 

identical to Figure 3 8 . This is a bad parameterization because it has 

produced several very distorted elements in the upper region. The 

distance between points 1 and 2 is about the same as the distance 

between points 3 and 5. If parameterization of the model is performed

7*
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Figure ^0. Non-uniforra elements for the second example.

S

I

Figure )J1. Non-uniforra model's parametric space.
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Figure 42. Optimized uniform mesh.

Fiftii'e 3• Optimized uniform mesh parniretric space.
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Figure *14. Optimized non-uniform mesh.

Figure *15- Parametric space for the optimized non-uniform mesh.



using are length considerations then point 5 of Figure 36 may be made 

a parametric corner* Thi3 is one of the problems with automatic 

generation of models by programs which allow for no user interaction. 

The program may force a parametric corner to be in a location that 

does not correspond to a physical corner. Although, the user may also 

make the same type of mistake and specify a parametric corner in the 

wrong place. When working with two dimensions a parametric corner in 

the. wrong place is easily found by looking at a plot of the model. 

Finding a parametric corner located at the wrong place in a three 

dimensional model may be more difficult to detect and to correct. 

Optimization of this mesh is possible and the initial value, of the
A _ 1

stiffness measure was Figures 1)7 and 1)8 show the optimized mesh

which has a stiffness measure value of 170. . .

Figure 1(6. Mesh nfter parameterization by arc length.



79

Figure ^7. Optimized mesh of the model parameterized by are length.

Figure 48. The parametric space for the optimized arc lenth model.



Actual analysis of this body has been done and the potential 

energies calculated for the models used. The body was loaded along the 

edge 3-4 and the nodes restrained between 1 and 2 of Figure 36. As the 

nuiDber of elements is increased the • potential energy goes toward a 

minimum. Results of the analysis performed at the University of 

California Los Alamos Scientific Laboratory using, the NON-SAP finite 

element program and discretizing the model into 1500 elements shows 

the potential energy to be -19.06. This will be considered the 

minimum. The potential energies were calculated for the various models 

at the University of Utah using SAPIV, and are summarized in Table 1.

Table 1. •

. Values of the Stiffness Measure and the Potential Energy • ■

for the Second Example

Model shown in Figure Stiffness Measure Potential Energy

80

37 196.1 -14.08

40 202.3

42 179.9 -15.86

44 184.8

46 . 414.4 -3-48

47 170.0 -7.36

The table clearly demonstrates that the answers produced by a 

given model can be improved if the optimization is performed. In his 

documentation of OMESII [63], R.E. Jones has used the same model and



done some optimization of the nodal coordinates. He uses • the 

equipotential method to adjust the nodal positions of the model shown 

in Figure *i6. The model optimized using the equipotential method has 

been analyzed and the potential energy was calculated to be -5.63- He 

then does some restructuring, that is removing some of the elements 

and adjusting the nodes, and the potential energy goes to -13.07- When 

compared to the equipotential method the optimization scheme used • here 

produced a better mesh. Restructuring of the models was not attempted 

so no comparision can be made directly, but if the model is 

parameterized in a reasonable way, Figure 37 versus Figure *J6, it may 

not be needed.

. Three-Dimensional Examples .. .. .. . •

Skuil-Braln Model • ' " ' ' ' ...............

The skull-brain model was originally generated from a set of 

surface points whose coordinates were manually measured on an actual 

skull [8?]. These points were used as input to a special model 

generator which had been written specifically for the. skull-brain. 

data. Whenever a different number of nodes defining the model for 

analysis was wanted, the procedure was to remeasure the coordinates. 

This process took from two to four weeks. The surface data points have 

been taken and collected into six sets, one for each surface o f  a 

parametric cube. Each set was then used as the control n e t  for an 

approximating Bezier surface. Having a definition for each surface the 

trivariate Boolean sum interpolant was used as the basis for the high 

level model. The six surfaces defining the skull's exterior are shown 

in Figure *<9. Fach surface is displayed usinrr, one hundred points from



Figure 149. Six surfaces defining the skull's exterior.



the surface. The boundary curves of the surfaces were shown in F i gure

14. A model for analysis was generated using six nodes in each 

parametric direction and is shown in Figure 50. Changing the n u mber of 

nodes for a model in any of the parametric direction is easily done 

and a new model produced. Figure 51 shows three views o f  the 

skull-brain high level model discretized using eight nodes in the r  

direction, seven nodes in the s direction and six nodes in the t 

direction. The removal of the hidden portions are possible b u t  not 

available on the present computer for use in real time. An alternative 

to aid in viewing the model is to display any one layer of bricks. The 

boundary curves are also drawn to provide a reference. Figure- 52 shows 

several views of different brick layers. . -

Optimization of the model was performed and the . results . for the 

[ 6 x 6 x 6 ]  model, optimized for four iterations, are s b o w n  in 

Figures 53 and 54. In Figure 53 we show the first layer in the t 

parametric direction. This is the bottom of the skull. The t o p  image 

is the layer of bricks before the optimization was performed. The 

middle image shows the layer of bricks after optimization. We can see 

that the bricks are more orthogonal than they were originally. T h i s  is 

particularly noticable around the boundaries. We see that the nod e s  on 

the surface have been adjusted so the faces of the hexahedrons are 

perpendicular to the boundary surface. The bottom image is the 

parametric space for the optimized layer. In Figure 54 w e  s h o w  the 

same sequence, but this time for the middle layer in the s p a r a m e t r i c  

direction. This corresponds to the midsagittal plane of the brain.

No actual finite element analysis was performed on a n y  o f  the 

three-dimensional models but the trace of the plobal stiffness matr i x

83



Figure 50. Skull-brain model [ 6 x 6 x 6 ] .
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Figure 51. Skull-brain model [ 8 x 7 x 6 ] *



Figure 52. Several layers of bricks from the skull-brain model.



Figure 53- Optimized skull-brain model [ 6 x 6 x 6 ]  bottom layer.
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Fipure 5*1. Optimized midsapittal layer.



Values of the Stiffness Measure for the Skull--Brain Model

Iteration number Stiffness Measure Percent of Original

0 *127.8 1 0 0 . 0

*107.7 95.3

383.8 89*7

10 381 .4 89*2

was calculated and it is summarized in Table 2. •

Epoxv Matrix Model .

The model of the epoxy matrix around the crossed fibers was 

generated by using the boundary curves as input to equation (3.24). 

These twelve curves are shown in Figure 55. If 196 brick elements are 

wanted, seven in the r direction, seven in the s direction, and four 

in the t direction, then the resulting model for analysis would look 

like that in Figure 56. To understand the model better selected slices 

are shown in Figure 57. :

Optimization of the epoxy matrix model was performed upon the [ 7 

x 7 x 7 ] discretization. The trace of the stiffness matrix was also 

calculated and is summarized in Table 3*

This model has two planes of symmetry. The first is about the 

plane of r=0.5 and the second about the plane of s=0.5. VJhen the 

optimization is performed the resulting model should by symmetric 

about these planes. Figure 58 shows the center slice in the parametric



90

_ Figure 55- Twelve curves defining the epoxy matrix model.

s direction. Figure 58a shows of the original unoptimized slice. 

Figure 58 b and c show the slice after three iterations, the euclidean 

space is plotted on the left and the parametric space is plotted on 

the right. The elements have again more orthogonal faces, particularly 

around the region where the fiber goe3, the semi-circular area. Figure 

58 d and e show the same slice after five iterations. Comparing it to 

the slice after three iterations we can see very little difference, 

but the parametric plots indicate changes in the lower region. A very 

small difference is expected because the trace values for these t w o  

models vary by 1.67. '

In Figure 59 we sec the first layer in the parametric t 

direction. The top images are the original and optimized (after five 

iterations) slice, viewed straight on. The lower images arc tho same



Figure 56. Three views of the epoxy matrix rr.od
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Table 3

Values of the Stiffness Measure for the Epoxy Matrix Model

Iteration number Stiffness Measure Percent of Original

0 176.3 1 0 0 . 0

1 172.4 97.8

3 165.5 93.8

5 1 6 2 . 6 9 2 . 2

slices rotated. The major adjustment of the nodes have been a l o n g  t h e  

top and bottom edges. .

The engineering design process has been presented and t h e  d e s i g n  

analysis loop part of the process has been discussed in sone detail. 

This loop has many problems which are related to the way in w h i c h  

models are designed and analyzed. A higher level of abstraction f o r  

the modeling is needed to solve many of these problems. T w o  samp l e  

systems have been implemented with a high level model representation 

for planar regions and volumes. These systems use the high level m o d e l  

in two different ways. The first was for viewing and interacting, 

while the second was to generate models suitable for analysis. T h e  

geometry of the high level model has been expressed in a t r i v a r i a t e  

parametric form. The trivariate expressions were developed b y  

extending the bivariate parametric patch expressions for surface

Conclusions



Figure 57. Selected slices of the epoxy matrix rcodel.



d •e

Figure 58. Optimized epoxy matrix model.
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Figure 59. Optimized first parametric t layer of the epoxy
matrix model. ■ •



The formulation of one specific analysis method h a s  been 

investigated to provide information about model requirements. These, 

model requirements or geometric merit criterion are then used wh e n  the 

models for analysis are generated from the high level model to make 

better analysis models. The actual implementation uses an Iterative 

method to optimize on the geometric merit criteria in the analysis 

model. This iterative method is general enough to allow a Framework 

for testing various optimization criteria. These systems as 

implemented are different from any other analysis, model generation 

schemes in that the optimization of the model is performed in the 

parameter space. The optimization routine uses the high level model 

when boundary nodes are being adjusted to restrict the possible nodal 

positions to only those upon the boundary. This makes sure that the 

boundaries are not violated by trying to position a node outside of 

them. Every other known analysis model generator considers the 

boundary nodes fixed. ■ ■

One high level model has been taken and used to g enerate several 

different analysis models, and then these were analyzed. T h e  results 

have shown that the initial parametrization has a great deal of 

influence on the accuracy of the answers. We have also seen that the 

optimization of the model does improve the results reg.ardless of the 

parameterization. The cost of the geometric optimization is believed 

to be very low when compared to an analysis run. However exact- figures 

are not available because three different computers have been used in 

the process. . . . . . . .
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A system was proposed in Chapter 2 which is based upon the idea

*

of a higher level of abstraction for the modeling, process. It. is 

called the high level model and all of the information about the 

physical object that is being designed should be with that model. F r o m  

this high level model all other models would be derived. A system has 

been implemented which uses the high level model's g e o m e t r i c  

information to produce various graphical views and models suitable for 

finite element analysis. To implement the complete system as proposed 

the high level model needs to be imbedded within a data base. M a n y  

more routines are needed to generate, modify and manipulate the d a t a  

stored.

For the geometric information routines are needed which a l l o w  

interactive design and modification of the building blocks for t h e  

volumes (i.e. points, space curves and surfaces). Also the s tructure 

or connections between various volumes need to be specified and 

stored. For example consider the model of the skull-brain, if a n o t h e r  

model of the neck and upper trunk were added, the system should a l l o w  

the user to work with either model, seperately or together. When t h e y  

are used together the system needs to know at what point and w i t h  w h a t  

orientation the two should be connected.

After analysis viewing of the calculated results is needed. A l s o  

sor^e functions such as maximum principle stress or von-Kises s t r e s s  

are derived from from the results. The system needs a capability t o  

produce plots of the results as well as calculating the de r i v e d  

quantities and plotting them.

Future Work . '

The initial configuration of the nodal coordinates may bo



specified in a uniform or nonuniform manner. When the optimization is 

applied the resulting model for analysis will have the same final 

nodal configuration regardless of the scheme initially used. M o r e  

research is needed on the optimization scheme so that the initial 

nodal spacing will have some influence on the final configuration.

These are a few of the additional features needed to realize more 

fully the proposed system.
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APPENDIX

The purpose of this appendix is to show by substitution t h e  

interpolation properties of the three trivariate interpolants de r i v e d  

in Chapter 3. These operators are combinations of the three p r o j e c t o r s  

whose equations are repeated below.

P ^ C r j S j t )  = (1-t)F(r ,s,0) + tF(r,s,1)

P2F(r,s,t) = (1-s)F(r,0,t) + sF(r,1,t)

PgF(r,s,t) = ( 1-r)F(0,s,t) + rF(1,s,t)

The equation of the tensor product is

(P1P2P 3 )F(r,s,t) = (1-r)(1-s)(1-t)F(0,0,0) + (1-r)(1-s)tF(D,0,1)

+ (1-r)s(1-t)F(0,1,0) + (1-r)stF(0,1,1)

+ r(1-s)(1-t)F(1 ,0,0) + r(1-s)tF(1,0,1)

+ rs( 1 — t ) F (1,1,0) + rstF( 1,1,1). ^

The interpolation properties will be shown by substitution for one 

corner point, one curve, and one surface. ^

Example for corner F(0,1,0)

(P 1 ?2 F’-j ) F (0 ,1 ,0) = (1 — 0) (1 — 1) (1—0)F(0 ,0,0) + (1-0) (1-1)(0)F(0,0,1)

+ (1-0)(1)(1-0)F(0f1,0) + (1-0)(1)(0)F(0,1,1)

+ (0)(1 — 1)(1 — 0)F ( 1 ,0,0) + (0)(1-1)(0)F(1,0,1)

+ (0)(1)(1-0)F( 1,1,0) + (0)(1)(0)F(1 ,1 ,1)

= F(0 ,1 ,0)



(P1P2P3 )F(1,0,t) = (1-1)(1-0)d-t)F(0,0,0) + (l-l)(l-0)tF(0,0,1)

+ (1— 1)(0)(1—t)F(0,1,0) + (1-l)(0)tF(0,1,1)

+ (1)(1-0)(1-t)F(1,0,0) + (1)(1-0)tF(1,0,1)

+ (1) (0) (1-t )F( 1,1,0) + (D(0)tF(1 ,1 ,1) .

= (1-t)F(0,1 ,0) + t F (0,1,1)

Example for surface F(1,s,t)

( P ^ ^ j F d . s . t )  = (1 — 1 )(1 — s)(1—t)F(0,0,0) + (1-1)(1-s)tF(0,0,1)

+ (1-1)s(1-t)F(0,1,0) + (1-1)stF(0,1,1)

+ (1)(1 — s ) (1—t)F(1,0,0) + (1)(1-s)tF(1,0,1)

+ (1)s(1-t)F(1 ,1 ,0) + (1)stF(1,1 ,1)

= (1-s) (1-t)F( 1 ,0,0) + d-s ) t F ( 1  ,0,1)

.... . + s(1-t)F(1 ,1 ,0) + stF(l, 1 ,1)

The Boolean sum interpolant's equation is .

(P1 + ?2 + P3 )F(r,s,t) = (P1 + ?2 + P3 - P 1P2 - P2P3

- P 3 P 1 +  P'[? 2 P 3 ) F ( r >s >t}‘

The expanded form is ' ^

(Pi + P2 + P3 )F(r,s,t) = (1-t)F(r,s,0) + tF(r,s,1) .

+ (1-s)F(r,0,t) + sF(r,1,t) .

+ (1-r)F(0,s,t) + rF(1,s,t)

- (1-s)(1-t)F(r,0,0) - s(1-t)F(r,1 ,0) - (1-s)tF(r,0,1) - stF(r,1,1)

- (1-r)(l-s)F(0,0,t) - r (1-s)F(1,0,t) - (1-r)sF(0,1,t) - rsF(1,1,t)

- (1-r)(1-t)F(0,s,0) - r(1-t)F(1,s,0) - (1-r)tF(0,s,1) - rtF(1,s,1)

+ (1-r)(l-s)(1-t)F(0,0,0) + (1-r)(1-s)tF(0,0,1) + (1-r)s(1-t)F(0,1,0)

+ (1-r)stF(0,1,1) + r(1-s)(1-t)F(1,0,0) + r(1-s)tF(1,0,1)
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Example for curve F(1,0,t)



The Boolean sum interpolant can be shown to interpolate the six 

surfaces, the twelve edge curves and the eight corner points. Here 

because of space considerations only interpolation of one corner,- one 

curve and one surface will be shown. . .

Example for corner F (1 , 1 , 1 )

( P 1 + P2 + P3 ) F ( 1 , 1 , 1 )  = (1 — l ) F ( l , 1 ,0) + ( 1 ) F ( 1 , 1 , 1 )  .

+ (1-1 ) F ( 1 , 0 , 1 )  + (1 )F( 1 , 1 , 1 )  + (1-1 ) F ( 0 , 1 ,1)  + (1 ) F ( 1 , 1 , 1 )

- (1-1)(1-1)F (1,0,0) - (1)(1-1)F(1,1,0) - (1-1)(1 )F(1 ,0,1)

- ( 1 ) ( 1 ) F ( 1 , 1 , 1 )  - (1—1 ) ( 1 —1) F ( 0 , 0 , 1) - ( 1 ) ( 1 - 1 ) F ( 1 , 0 , 1 )

- (1-1)(1)F(0,1,1) - (1)(1)F(1,1,1) - (1-1)(1-1)F(0,1,0) • '

- ( 1 ) ( 1 - 1 ) F ( 1 , 1 , 0 )  - ( 1 - 1 ) ( 1 ) F ( 0 , 1 , 1 )  - ( 1 ) ( 1 ) F ( 1 , 1 , 1 )

+ (1-1)(1-1)(1-1)F(0,0,0) + (1— 1)(1— 1 )(1)F(0,0,1)

+ (1 — 1 ) ( 1 ) ( 1  — 1 ) F ( 0 , 1 ,0)  + ( 1 - 1 ) ( 1 ) ( 1 ) F ( 0 , 1 , 1 )  + ( 1) (1  — 1) (1  — 1)F(1 , 0 , 0 )

+ (1)(1-1)(1)F(1,0,1) + (1)(1)(1-1)F(1,1,0) + (1)(1)(1)F(1,1 ,1)

= F ( 1,1,1)+F(1,1,1)+F(1,1,1)-F(1,1,1)-F(1,1,1)-F(1,1,1)+F ( 1 ,1 ,1)

= F ( 1 ,1,1) .

Example for curve F(0,s,1) ’

(P1 + P2 + P3 )F(0,s,l) = (1-1)F(0 ,s,0) + (1)F(0,s , 1) .

+ (1-s)F(0,0,1) + (s)F(0 ,1,1) + (1-0)F(0,S,1) + (0)F(1 %S , 1)

- (1-s)(1-1)F(0,0,0) - s(1-1)F(0,1,0) - (1 —3) ( 1 )F(0,0,1) '

- s(1)F(D,1 ,1) - (1-0) (1-s)F(0,0 ,1) - (0)(1-s)F(1,0,1)

- (1 — 0)sF(0,1,1) - (0)s(F1,1,1) - (1-0)(1-1)F(0,s,0) ‘

- (0)(1— 1)F(1,s,0) - (1-0)(1)F(0,s ,1) - (0)(1)F(1,s,1)

+ (1 — 0)(1 — s ) (1 — 1 )F(0,0,0) + (1-0)(1-s)(1)F(0I0,1)

+ (1 — 0)s( 1 — 1 )F(0,1 ,0) + (1-0)s(1)F(0,1 ,1) + (0)(1-s ) d - 1 ) F ( 1  ,0,0)
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+ rs(1-t)F(1,1,0) + rstF(1,1,1).



+ (0)(1-s )(1)F(1,0,1) + (0)s(1-1)F(1,1,0) + (0)s (1)F(1,1,1) •

= F (0 , s , 1 )  + ( 1-s)F(0 ,0 ,1 )  + sF(0 ,1 ,1 )  + F (0 , s , 1) - ( 1-s )F(0 , 0 , 1 )

- sF(0 , 1 , 1 )  - ( 1-s )F (0 ,0 ,1)  - sF (0 , 1,1)  - F ( 0 , s ,  1) + ( 1 - s )F (0 , 0 , 1)

= F(0,s,1) ,

Example for surface F(0,s,t) . ■

(P1 + P2 + P )F(0,s,t) = (1-t)F(0,s,0) + tF(0,s,1)

+ (1-s)F(0,0,t) + (s)F(O,1,t) + (1-0)F(0,s,t) + (0)F(1,s,t)

- (1-s)(1-t)F(0 ,0,0) - s(l-t)F(0,1,0) - (1-s)tF(0,0,1) - s t F ( 0 , 1 , D  '

- (1-0)(1-s)F(0,0,t) - (0)(1-s)F(1 ,0,t) - (1-0)s F (0,1,t)-(0)sF(1,1,t)

- (1-0)(1-t)F(0,sf0) - (0)(1-t)F(1,s,0) - (1-0)tF(0,s,O-(0)tF(1,s,1)

+ (1-0)d-s)d-t)F(0,0,0) + (1-0) (1-s)tF(0,0,1) + (l-0)s(1-t)F(0,1,0)

+ '(1-0)stF(0 ,1,1) + ( 0 ) d - s ) ( 1 - t ) F ( 1 ,0,0) + (0) (1-s)tF(1,0,1) ] ^

+ (0)s(1-t)F(1,1,0) + (0)stF(1,1,1)

= F(0,s,t) .

The intermediate operator or Coons' "hypersurface" equation is 

(p ip2 + P2P3 + P3P 1)F(r,s,t) = (P1P2 + P2P3 + P3 P 1 - 2 P 1P2P3 )F(r,s,t). 

And written out it is 

(p ip2 + P2P3 + P3P 1)F(r,s,t) = '

(1-s)(1—t)F(r,0,0) + s(1-t)F(r,1,0) + (1-s)tF(r,0,1) + stF(r,1,1)

+ (1-r)(1-s)F(0,0,t) + r(1-s)F(1,0,t) + (1-r)sF(0,1,t) + rsF(1,1,t)

+ (1-r)(1-t)F(0,s,0) + r(1-t)F(1,s,0) + (1-r)tF(0,s,1) + rtF(1,s,1) 

-2((1-r)(1-s)(1-t)F(0,0,0) +(1-r)(1-s)tF(0,0,1) + (1-r)s(1-t)F(0,1,0)

+ (1-r)stF(0,1 ,1) + r(1-s)(1-t)F(1,0,0) + r(1-s)tF(1,0,1)

+ rs(1-t)F(1,1 ,0) + rstF(1,1,1) ),
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As before we can substitute values of r,s and t into the above



ex p ressio n  t o  s e e  -whst I t  irrterpolaxes- 

Ezsanple fsor earn er F (1 90;,1)

i?n? 2  ■+ J2 ? =. *  =

td -C );d -l}F ;d ,I> 90.) -t- {(D,Ml-1i)F{1,1a:D.) +  d -D )  (1 )F( 1 ,0 ,1 ) 

-+ W W F i l 91 ,1 ) ■+ .(1-1 ) :(1-0)F (D„D„1.) ■+ :(1 ) (1—0)F( 1 ,0 ,1 )

•+ H-1I.MD)F(Ds1 ,1 )  -t- .(1):(0)F(1,1.,1) ■+ (1 -1 ) (1-1 )F(0 ,0 ,0)

•+ ( d M l- 1 ) F ( l ,0 ,0 )  ■+ (1-1 ):(1)F(0.,C,1.) *  (1 )d .)F (1  ,0 ,1 )

- 2 t l  1 -1 ) (1 - 0 ) (1 -1 )F (0 ,0 ,0 )  + (d -1 )d - :D )d )F  (.0 ,0 ,1 )

+ lH-1'3 :(D.) (1-1.)F'(t),1.,D) •+ (1-1.) (0) (1 .)F(Dj, 1 ;,1 )

*  id );(i -D ){1-1 ) f d , o , d:) ■+ •d ) .d -D )d ;)F d ,D ,i .)

■+ ;d ) ,(0 .)d - l)F ;d * 1 ,0 )  -t- .(I 'K D M D F d ^ l.,!))

= F i1 ,D s1] *  F-d .T ^I-) ■+ F(1,,D.,1) -  2F (190 ,1 )

= F d ^ V )

Example  f o r  c u r v e  F { r 30 91 )

•+ ?2 P3 ■+ P ^ ^ F t ^ D , ! )  =

•d -D ),(1-1)F (r ,D ,D ) + (D )d -1 )F ,(r ,1 ,D ) ■+ (1 -Q )(1 )F (r ,0 ,1 )  

-+ {0M D F  -(1,1,13 + <1-:KHl-D)F(D9D ,t) ■+ C r)(1 -D )F (1 ,0 ,1 )

+  1 1 - r . )  ( .0 )F -(0 ,1 ,1 ) ■+ < 1 )(0 )F {1 ,1 ( 1) + i d - r ) (1 -1  )F(  0 ,0 ,0 )

+ (r) (1-1 )? (1 ,C ,0 ) ■+ ■d-r:):d.)F(03D,i:) + ;(r)(1 )F (1 ,0 ,1 )

-2L .(1 -r )  (1 -0 ) (1 -1 ) F (0 ,0 ,  D) -4- '.(1 -r ) (1 -0) (1 )F (0 ,0 ,1 )

-+ .d -r )  (0) d - r ) F ( 0 ,1 ,0 )  ■+ .(1-r) (.0) (1 )F (0 ,1 ,1 ) •

+ . ( r ) d - D ) d ~ T ) F d ,0 ,0 )  -t- ;(r) (1 -0 ) (1 ).F(1,0 ,1 )

* lr M O H l-1 )F i1 ,1 ,0 )  + I r ') .(0 ) .d )F d ,1 ,1 ) )

= F .(r ,0 ,1 )  + (1 -r )F (0 ,0 ,1 )  + rF (1 ,0 ,- i)  ■* (1 -r )F (0 ,0 ,1 )

+ rF ( 1 ,0 ,1 )  -  2( <1-r')F-.(0,0,1) + r F d , 0 ,1 )  )

= F i r ,  -0,3)



(P 1P2 + P2P3 + P3Pi ) F ( r , s , 0 )  =

( 1 - s ) ( 1 - 0 ) F ( r , 0 , 0 )  + s ( 1 - 0 ) F ( r , 1 , 0 )  +■ ( 1 - s ) ( O ) F ( r , 0 , 1 )

+ s ( 0 ) F ( r , 1 , 1 )  + ( 1 - r ) ( 1 - s ) F { 0 , 0 , 0 )  + r ( 1 - s ) F ( 1 , 0 , 0 )

+ ( l - r ) s F ( 0 , 1 ,0 )  + r s F ( 1 , 1 , 0 )  + ( 1 - r ) ( 1 - 0 ) F ( 0 , s ,0 )

+ r ( 1 - 0 ) F ( 1 , s , 0 )  + ( 1 - r ) ( 0 ) F ( 0 , s ,  1) + r ( 0 ) F ( 1 , s , 1 )

-  2(  ( 1 - r ) ( l - s ) ( l - 0 ) F ( 0 , 0 , 0 )  + ( 1 - r ) ( 1 - s ) ( 0 ) F ( 0 , 0 , 1 )

+ ( 1 - r ) s ( 1 - 0 ) F ( 0 , 1 . 0 )  + ( 1 - r ) s ( 0 ) F ( 0 , 1 , 1 ) 0 ) F ( 0 , 0 , 1 )

+ r ( 1 - s ) ( 1 - 0 ) F ( 1 , 0 , 0 )  + r ( 1 - s ) ( 0 ) F ( 1 , 0 , 1 )

+ r s ( 1 - 0 ) F ( 1 , 0 , 1 )  + r s ( 0 ) F ( 1,1 ,1)

= ( 1 - s ) F ( r , 0 , 0 )  + s F ( r , 1 , 0 )  + ( 1 - r ) ( 1 - s ) F ( 0 , 0 , 0 )

+ r ( 1 - s ) F ( !  , 0 , 0 )  + ( 1 - r ) s F ( 0 , 1 , 0 )  + r s F ( 1 , 1 , 0 )

+ ( l - r ) F ( 0 , s , 0 )  + r F ( 1 , s , 0) -  2( ( 1 - r ) ( 1 - s ) F ( 0 , 0 , 0 )

+ ( 1 - r ) s F ( 0 , 1 ,0 )  + r ( 1 - s ) F ( 1 , 0 , 0 )  + r s F ( 1 , 1 , 0 )  )

= ( 1 - s ) F ( r , 0 , 0 )  + s F ( r , 1 , 0 )  + ( 1 - r ) F ( 0 , s ,0 )  + r F ( 1 , s , 0 )

-  ( 1 - r ) ( 1 - s ) F ( 0 , 0 , 0 )  -  ( 1 - r ) s F ( 0 , 1 , 0 )  -  r ( l - s ) F ( l , 0 , 0 )  - r s F ( 1 , 1 , 0 )  

We see t h a t  i t  has i n t e r p o l a t e d  th e  c o r n e r  and c u rv e s  b u t  n o t  

s u r f a c e s -  The s u r f a c e  e q u a t i o n  produced i s  e q u i v a l e n t  t o  ( 3 - 1 3 )  

t h e  f a c e  o f  t h e  l o g i c a l  cube i n  q u e s t i o n .

Example for  surface F ( r , s , 0 )
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