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Abstract. The goal of efficient and robust error control, through local mesh adaptation 
in the computational solution of partial differential equations, is predicated on the 
ability to identify in an a posteriori way those localized regions whose refinement will 
lead to the most significant reductions in the error. The development of a posteriori error 
estimation schemes and of a refinement infrastructure both facilitate this goal, however 
they are incomplete in the sense that they do not provide an answer as to where the 
maximal impact of refinement may be gained or what type of refinement -  elemental 
partitioning (h-refinement) or polynomial enrichment (p-refinement) -  will best lead 
to that gain. In essence, one also requires knowledge of the sensitivity of the error to 
both the location and the type of refinement. In this communication we propose the 
use of adjoint-based sensitivity analysis to discriminate both where and how to refine. 
We present both an adjoint-based and an algebraic perspective on defining and using 
sensitivities, and then demonstrate through several one-dimensional model problem 
experiments the feasibility and benefits of our approach.
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1  I n t r o d u c t i o n

The use of adaptivity is widely accepted as an essential component in the efficient and 
reliable implementation of finite element (FE) algorithms for the solution of a wide range 
of partial differential equations (PDEs) [4,12]. In particular, for problems whose solu­
tion exhibits steep fronts or sharp layers (e.g. boundary layers), so-called //-refinement 
is usually an appropriate strategy for producing a mesh size that is of the same order as 
the feature in question [3,9,10]. Conversely, once the mesh size is suitable, polynomial 
enrichment (also known as p-refinement) is generally the most accurate and cost effec­
tive form of refinement [1,11]. In the last three decades, as practitioners have sought to
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develop algorithms that both incorporate and drive these adaptive procedures fully auto­
matically, there has been an enormous research focus on the development of reliable and 
accurate a posteriori error estimates [2-5]. These estimates typically provide information 
on the total error of a computed solution, the distribution of this error throughout the 
domain and/or information on the error in some derived solution-dependent quantity. 
Traditionally, this information has been used both to decide when a computed solution 
is of sufficient accuracy for no further calculations to be required and, in the case where 
the accuracy is deemed to be insufficient, to decide how to adapt the FE trial space. Typ­
ically, the approach used is to refine in those regions where the estimated error is the 
greatest: either by refining those elements whose error is within a certain percentage of 
the total [3], or refining the elements with the greatest error until the cumulative total is 
within a given percentage of the estimated error [12]. The criteria for deciding whether 
this refinement should be in h or p is rather more varied but is typically based upon some 
form of estimate as to which is likely to be the most beneficial [1 , 8].

This short communication introduces a new approach for controlling local adaptivity 
within an hp-finite element code. The goal is to explore whether it is possible to use more 
information from the estimated error for deciding both where to adapt and/or how to 
adapt. The approach is based upon the assumption that we have a reliable a posteriori 
error estimate (E say), that is easily computable, and then to attempt to compute the sen­
sitivity of this estimate to the addition of further p- or h- degrees of freedom. A standard 
adjoint approach is used to compute these sensitivities efficiently and it is demonstrated 
that an adaptive strategy based upon these values can have advantages over other, more 
traditional, approaches.

2  N o t a t i o n  a n d  F o r m u l a t i o n

Consider as our model problem a linear second-order two-point boundary value problem 
(BVP) of the form:

^ ( . ( ^ )  +  » W ^ CW = 0  (2 .1 ,

subject to Dirichlet boundary conditions on the domain (xq,Xn), where a(x) > 0. Sup­
pose the domain is divided into N  intervals, Xq <  X\  <  ... <  X jv -i <  x ^ ,  and let {(f>q , . . . ,< ^ }  
be the usual basis (of local hat functions) for the space of continuous piecewise polyno­
mials of degree one on this mesh. For simplicity assume that u ( x q )  — u(x^) — 0, so the 
corresponding piecewise linear FE trial function takes the form:

N - l

m1( * ) =  £ “ ; $ ( * ) '  (2 -2)
(=1

where the coefficients u\ are prescribed by the usual FE weighted residual equations:

fX]y (  d(f}:
R) =  ( ~ aix) Ax Ax +Hx)-fa<p)+c(x)<p} J d x ^ o  for; =  l,...,AT-l. (2.3)
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Now consider the possibility of adapting a computed solution of this form by increas­
ing the polynomial degree locally (^-refinement) or by bisecting some of the elements (h- 
refinement). On element e, for e=l,.. . ,N,  let $ ( x )  be a bubble function of degree 2 and let 
ipe(x) be the piecewise linear hat function associated with bisecting element e (i.e., ipe(x) 
is equal to 1.0 at the midpoint of element e and to 0.0 at the end points, and is zero on 
every other element). Note that it is possible to write (2.2) as:

N - l  N

U1(x)= Y j U j(pj(x) +  J2 { Û (Pf(X) + ViXPi(X)) (2'4)
i=l i'=l

provided that we impose 0 =  u\ = ... =  =  v\ = ... =  v If we now make the definitions 
u G =  (u\,.../ulj_1)T and s G Jf2N=  (m2,...,m^,i;i,...,i;jv)T/ then equations (2.3) may be 
expressed as

R(u,s)=Q,  (2.5)

where s =0. The system (2 .5) is the same as (2 .3) except u 1 is now of the form (2 .4) and the 
test functions are <pj and ipj for/= l,...,N , as well as <pj for j= l , . . . ,N—1. Having computed 
the finite element solution (i.e. solved (2 .3)) it is then possible to compute an a posteriori 
error estimate E =  E(u,s) (again, this is computed for the value s =  0). This error estimate 
will typically take the form of a single number (see for example [2 ,4 ,5 ]) .

Suppose that we can evaluate Then it would be possible to assess to which of these 
additional degrees of freedom the error is most sensitive, and to use this information to 
decide both where to refine and how to refine. Of course, the practicality of this approach 
is dependent upon being able to compute both reliably and efficiently. Fortunately this 
may be achieved through the use of adjoint-based methods [6,7].

3  S e n s i t i v i t y  v i a  t h e  a d j o i n t  s o l u t i o n

Suppose we have successfully computed an FE solution and a corresponding error esti­
mate. That is, we have solved R{u,s =  0) =  0 and then computed E(m,s =  0). Note that

d E ^ d E  3m 3E

However, we are only interested in calculating E when the FE equations are satisfied, 
which means that R(u,s) =  0 for all s, and so

dR dR du dR n
{3 2 )

From (3.2) it follows that, for any ¥  G 9t2N,

| S  ^  SR 0

du ds ds
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In particular, we may choose Y such that it satisfies

fTdR 9E
(3 4 )

so that combining (3.1), (3.3) and (3.4) yields:

dE mTdR dE rN
—  =  ^ Y T^  +  — . 3.5ds ds 9s

Note that using (3.5), the derivative may be computed by: evaluating § |, evaluat­
ing | | ,  solving (3.4), evaluating |= and evaluating | | .  Significantly, there is no need to
compute |=. Furthermore |= , the Jacobian of the FE equations, will already have been 
computed as part of the solution process and the other expressions are straightforward 
to evaluate: where and depending upon the precise choice of error estimate, E.

It is also possible to consider the above argument from a more algebraic perspective 
for the finite element equations discussed in the previous section. For example, the sys­
tem (2.3) may be expressed in matrix from as

Kn ul = / 1, (3.6)

where u} is the vector of unknown coefficients. Similarly, the system (2.5) may be written 
in matrix form as

r ^ i i  i  r  „  i  f i  ’
(3.7)

where one may view the solution of the smaller problem (3.6) as being equivalent to 
solving the larger problem (3.7) but with the vector s constrained to be 0. That is, when s=  
0 in (3.7), u =  u}. This view may be extended by thinking of u in (3.7) as depending upon 
the prescribed value of s. That is, u =  u(s), where m(0) =  u}. The goal of the sensitivity 
analysis is therefore to calculate the sensitivity of m(s) in the region of s =  0 (this in turn 
allows the sensitivity of E to be obtained via (3.1)).

Note that in (3.1) the terms | |  and | |  are all assumed to be row vectors: re-writing
(3.1) with each of these terms assumed to be column vectors gives

' Kn K12 ‘ u 7 1 '
_ K21 K22 _ s J -  .

(3.8)

Observing that, from (3.7), u (s) =  (Kn ) ( f 1 — K12s), one can compute the derivative of u 
with respect to s and so it follows from (3.8) that,

^  =  - ( K ' 2)T(Kn y Tl ^  +  ̂ .  (3.9)
ds du ds
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This last expression is equivalent to (3.5) in the case where R is the discretization of a 
linear elliptic operator. Furthermore, in the special case where the PDE is self-adjoint, so 
the stiffness matrix is symmetric, (3.9) simplifies further to

where f(x)  and the Dirichlet boundary conditions at x — — 1 and x — 1 are chosen so as 
to permit the exact solution u(x) — (cosinnx) ) / (l +  25x2). In the calculations described 
here, we take n — 4 and the sensitivities of the exact error are computed with respect to 
both /z-refinement and p-refinement on each element. It is also important to remark that 
all calculations are undertaken using high degree quadrature to ensure that quadrature 
errors are not a factor in any of these results. In what follows, we compare h-refinement, 
through adding a linear bubble function, versus p-refinement, through adding a polyno­
mial (quadratic) bubble function (ipe and $  respectively) as previously described.

Initially we computed a piecewise linear solution on ten equally-spaced elements. 
The resulting L2 error, along with the errors and sensitivities on each element, are shown 
in Table l(top), where Ee is L\ error on each element. The table shows that the largest L\ 
error is found on the centre two elements, and therefore the conventional adaptive ap­
proach would be to refine these elements first. On the other hand, the sensitivities suggest 
that most benefit will be gained by refining elements 3 and 8 (with slightly more impact 
resulting from p-refinement). Table 1 (bottom) shows the errors actually observed in the 
computed solutions when different refinement strategies are compared. It is apparent 
from this table that refining the elements with the largest error is not the best short-term 
strategy in this case and that, as predicted by the sensitivity calculations, it is better to 
refine elements 3 and 8. Furthermore, also as predicted by the sensitivity calculations, it 
is better to employ p-refinement in this case.

A further set of computational tests were undertaken for this problem, this time to 
illustrate performance on non-equally-spaced grids. Initially (4.1) was solved using five 
equally-spaced piecewise linear elements. Table 2 shows the resulting errors and sen­
sitivities. This table clearly shows the need to refine the middle element first and, on 
this occasion, it is predicted by the sensitivities that h-refinement will be superior to p- 
refinement. This is indeed confirmed by experiment, where h-refinement of the centre 
element leads to a new total L2 error of 0.17167 whereas p-refinement yields a total L2 
error of 0.21070. We may now repeat the error estimation and sensitivity calculations for 
the solution on the new mesh (consisting of six piecewise linear elements of two different

(3.10)

4  S o m e  C o r r o b o r a t i n g  N u m e r i c a l  T e s t s

The first test problem that we consider in this section takes the form:

(4.1)
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Table 1: (Top) For a piecewise linear solution of (4.1) using ten elements the global L2 error, E, is 0.089354, 
with contributions from each element as shown below, followed by the entry of corresponding to  h- and 
p-refinement respectively; (Bottom) Actual total L2 errors obtained following different refinement strategies .

E le m en ts 1 a n d  10 2 a n d  9 3 a n d  8 4 a n d  7 5 a n d  6
E rror, £,.
h -S e n sitiv ity
p -S e n sitiv ity

3.835 x 1 0 ^ 5 
-9 .8 3 3  xHT4 
-9 .9 0 5  xHT4

2.854 x 1 0 ^ 4 
2.734 x 1 0 ^ 3 
2.758 x 1 0 ^ 3

8.935 x 1 0 ^4 
—4.790 xHT3 
-4.841 Xl0“3

8.657 x 1 0 ^4 
4.210 x 1 0 ^ 3 
4.283 x 1 0 ^ 3

1.909 X 10“3
1.934 xlO^3 
1.824 xlO^3

R e fin em e n t sch em e Total L2 e rro r R e fin em e n t sch em e T otal L2  e r ro r
h -re f  (e le m en ts  3 a n d  8) 
h -re f  (e le m en ts  4 a n d  7) 
h -re f  (e le m en ts  5 a n d  6)

0.079548
0.081982
0.087786

p -re f  (e le m en ts  3 a n d  8) 
p -re f  (e le m en ts  4 a n d  7) 
p -re f  (e le m en ts  5 a n d  6)

0.078911
0.081293
0.087990

Table 2: For a piecewise linear solution of (4.1) using five elements the total L2 error, E, is 0.55404, with 
contributions from each element as shown below, followed by the entry of corresponding to  h- and p- 
refinement respectively .

E le m en t 1 2 3 4 5
E rror, £,,
h -S e n sitiv ity
p -S e n sitiv ity

1.611 x 1 0 ^3 
8.417 x 1 0 ^3 
8.467 x 1 0 ^3

1.122 x 1 0 ^ 2 
—2.251 x 10 ■ 
—2.208 x H T 2

2.813 X10“1 
-1.217 Xl0_1
—1.187 x lO ^ 1

1.122 x 1 0 ^ 2 
—2.251 x 10 2 
—2.208 x H T 2

1.611 x 1 0 ^ 3 
8.417 x 1 0 ^ 3 
8.467 x 1 0 ^ 3

sizes). The results of this are shown in Table 3. This shows that the error is now greatest 
in elements 2 and 5, and the sensitivity calculations imply that these are also the best el­
ements to refine. Furthermore, it is predicted that h-refinement will again be superior to 
p-refinement in this case. Additional numerical tests verify all of these conclusions: for 
example, the total Lx error after h-refinement of elements 2 and 5 is 0.10276, as opposed 
to 0.10630 using p-refinement on these elements.

Finally in this section we present illustrative results for the solution of a second test 
problem, namely:

_ 1 < x < 1 '  (42 ) 

where f (x)  and the Dirichlet boundary conditions are chosen so that u(x) =  sin(27ix). 
We again see that the sensitivity calculations provide excellent predictions as to how 
and where to refine. For example, when five equally-spaced linear elements are used, 
the computed total Lx error is 0.50505, and Table 4 shows the errors and sensitivities for 
each element. The computed errors for different refinements of the mesh rank just as 
predicted by the sensitivities in Table 4. For example, p-refinement of element 1 leads to 
the smallest total Lx error (0.40076), followed by h-refinement of element 1 (0.40559), then 
p-refinement of element 5 (0.40943), h-refinement of element 5 (0.41588), etc.
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Table 3: For a piecewise linear solution of (4.1) using six (unequally-spaced) elements the total L2 error, E, is1 ̂ 2
0.17617, with contributions from each element as shown below, followed by the entry of corresponding to 
h- and p-refinement respectively .

E lem en ts 1 a n d  6 2 a n d  5 3 a n d  4
E rror, Ee
h -S e n sitiv ity
p -S e n sitiv ity

1.6 x K T 3
8.4 x l ( T 3
8.5 x l ( T 3

1.12 X 10“ 2 
- 2 .2 5  X 10 2
—2.21 x  1 0 ^ 2

1.9 x  1CT3
1.9 x  1CT3 
1 .8 x lC T 3

Table 4: For a piecewise linear solution of (4.2) using five elements the total L2 error, E, is 0.50505, with1 ̂ 2
contributions from each element as shown below, followed by the entry of corresponding to  h- and p- 
refinement respectively .

E le m en t 1 2 3 4 5
E rror, Ee
h -S e n sitiv ity
p -S e n sitiv ity

1.012 x  10_1
- 7 . 2 4 x l ( T 2 
—7.32 X 10“ 2

2.74 x l ( T 2 
3.83 x l ( T 2 
3.85 x l ( T 2

2 .8 x lC T 3 
—1.9 x  i c r 3 
- 2 .0 x 1 0  3

4.27 x  1CP2 
—4.41 x  1 0 ^ 2 

- 4 .4 6 8  x  1 (T 2

8.09 x  1 0 ^2 
6.58 x lO ^ 2 

8 .467 x lO ^ 3

A  s ig n i f ic a n t  n u m b e r  o f  a d d i t i o n a l  c o m p u ta t io n a l  t e s t s  h a v e  b e e n  u n d e r t a k e n  o n  
th e s e  a n d  o th e r  e q u a t io n s .  I n  e a c h  c a s e  th e y  d e m o n s t r a t e  t h a t  t h e  s e n s i t iv i ty  c a lc u la ­
t io n s  g iv e  r e l ia b le  p r e d ic t io n s  a s  to  h o w  a n d  w h e r e  to  re f in e .  I n d e e d ,  t e s t s  h a v e  b e e n  c a r ­
r i e d  o u t  w i t h  p - r e f i n e m e n t  u p  to  d e g r e e  te n ,  a n d  n u m e r o u s  e x a m p le s  h a v e  b e e n  f o u n d  
w h e r e  r e f in in g  th e  e l e m e n ts  w i t h  th e  l a r g e s t  e r r o r  is  le s s  e f f e c tiv e  t h a n  r e f in in g  d i f f e r e n t  
e l e m e n ts ,  f o r  w h ic h  th e  s e n s i t iv i ty  is  g r e a te r .

5  D i s c u s s i o n

I n  th i s  p a p e r  w e  s u g g e s t  t h a t  u s i n g  th e  s e n s i t iv i ty  o f  a n  e r r o r  e s t im a te ,  w i t h  r e s p e c t  to  
a d d i t i o n a l  F E  d e g r e e s  o f  f r e e d o m ,  m a y  h a v e  p o te n t i a l  v a l u e  in  i n f o r m in g  th e  a d a p t iv e  
s t r a t e g y  u s e d  w i t h i n  a n  h p - r e f i n e m e n t  a lg o r i th m .  I n  p a r t i c u la r ,  w e  n o te  t h a t  s im p ly  r e ­
f in in g  w h e r e  t h e  e r r o r  is  g r e a t e s t  is  n o t  a lw a y s  t h e  o p t im a l  s t r a te g y ,  a n d  t h a t  a s s e s s in g  
w h e r e  t h e  e s t im a te d  e r r o r  is  m o s t  s e n s i t iv e  to  th e  a d d i t i o n  o f  d e g r e e s  o f  f r e e d o m  c a n  
p r o v i d e  a n  e f f e c t iv e  a l t e r n a t iv e  c r i t e r io n  f o r  d e c id in g  w h e r e  to  r e f in e .  F u r th e r m o r e ,  w e  
h a v e  d e m o n s t r a t e d  t h a t  th is  a p p r o a c h  m a y  a l s o  b e  u s e d  s u c c e s s f u l ly  to  d e c id e  w h ic h  o f  
tw o  d i f f e r e n t  r e f in e m e n t  p r o c e d u r e s  ( h - r e f in e m e n t  o r  p - r e f in e m e n t )  s h o u l d  b e  e m p lo y e d .  
F u tu r e  w o r k  w i l l  c o n s id e r  th e s e  o b s e r v a t io n s  w i t h i n  th e  c o n te x t  o f  a n  o v e r a l l  r e f in e m e n t  
a lg o r i th m .  F o r  e x a m p le ,  r a t h e r  t h a n  a d a p t i n g  a  p e r c e n ta g e  o f  t h e  e l e m e n ts  w i t h  t h e  g r e a t ­
e s t  e r r o r s  o n e  m ig h t  a d a p t  a  p e r c e n ta g e  o f  t h e  e l e m e n ts  w i t h  th e  g r e a t e s t  s e n s i t iv i t ie s .  I t  
w i l l  a l s o  b e  n e c e s s a r y  to  c o n s id e r  th e  u s e  o f  a  w id e  v a r i e ty  o f  a posteriori e r r o r  e s t im a te s :
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preliminary work using a simple estimate from [5] is very encouraging.
Finally we make three observations on sensitivity values that are computed through­

out this work. Firstly, the sign of is not important (only its magnitude). Secondly, the 
basis that is used for the sensitivity calculations need not be the same as that is used for 
subsequent FE calculations after refinement. For example, when h-refinement occurs we 
always use the usual basis functions with support over just two elements rather than a 
hierarchical basis. Finally, and perhaps most importantly, it is essential to appreciate that 
the values of the entries in j=r depend upon the scaling of the basis functions that are 
used. In order to be able to make a comparison between h-refinement and p-refinement, 
for example, we scaled the basis functions such that on each element e: 11 112 ~  II 112 • 
Note however that these values must be different for different choices of e when the ele­
ment sizes are different (with \\tpe\\2 proportional to the length of e).
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