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First-principles study of crystalline silica
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We have investigated the structural properties of five different crystalline forms of S i02 using a first- 
principles approach. An ultrasoft Vanderbilt pseudopotential is generated for oxygen which enables us 
to use a small plane-wave cutoff of 25 Ry. The relative stability, the equation of state, and pressure- 
dependent structural parameters of all five polymorphs have been calculated and found to be in very 
good agreement with available experimental results.

I. INTRODUCTION

The com plex structure and the presence o f  oxygen 
atoms conspire to make a first-principles theoretical 
study o f S i0 2 especially difficult. Recently, with the help 
o f newly developed fast iterative algorithms for solving 
the one-electron Schrodinger equation, several structural 
forms o f  crystalline S i0 2 have been successfully studied 
using pseudopotential density-functional plane-wave 
m ethods.1-3 However, the use o f conventional norm- 
conserving oxygen pseudopotentials4’5 in these studies re­
quires a relatively large plane-wave cutoff, rendering this 
approach problematic for more studies on com plex sys­
tems involving defects, surfaces, and disorder. A  more 
efficient approach has recently been developed which 
combines the use o f an ultrasoft separable pseudopoten­
tial by Vanderbilt6 with a Car-Parrinello (CP) -type algo­
rithm .7 This m ethod has successfully been applied to 
study applications as diverse as phase transitions o f  ice 
under high pressure,8 the structure o f liquid copper,9 and 
ferroelectricity in barium titanate.10 In this paper we 
present an application o f  this method to study five 
different structural forms o f S i0 2 (a , /J-quartz, a,/3- 
cristobalite, and stishovite). A n ultrasoft pseudopotential 
has been generated for oxygen to correctly predict the en­
ergetics and the structural properties for all five forms of 
silica with a plane-wave cutoff o f only 25 Ry.

S i0 2 has been one o f  the most extensively studied ma­
terials due to its application potential in ceramic and 
glass industries as well as in optical fibers, microelectron­
ics, and catalysis. On the other hand, it is also one o f  the 
most difficult materials to study. The first difficulty arises 
from its structural com plexity. Silica can assume many 
different structural form s.11,12 Am ong them  the most 
com m on ones are quartz, cristobalite, coesite, and stisho­
vite. The com m on prominent feature in m ost o f these 
structures are com er-sharing tetrahedral units o f silicon  
with four nearest-neighbor oxygen atoms. One exception  
is stishovite in which silicon is sixfold coordinated with 
oxygens arranged in a distorted octahedron. These struc­
tures also have subtle differences in energy since they 
differ from each other mainly in the way in which the

tetrahedral units are connected. The second difficulty is 
due to the presence o f  oxygen atoms. It is well known 
that the first row nonmetal elements (e.g., oxygen) and 
the first row transition-metal elements are problematic 
species in the conventional norm-conserving pseudopo­
tential scheme. D ue to the lack o f corresponding core 
states for cancellation, the tightly bound 2p  or 3d  valence 
wave functions o f these elem ents are sharply peaked. As 
a result, a relatively hard pseudopotential has to be gen­
erated to describe them and a relatively large number o f  
plane-wave basis functions are required in solid-state cal­
culations. Because o f  these difficulties only a few crystal­
line structures o f  S i0 2 have been investigated with first- 
principles techniques, although the complex bonding sit­
uation in silica with a mixture o f  ionic and covalent in­
teractions speaks to the necessity for a treatment on an 
ab initio  microscopic level.

The m otivation o f  the present work is to apply one o f  
the most efficient first-principles techniques to date to 
systematically study the various systems o f  crystalline 
S i0 2. O f the five systems we study, we note that certain 
aspects o f most structures have previously been studied 
by ab initio  pseudopotential methods. For example, A l­
lan and Teter1 determined the structural parameters at 
ambient conditions for a-quartz, a-cristobalite, and 
stishovite. Chelikowsky and co-workers2,3 investigated  
the structural properties and their pressure dependence 
for a-quartz and stishovite. A lso, we have recently 
demonstrated a plausible structural model for /3- 
cristobalite.13 In the present study, we carried out an ex­
tensive study to calculate the ground-state energetics and 
structural parameters at ambient conditions for all five 
systems. We also calculated the equations o f state and 
the pressure dependence o f  structural parameters for 
three low-temperature phases (a-quartz, a-cristobalite, 
and stishovite). We believe the current work will be o f  in­
terest for several reasons. First, we treat a larger range of 
silica structures than has been treated in any previous 
theory. The fact that we use a uniform theoretical treat­
ment facilitates system atic comparisons and 
identifications o f  trends between these five crystal struc­
tures. Second, no previous theory on the ab initio  level 
has appeared for structural determination o f /3-quartz.
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Third, we give som e additional details o f  our calculation  
on j8-cristobalite which did not appear in our previous 
published paper.13 Finally, we demonstrate that the use 
o f ultrasoft pseudopotentials makes it possible to obtain 
accurate results, in good agreement with experiment and 
previous theories, using a plane-wave cutoff o f only 25 
Ry. Since the best that has previously been achieved  
with norm-conserving oxygen pseudopotentials is 40 R y ,1 
the present m ethod shows great promise o f  future appli­
cations.

The article is organized as follows. In Sec. II, we will 
give a brief review o f the theoretical method and the gen­
eration o f  silicon and oxygen pseudopotentials. The re­
sults are presented and discussed in Sec. III. Section IV 
presents a summary and conclusion.

II. THEORETICAL METHOD

Our computational m ethod can be described as a com ­
bination o f  the ultrasoft pseudopotential schem e6 with 
the preconditioned conjugate gradient algorithm .14-15 
M ost previous ab initio  studies on silica have been done 
with the conventional norm-conserving pseudopotential 
scheme. A s shown by Hamann, Schliiter, and C hiang,4 
the merit o f  this scheme is that the norm-conserving con­
dition ensures that the energy derivative o f  the all­
electron (AE) and pseudo-wave-function logarithmic 
derivatives are identical at the construction energy so 
that the pseudoatom can correctly reflect the scattering 
properties o f the A E  atom  in the energy range o f valence 
electrons. On the other hand, in the case o f  a nodeless 
oxygen 2p  valence wave function the pseudo-wave- 
function has to be restricted to satisfy the norm- 
conserving condition, which results in a hard pseudopo­
tential. Many attempts have been made to improve the 
softness and smoothness o f  the conventional norm- 
conserving pseudopotentials,5'16’17 but the norm- 
conserving condition still im poses a severe limit on the 
improvement.

An ultrasoft pseudopotential scheme has recently been 
introduced by Vanderbilt.6 In this scheme, the correct 
scattering properties are obtained by m atching the energy 
derivative o f  pseudo-wave-function logarithmic deriva­
tive to the A E one at the construction energy without im­
posing the norm-conservation constraint. Thus, much 
more flexibility is allowed, and the pseudo wave function  
can be made as sm ooth as possible, leading to an “ul­
trasoft” potential. In practice, we have adopted a variant 
o f the optim ization scheme o f Rappe et a l. 17 to construct 
a pseudo wave function that converges at a target plane- 
wave cutoff. D ue to the relaxation o f  norm conservation, 
a localized core-region charge augmentation function  
Q ij(r) is introduced.18 As a result, the dual condition 
( £  dens _  4£  wf) j,etween tj,e energy cutoff o f  charge densi­
ty (£ ’cdens) and wave function (£ ’cwf) is no longer 
guaranteed, since the augmentation function usually re­
quires higher cutoff. The pseudization o f  Qy(r) will 
reduce the charge cutoff £ ^ ens, but, in som e cases,9 a 
separate high cutoff is still needed. In many other cases, 
such as for silicon and oxygen as studied here, the dual 
condition can be restored by optim ally pseudizing Qij(r).

W e have used an optim ization scheme similar to that 
used by Rappe e t a l .17 for the wave function combined  
with the refinement o f  use o f  L-dependent cutoff rinner. 18 
Besides the ultrasoftness, the Vanderbilt pseudopotential 
also has the advantage o f better transferability. The 
scattering properties are correctly reflected over a wide 
energy range because the A E  and pseudoatom logarith­
mic derivatives are matched by construction at more 
than one energy for each angular m omentum channel. 
This ingredient also makes it possible to choose valence 
states with different principle quantum numbers, n, but 
same angular m omentum quantum number, /, which is 
incompatible with the conventional schem es.19

W e have used neutral 2 s22/>4 as the reference state to 
construct the oxygen potential. Both s and p  channels 
were treated as nonlocal com ponents for the pseudopo­
tential and two construction energies (s and p  eigenval­
ues) were used for each channel to improve the transfera­
bility. A s discussed in the case o f  the oxygen dim er,6 the 
convergence o f  the pseudopotential can be improved by 
increasing the cutoff radius rc. However, for rc too large, 
the transferability may suffer when the interatomic spac­
ing is small. A lso, increasing rc may increase the hard­
ness o f the charge augmentation function Q jj(r) which  
would invalidate the dual condition (E ^eDS= ^ E ^ {) when  
rc is too large. In the silica system  the nearest-neighbor 
distance between Si and O is about 3.0 a.u. We used a 
cutoff radius rc o f 1.3 a.u. for both s and p  valence wave 
functions and 1.0 a.u. for the local potential. The L  
dependent rinner for pseudizing Q jj(r) are 0.7, 0.8, and 0.9 
a.u. for L  =  0 ,1 ,  and 2, respectively.

The silicon pseudopotential was generated from the 
ionized 3 s23/>1 reference configuration. N onlocal projec­
tors in s and p  channels were introduced with one con­
struction energy for each channel. The cutoff radius for 
both s and p  valence functions and for the local potential 
were taken to be 1.4 and 1.0 a.u., respectively. The cutoff 
t inner was chosen to be 0.8 (L  = 0 ) ,  0.9 (L  = 1 ) ,  and 1.0 
a.u. (L  =  2). This potential gives rise to a lattice constant 
o f 10.16 a.u. for bulk diamond silicon which is about
0.9% too small when compared to the experimental 
value.

In the solid-state calculation o f  all five structures, the 
total-energy and force calculations have been carried out 
within the local density approximation (LDA). The 
Ceperley-Alder20 form o f the exchange correlation poten­
tial was adopted. The electronic solution was obtained 
via a preconditioned conjugate gradient minimization 
schem e14,15 and the optimal structural parameters for 
each structure were determined. We have found that a 
plane-wave cutoff o f 20 Ry is sufficient for the conver­
gence o f lattice constants and internal coordinates o f  all 
structures, but we opted to use a larger cutoff o f  25 R y to  
ensure the accuracy in energetics for comparing the small 
energy differences among the different structures and in 
the elastic properties. The total energy changes by less 
than 0.003 eV /atom  on increasing the cutoff from 25 to 
40 R y in all structures. Detailed information on unit cell, 
crystal symmetry, and fc-point sampling for each indivi­
dual structure will be given in the next section. W e have 
tried to use equivalent fc-point sampling as much as possi­
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ble for different structures to make parallel comparison in 
energies, in addition to making sure o f the /c-point sam­
pling convergence. In m ost cases, /c-point sampling has 
converged at about 0.002 eV /atom  on going to the next 
higher /c-point set.

III. RESULTS AND DISCUSSIONS

A. Energetics and equation of state

We have calculated the binding energy o f each struc­
ture as a function o f atom ic volume. A t a given volume, 
the optimal lattice parameters and internal atomic coor­
dinates are determined based on m inimization o f the total 
energy using calculated forces. The binding energy was 
obtained in reference to isolated atom  energies including 
the spin-polarization corrections. A  Murnaghan equa­
tion o f state was then fit to a few calculated points to 
determine the equilibrium volume, the cohesive energy, 
the bulk modulus (B 0 ), and the pressure derivative o f the 
bulk modulus (B'0 ). In Fig. 1 we show the binding ener­
gy o f a-quartz, /3-quartz, a-cristobalite, /3-cristobalite, 
ideal jS-cristobalite, and stishovite, as a function of 
volume. The resultant cohesive energies are presented in 
Table I in comparison with experimental results which  
were obtained by adding the formation enthalpy o f the 
low temperature (a )  phases at room temperature or the 
high temperature (/?) phases at the appropriate transition 
temperatures21,22 with the cohesive energy o f bulk silicon 
and the dissociation energy o f the oxygen dim er.23 It is 
well known that L D A  normally overestimates the 
cohesive energy. Our calculated cohesive energies for all 
five structures are consistently higher than the experi­
mental ones by about 1 5 -2 0 % . The relative stability o f  
different phases is correctly predicted and a-quartz is the 
most stable structure. As we expected, the error in ener­
gy differences is much smaller than that in absolute ener­
gies. The calculated energy differences between a-quartz 
and a-cristobalite (0.03 eV /m olecular unit) and between 
/3-quartz and /3-cristobalite (0.0 eV /m olecular unit) agree

volume (ft3/m olecule)

FIG. 1. Binding energies as a function of volume for 
quartz (Q), a-/3-cristobalite (C), ideal (J) /3-cristobalite (C), and 
stishovite (St). The symbols are calculated data points and the 
lines are Murnaghan fits to the calculated points.

TABLE I. Cohesive energies (eV/molecular unit). 
Q=quartz; C=cristobalite.________________________________

Structure Theory Experiment3

a-Q 22.42 19.23
P-Q 22.38 19.18
a-C 22.39 19.20
P-C 22.38 19.18

stishovite 22.35 18.71

“References 21-23.

perfectly with experiment, while the calculated energy 
differences between a-phase and /3-phase for both quartz 
and cristobalite are slightly smaller than the experimental 
data. We believe the agreement would be slightly im­
proved with the inclusion o f the temperature effect m iss­
ing in the calculation. However, the calculated energy 
difference between a-quartz and stishovite o f 0.07 eV per 
molecular unit is a few times lower than the experimental 
value, although it agrees well with the previous first- 
principles calculation3 o f 0.1 eV per molecular unit. The 
reason for this discrepancy is not completely clear. We 
note that stishovite has a totally different structural to­
pology from the other four tetrahedral-network struc­
tures. In general, the energy differences among different 
phases are very small. This is understandable for a-,/3- 
quartz and a - , /3-cristobalite, since all these structures are 
composed o f  S i0 4 tetrahedral units that are connected in 
slightly different ways. But it is a little bit surprising for 
stishovite, which has a totally different structural topolo­
gy. One would also expect that3 the stability of quartz 
and cristobalite over stishovite will be further enhanced 
at finite temperature due to the larger entropy contribu­
tion from the more open structures.3

From the Murnaghan fit o f  binding energy curves in 
Fig. 1, we have constructed the equations o f state. In 
Fig. 2 we plot the calculated volume vs pressure curve for

Pressure (GPa)

FIG. 2. Equations of state (curves) for a-quartz (Q), a- 
cristobalite (C), and stishovite (St) derived from Murnaghan fits 
as in Fig. 1. The volume has been normalized to ambient 
volume ( V0). The symbols are experimental data from Refs. 25 
(circle), 26 (square), and 27 (triangle) for a  quartz, Ref. 33 for 
a-cristobalite, and Refs. 37 (circle) and 38 (square) for stishovite.
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a-quartz, a-cristobalite, and stishovite in comparison 
with available experimental data. The agreement is fairly 
good. From the slope o f  the curve, we can see that a-  
cristobalite is most compressible, indicating a most open 
structure. In contrast, stishovite is m ost closely packed.

B. Structural parameters and their pressure dependence

The optim al lattice parameters and internal atomic 
coordinates o f  each structure were determined based on 
total energy and forces calculations at a few selected  
volumes. The final set o f  structural parameters at the 
equilibrium volume shown in Tables I I -V I  is based on an 
interpolation o f  all the calculated points. A lso shown in 
the tables are the bulk modulus (B 0 ), and the derivative 
o f bulk modulus (B'0 ), obtained from the Murnaghan fit. 
Our calculated results are compared with selected experi­
mental results which are considered to be the most recent 
and reliable ones and with som e previous first-principles 
calculations.

1. a-quartz

a-quartz has a hexagonal P  3221 space-group sym me­
try. The primitive unit cell contains 9 atoms. A t a given 
volume, six parameters have to be determined to specify 
the structure, namely, lattice parameters a and c (or c /a ) ,  
and internal parameters ( u ,x ,y ,z ) .  We will use (u ,v ,w ) to 
denote internal coordinates for silicon and (x , y , z ) for ox­
ygen throughout. The calculation was conducted at three 
special k  points24 (j , 0 , { ) ,  ( f ,0 ,  j ) ,  and ( } ,} , { ) •  The re­
sults are presented in Table II. The volume (or pressure) 
dependence o f  lattice constants and internal parameters is 
plotted in Figs. 3 and 4, respectively. The crystal struc­
ture o f  a-quartz at room temperature and ambient pres­
sure has been studied many times experim entally.25 In 
Table II we have chosen the recent refinement by Levien, 
Prewitt, and W eidner25 for our comparison. The depen­
dence o f  the structural properties on pressure has also 
been studied by several different experimental 
groups25-27 which were included in Figs. 3 and 4. The 
agreement between present theory and experiments is ex­
cellent for both structural parameters and their pressure

Volume (A3/molecule)

FIG. 3. Lattice constant as a function of volume for a- 
quartz. Solid dots are calculated points and lines are polynomi­
al fits to the calculated points as a guide to the eye. Circles, 
squares, and triangles are experimental data from Refs. 25, 26, 
and 27, respectively. Solid squares are pseudopotential calcula­
tions from Ref. 2.

dependence. Lattice constants a and c (see Fig. 3) de­
crease m onotonically as volume decreases (or pressure in­
creases) with a slightly faster change in a, indicating a 
small increase in c / a  ratio. A ll internal atomic coordi­
nates (see Fig. 4) change almost linearly with increasing 
pressure. N ote that we also included in Figs. 3 and 4 a 
recent pseudopotential calculation by Chelikowsky 
et a l .2 The general agreement between the two theories 
is very good, except that their calculated value o f  c is a 
little bit larger at ambient pressure, and decreases slightly  
faster with increasing pressure.

2. fj-quartz

^-quartz is believed to have an overall hexagonal P 6222 
space-group symmetry, but whether atoms are actually 
located at the high symmetrical positions or dynamically 
jump between two lower-symmetry (a-quartz) twin 
configurations leading to an averaged high symmetry is

TABLE II. Structural parameters of a-quartz (P3221).

Parameter Experiment
This
work

Error (%) Other
theory

a (A) 4.9160“ 4.8756 -0 .8 2 4.9134b
c (A) 5.4054“ 5.4052 -0 .004 5.4052b
Si (u) 0.4697“ 0.4654 -0 .9 2 0.4638b
O (x) 0.4135“ 0.4125 -0 .2 4 0.408 lb
O (y ) 0.2669“ 0.2745 2.84 0.2758b
O (z) 0.1191“ 0.1143 -4 .0 3 0.1215b

S 0 (Mbar) -0 .3 4 -0 .3 7 ° 0.37 0.38d
Bo ~ 5 - 6 c 4.3 3.9d

“Reference 25. 
bReference 1. 
“References 25-27. 
dReference 2.

Volume (A3/m olecule)

FIG. 4. Internal parameters as a function of volume for a- 
quartz. Notation is the same as in Fig. 3.
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TABLE III. Structural parameters of j3-quartz ( P6Z22).

Parameter Experiment3 This work Error (%)

a (A) 4.9977 5.0526 1.10
c (A) 5.4601 5.5488 1.62
O (x) 0.4144 0.4178 0.82

“Reference 30.

still a controversial subject.28,29 In our calculation, we 
have constrained nine atoms in the unit cell into the hex­
agonal P 6 222 space group. The /c-point sampling o f the 
calculation is chosen to be the same as for a-quartz. 
Three parameters (a ,c ,x  = 2 y)  have been determined to 
specify the structure which is shown in Table III. A lso  
included in the table are the experimental results by 
Wright and Lehm ann.30 The fact that the calculated  
cohesive energy (see Table I) as well as structural parame­
ters for j8-quartz agree very well with experiments indi­
cates the plausibility o f  a structure with well-defined 
atom positions, although we cannot rule out the dynamic 
picture based on our calculation. A  more thorough first- 
principles calculation is needed to further resolve the 
problem.

3. a-cristobalite

The structure o f  a-cristobalite is well established with 
a tetragonal J, 4 12 ] 1 space-group symmetry. The primi­
tive unit cell contains twelve atoms. A t a given volume, 
six parameters have to be determined to specify the struc­
ture, namely, lattice parameters a and c (or c /a ) ,  and 
internal parameters ( u ,x ,y ,z ) .  The calculation was con­
ducted at two special k  points31 ( j-,0, j ), and ( y, {)• 
The results are presented in Table IV. The pressure (or 
volume) dependence o f  lattice constant and internal pa­
rameters is plotted in Figs. 5 and 6, respectively. Unlike 
a-quartz, little experimental information on a- 
cristobalite is available. Pluth and Smith32 have deter­
mined its crystal structure from time-of-flight neutron- 
powder-difFraction data at low temperature up to 10 K  
(see Table IV). The pressure dependence o f the structure 
has been very recently studied by Parise et a l . 3 3  up 1.2 
GPa. At 1.2 G Pa they observed a phase transition to a

TABLE IV. Structural parameters of a-cristobalite (P4i2)2).

Parameter Experiment This work Error (%) Other theory

a (A) 4.9570“ 4.9586 0.03 4.9590b
c (A) 6.8903“ 6.9074 0.25 6.9060b
Si (u ) 0.3047“ 0.3028 -0 .6 2 0.3030b
O U) 0.2381“ 0.2383 0.08 0.2380b
O (y) 0.1109“ 0.1093 -1 .4 4 0 .1112b
O (r) 0.1826“ 0.1816 -0 .5 5 0.1825b

B 0 (Mbar) 0.150c 0.148 -1 .3 3
B o 2.41

Volume (A3/m olecule)

FIG. 5. Lattice constant as a function of volume for a- 
cristobalite. Solid dots are calculated points and lines are poly­
nomial fits to the calculated points as a guide to the eye. Circles 
are experimental data from Ref. 33.

lower symmetry phase. Our calculation agrees very well 
with their results as shown in Figs. 5 and 6 for the change 
o f structural parameters and in Table IV for the bulk 
modulus. Both lattice constants a and c (see Fig. 5) de­
crease m onotonically with increasing pressure. But un­
like a-quartz, the c lattice constant changes faster than a, 
resulting in a decrease in c / a  ratio on going to high pres­
sure. A ll internal atomic coordinates (see Fig. 5) change 
almost linearly with increasing pressure.

4. P-cristobalite

The determination of the structure for /?-cristobalite 
has a long and controversial history. It has an overall 
F d3m  symmetry and involves orientational disorder. R e­
cently, we have demonstrated the plausibility o f a struc­
ture for /3-cristobalite consisting o f domains of I4 2 d  sym ­
metry, and provided strong evidence against other pro­
posed models, based on first-principles total energy and

Volume (A /molecule)
“Reference 32. 
bReference 1. 
'Reference 33.

FIG. 6. Internal parameters as a function of volume for a- 
cristobalite. Notation is the same as in Fig. 5.
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TABLE V. Structural parameters of ̂ -cristobalite (F4d2).

Parameter Experiment5 This work Error (%)

a (A) 7.131 7.147 0.22
c (A) 0.125 (in Fd3m  position)
O U ) 0.079 0.081 2.53

“Reference 34.

lattice dynamics calculations. The details o f the study 
can be found in Ref. 13. In the present study, we have re­
peated part o f the calculations using a primitive tetrago­
nal cell containing twelve atoms constrain ted to I4 2 d  
symmetry. Two special k  points were used, as for a-  
cristobalite. The original calculation was conducted with 
a larger conventional cubic cell with 24 atoms in F A d l  
symmetry. Virtually identical structural parameters have 
been obtained which are shown in Table V, together with 
a comparison with experimental results o f  Wright and 
Leadbetter.34

Volume (A3/m olecule)

FIG. 7. Lattice constant as a function of volume for stisho­
vite. Solid dots are calculated points and lines are polynomial 
fits to the calculated points as a guide to the eye. Circles, 
squares, and triangles are experimental data from Refs. 37, 38, 
and 39, respectively.

5. Stishovite

In Table VI we present the structural parameters for 
stishovite. Stishovite belongs to space group PA1/m n m .  
There are six atoms in the tetragonal unit cell with three 
independent parameters (a ,c ,x ) at a given volume. Six 
special k  points35 have been used in the calculation:
( A 1 1 )  ( 1 1  A\  ( 1  A l l  ( 1 1  1 )  ( 1  A A)  a n d  ( A A 1 \  8, 8, 8 , 8, 8, 8 , 8, 8, 8 , 8, 8, 8 , 8, 8, 8 > ' 8 ’ 8 > 8 '•
Similar to the case o f a-quartz, there is a vast quantity of 
experimental results available for stishovite.3 For the 
comparison o f structural parameters in Table VI, we 
have chosen recent x-ray single crystal and powder- 
difFraction experiments o f Spackman, Hill, and G ibbs.36 
In Fig. 7 we plot the calculated lattice constants a and c 
as a function o f  volume (pressure). The experimental re­
sults presented in Fig. 7 are from Liu, Bassett, and 
Takahashi,37 Bassett and Barnett,38 and Tsuchida and 
Y agi.39 We found that lattice constants a and c decrease 
alm ost linearly with increasing pressure with a slight in­
crease in c / a  ratio similar to a-quartz.

From  Tables I I -V I  and Figs. 3 - 7 ,  we can see that the 
calculated structural parameters and their pressure 
dependence for all studied structures agree very well with  
available experimental results and other first-principles

TABLE VI. Structural parameters of stishovite (P42/m nm ).

Parameter Experimental
This
work

Error (%) Other
theory

a (A) 4.17733 4.1612 -0 .3 9 4.2550b
c (A) 2.6655a 2.6671 0.06 2.6040b
O (*) 0.30614s 0.30552 - 0.20 0.3082b

S 0 (Mbar) - 3 .0 6 - 3 .13c 2.82 2.92d
B ’o ~  1.7-6.0° 5.60 5.86d

“Reference 36. 
bReference 1. 
cReferences 37-39. 
dReference 3.

studies. The errors are generally within 2%. The agree­
ment for the bulk modulus and its pressure derivatives is 
also reasonably good but less accurate. Part o f  the error 
is due to the fact that these quantities are found to be 
more sensitive to the Murnaghan fit to the calculated  
data.

IV. CONCLUSION

In summary, we have carried out an extensive study o f  
the energetics and the structural properties o f  five crys­
talline forms o f silica based on first-principles total ener­
gy and force calculations. The relative stability o f  
different phases has been correctly predicted, with de­
creasing stability from quartz to cristobalite and from  
cristobalite to stishovite. The energy differences between 
different structures have been found to be very small (less 
than 0.05 eV per molecular unit in most cases) as one 
would expect from the small differences in structural to­
pology. The calculated structural parameters at ambient 
conditions agree very well with experiments. A lso, the 
calculated equations o f state and the pressure dependence 
o f structural parameters are in good agreement with ex­
periments. We found that the c / a  ratio increases with 
increasing pressure for both a-quartz and stishovite but 
decreases for a-cristobalite.

The ultrasoft pseudopotential scheme allowed us to 
achieve the same degree o f accuracy as previous pseudo­
potential theories but with a much smaller plane-wave 
cutoff (25 R y vs 40 Ry), and the preconditioned conjugate 
gradient algorithm increased the convergence rate o f  the 
calculation considerably over the usual steepest decent al­
gorithm (about 10 times for the current problem). W e be­
lieve that the combination o f  these two techniques makes 
our approach uniquely suited for efficient first-principles 
calculations on com plex systems like silica. This is partly 
demonstrated by the fact that all the calculations done
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here have been carried out on an IBM R ISC /6000  
workstation. We think the present study provides reason 
for optimism regarding the possibility o f future investiga­
tions on more com plex systems involving defects, sur­
faces, and disorder.
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