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Abstract

SCIRun is a problem  solving environment that allows the 
interactive construction, debugging, and steering o f  large- 
scale scientific computations. We review related systems 
and introduce a taxonomy that explores different computa­
tional steering solutions. Considering these approaches, we 
discuss why a tightly integrated problem  solving environ­
ment, such as SCIRun, simplifies the design and debugging 
phases o f  computational science applications and how such 
an environment aids in the scientific discovery process.

1. Introduction

Since the introduction of computers, scientists and en­
gineers have attempted to harness their power to simulate 
complex physical phenomena. Today, the computer is an 
almost universal tool used in a wide range of scientific and 
engineering domains.

Computational science and engineering is the field that 
has grown out of the widespread use of computers to nu­
merically simulate the physical phenomena associated with 
many problems in science and engineering. In a typical sce­
nario, a computational scientist follows this algorithm: 
Construct a model of the physical problem domain. 
Specify the shape of the problem domain, as well as other 
physical properties, such as electrical conductivity, density 
or viscosity. Simple problems may have relatively simple 
models, such as cubes, spheres or other simple geometries. 
However, current trends typically require the use of “real” 
life models that accurately portray a related physical prob­
lem domain. For example, computational medicine prob­
lems typically addressed by the Utah Scientific Computing 
and Imaging (SCI) group involve creating a detailed model 
of the human anatomy which describes the shape and elec­

trical conductivities for the bones, muscles and organs in a 
human torso [9]. Modeling may also include the specifi­
cation of initial conditions for the simulation, such as the 
current weather conditions for a weather simulation.
Apply boundary conditions. Boundary conditions are the 
forces that drive a particular problem. Typical boundary 
conditions may include the velocity of wind at the input of a 
wind tunnel, the electrical sources for an electrical problem, 
or boundary temperatures for a heat conduction problem. 
Conditions are defined on a boundary that couple with the 
governing equations to define the behavior of the system at 
these boundaries. Parameters to these equations may also 
be specified in conjunction with other model parameters.
Develop a numerical approximation to the governing 
equations. Governing equations are a set of partial differen­
tial equations that define the behavior of the problem. Since 
the computer cannot operate on these equations directly, the 
equations are discretized using methods such as Finite Dif­
ference, Finite Element, Finite Volume, Boundary Element 
methods.
Compute. Once the data has been specified, the computer is 
used to solve this numerical approximation. This typically 
involves solving a linear or non-linear system of algebraic 
equations. For realistic models, these systems of equations 
can be extremely large, incorporating thousands to millions 
of unknowns.
Validate the results. Once the solution has been found, the 
scientist must determine if the results are correct. Valida­
tion methods include computing known problem invariants 
(a form of “checksum”), comparing results with experimen­
tal data, comparing results with those of simple problems 
with analytical solution, and determining that the answer is 
plausible according to the scientists' expertise on the prob­
lem.
Understand the results. Early scientists printed out stacks 
of numbers on continuous sheet line printers and stared at

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

mailto:miller@cs.utk.edu


them for hours. As computers grew more powerful, scien­
tists were able to perform more complex simulations. For­
tunately, these more powerful computers are able to present 
information in a more meaningful way using Scientific Vi­
sualization.

Over the years, scientific computing has grown into a 
widely accepted method of scientific investigation. Scien­
tists are continuously trying to perform more accurate sim­
ulations, to create more realistic physical models, and to ob­
tain solutions in less time with less work. Many scientists 
are also applying these techniques to new problem domains 
and are using them to solve new practical problems.

1.1 Computational Steering

Currently, organizing, running and visualizing a new 
large-scale simulation still requires hours, days or weeks 
of a researcher’s time. Data I/O and conversion time fur­
ther complicates and slows the process. Even for experi­
enced scientists who may employ scripts and conversion 
programs to aid them in the task, the process is anything 
but streamlined. As noted at the NSF sponsored workshop 
on Health Care and High Performance Computing in 1994, 
scientists and engineers want a system in which all these 
computational components are linked. In other words, they 
wish to “close the loop,” so that all aspects of the model­
ing and simulation process can be controlled graphically 
within the context of a single application program. In areas 
such as healthcare, researchers cannot afford the predomi­
nant batch-mode approach since their applications are time 
critical in nature.

In 1987, the Visualization in Scientific Computing 
(ViSC) workshop reported [4]: “Scientists... want to 
drive the scientific discovery process; they want to interact 
with their data. Interactive visual computing is a process 
whereby scientists communicate with data by manipulating 
its visual representation during processing. The more so­
phisticated process of navigation  allows scientists to steer, 
or dynamically modify computations while they are occur­
ring. These processes are invaluable tools for scientific dis­
covery.”

Although these thoughts were recorded over ten years 
ago, they express a very simple, still current idea: that 
scientists want more interaction than is permitted by most 
simulation codes. Computational steering has been de­
fined as “the capacity to control the execution of long- 
running, resource-intensive programs” [7]. In computa­
tional science, we apply this concept to link visualization 
with computation and geometric design to interactively ex­
plore (steer) a simulation in time and/or space. As the appli­
cation is developed, a scientist can leverage the steering and 
visualization to assist in the debugging process as well as 
modify the computational aspects based upon performance

feedback. As knowledge is gained, a scientist can change 
the input conditions, algorithms, or other parameters of the 
simulation.

Implementation of a computational steering environment 
requires a successful integration of the many aspects of 
scientific computing, including performance analysis, ge­
ometric modeling, numerical analysis, and scientific visu­
alization. These requirements need to be effectively coor­
dinated within an efficient computing environment (which, 
for large-scale problems, means dealing with the subtleties 
of various high-performance architectures).

Recently, several tools and environments for computa­
tional steering have been developed. These range from tools 
that modify performance characteristics of running applica­
tions, either by automated means or by user interaction, to 
tools that modify the underlying computational application, 
thereby allowing application steering of the computational 
process. Our view is that a Problem Solving Environment 
(PSE) that encompasses all of these characteristics, from al­
gorithm development through performance tuning to appli­
cation steering, for scientific exploration and visualization 
and provides a rich environment for accomplishing compu­
tational science.

In the remainder of this paper, we first describe the ap­
plication of a system we have developed, SCIRun, to the 
domain of computational field problems. Next, we briefly 
describe the SCIRun software architecture. We review re­
lated work and introduce a taxonomy that explores differ­
ent computational steering solutions. We then present our 
thoughts on why a Problem Solving Environment such as 
SCIRun is crucial to computational science and engineer­
ing.

2 Computational Field Problems and 
SCIRun

SCIRun is a scientific programming environment that al­
lows the interactive construction, debugging, and steering 
of large-scale scientific computations. The primary pur­
pose of SCIRun is to enable the user to interactively control 
scientific simulations while the computation is in progress. 
This control allows the user, for example, to vary bound­
ary conditions, model geometries, and/or various compu­
tational parameters during simulation. Currently, many de­
bugging systems provide this capability in a low-level form. 
SCIRun, on the other hand, provides high-level control over 
parameters in an efficient and intuitive way through graph­
ical user interfaces and scientific visualization [13, 12]. 
These methods permit the scientist or engineer to “close the 
loop” and use the visualization to steer phases of the com­
putation.

The ability to steer a large scale simulation provides 
many advantages to the scientific programmer. As changes
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in parameters become more instantaneous, the cause-effect 
relationships within the simulation become more evident, 
allowing the scientist to develop more intuition about the 
effect of problem parameters, to detect program bugs, to 
develop insight into the operation of an algorithm, or to 
deepen an understanding of the physics of the problem(s) 
being studied.

Initially, we designed SCIRun to solve specific problems 
in Computational Medicine [9, 10], but we have made ex­
tensive efforts to make SCIRun applicable in other compu­
tational science and engineering problem domains. In ad­
dressing specific problems, we found that there were a wide 
range of disparate demands placed on a steerable problem 
solving environment such as the SCIRun system. We now 
provide a more detailed discussion of solving computational 
field problems.

2.1 Geometric Modeling

In most computational engineering and science applica­
tions, significant geometric modeling must take place prior 
to simulation and visualization. Modeling efforts usually 
involve geometrical construction of a physical domain, in 
which a continuous structure must be discretized and ade­
quately rendered into discrete spatial elements.

Construction of the geometric model is often one of 
the most time consuming aspects of modeling and simu­
lation. For each new configuration, a new model must be 
assembled. Once a model is up and running simulations, 
a researcher must wait through an entire simulation be­
fore making changes to the geometry or before learning if 
the changes already enacted have been effective. Because 
making such changes and recomputing the effects of those 
changes is very time consuming, researchers are often re­
stricted in the number of options they can effectively test.

In the SCIRun computational steering system, a goal is 
to change geometric features of the model or the spatial dis­
cretization of the solution domain interactively. Ideally, the 
user receives some degree of feedback on the calculation 
almost immediately, and is allowed to change input bound­
ary conditions, such as spatial location and magnitude of a 
source, or the timestep with which the calculation proceeds. 
These changes automatically trigger the computational and 
visualization phases of the problem. Such an environment 
allows more immediate access to simulation results, signif­
icantly reducing the time spent in making simulation and 
modeling design changes.

2.2 Numerical Analysis

A variety of techniques are used to numerically approx­
imate the partial differential equations (PDEs) that govern 
most computational field problems. We discuss the finite

element (FE) method here, although most of the concepts 
apply to finite difference, boundary element, and multigrid 
methods. Application of the FE method yields a linear sys­
tem, A x  =  b, where A  is the so-called “stiffness matrix” 
and can vary from hundreds of thousands to millions of de­
grees of freedom.

For solving this system, the scientist can choose from 
a variety of direct and iterative solution methods, as well 
as from different preconditioners. A user interface is pro­
vided to change tolerances, maximum iteration counts, and 
other numerical parameters. During the solution process, 
SCIRun provides feedback on several numerical and per­
formance parameters, such as residual error, iteration count, 
MFLOPS, etc. The scientist can also interactively decide 
upon the level of accuracy used for a given simulation based 
upon a priori design criteria. Upon initiating the simula­
tion, the scientist views the initial results and is presented 
with a visual representation of the computation's effective­
ness (based on various quantitative measures, such as the 
error per element of the finite element analysis). Then, the 
scientist decides if (s)he would like to continue the compu­
tation using a more (or less) refined level of discretization 
or restart the computation with different input conditions.

2.3 Scientific Visualization

Certainly, effective interpretation of computer simula­
tions depends upon the visualization of the data. Tradition­
ally, visualization has been entirely separate from the com­
putation phase. Computations were stored off to disk and/or 
piped into a separate visualization software package once 
all computations are completed. Furthermore, many sci­
entists relied on current “off the shelf” visualization pack­
ages that are not well suited for use with large engineer­
ing datasets (at least not in an interactive fashion). Within 
SCIRun, visualization is an integral part of the computa­
tional and geometrical modeling phases The user is able to 
visualize and explore intermediate results while the calcu­
lations continue to progress. Refined datasets are automati­
cally substituted for the less accurate ones as they are com­
pleted.

SCIRun brings together a large collection of algorithms 
for realizing the components of a scientific computing en­
vironment outlined above. Connecting these algorithms in 
an efficient manner into a flexible environment contributes 
to the computational steering goal. Although creating new 
modules for the system is ongoing work, current efforts 
have concentrated on building an integrated and interac­
tive environment for solving large-scale computational field 
problems.
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3 SCIRun - A Computational Steering Envi­
ronment

SCIRun is a problem solving environment in which large 
scale computer simulations can be composed, executed, 
controlled and tuned interactively. Composing the simula­
tion is accomplished via a visual programming interface to a 
dataflow network. Software systems such as AVS from Ad­
vanced Visualization Systems Inc.[18], Iris Explorer from 
NAG, and Visualization Data Explorer from IBM [11] have 
made this archetype popular for scientific visualization [22]. 
Our work has extended this paradigm into the realm of sci­
entific computation and steering.

To execute the program, one specifies parameters with a 
graphical user interface rather than with the traditional text- 
based datafile. Controlling a simulation involves steering 
the simulation interactively as it progresses. In SCIRun, the 
typical components of the computational paradigm -  geo­
metric modeling, numerical analysis, and scientific visual­
ization -  are integrated into a visual programming environ­
ment that provides the researcher with the ability to inter­
actively steer any one phase of the process and to see the 
effects propagate throughout the system automatically.

As an example of the SCIRun system interface, see Fig­
ure 1. A graphical representation of the dataflow network 
is shown in the lower right. The boxes represent computa­
tional algorithms (modules), while lines represent data con­
nections between the modules. Each module may have a 
separate user interface, such as the matrix solver interface 
at the left, that allows the user to control various parame­
ters. An interactive 3D viewer that combines visualization 
output and data probes is found at the top.

When the user changes a parameter in any of the module 
user interfaces, the module is re-executed, and all changes 
are automatically propagated to all connecting modules. 
The user is freed from worrying about details of data depen­
dencies and data file formats. Changes can be made with­
out stopping the computation, thus “steering” the computa­
tional process. When other changes are made, the computa­
tions will be canceled and automatically re-started, making 
the computer efficient as a “computational workbench.”

3.1 SCIRun - Dataflow System and Visual Pro­
gramming

Designing an environment to allow the steering of com­
plex scientific models is an enormous multi-faceted prob­
lem, one which requires attention in many different ar­
eas, including programming of the system, exploiting par­
allelism, and interacting with the human user. 
Programming SCIRun: A network of modules in SCIRun 
forms a dataflow program. The system is programmed vi­
sually, with pre-packaged modules connected through use

Figure 1. An example SCIRun network, show­
ing the dataflow programming interface, user 
interfaces for controlling simulation parame­
ters, and results from an large finite element 
model.
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of the mouse. If the system does not provide the neces­
sary components for a particular task, new modules may be 
created by the user. When building a new module, the pro­
grammer may leverage off of existing data structures (hash 
tables, binary trees, linked lists, etc.) and utility routines 
(point and vector geometry, numerical integration, etc.). 
Currently, adding a new module is accomplished by imple­
menting a C++ class.
Parallelism: The system is able to exploit parallelism 
within or between modules. Inter-module parallelism al­
lows each module to be executed in parallel as soon as data 
is available on any of its input ports. Intra-module par­
allelism can be exploited by the module writer to achieve 
maximum performance for a specific algorithm. For exam­
ple, a Streamline module may compute each streamline us­
ing a different processor, or may utilize an existing domain 
decomposition to pass the advecting particles from one pro­
cessor to another. The system provides the module writer 
with hooks for exploiting parallel resources, but the parallel 
algorithms must be implemented manually by the module 
writer. Deciding how to allocate resources among the avail­
able parallel tasks is an open research problem that we (and 
many others) are still investigating. Eventually, we would 
like such allocations to be under the control of the user, to 
permit steering all aspects of the computation.
User Interaction: SCIRun facilitates control over many pa­
rameters, including model parameters in 3D space. While 
scientists are excited by this opportunity, 3D interaction 
presents a very complex human computer interaction prob­
lem. While we have not entirely solved these problems, we 
have addressed them by employing 3D widgets [23] to as­
sist interaction. Clear presentation of the large quantities 
of information produced will require further research in 2D 
and 3D user interface design.

4 Taxonomy of Steering Systems

Even though the area of computational steering is fairly 
young, many systems and tools exist to assist programmers 
and scientific researchers in tuning and running scientific 
codes. It would be helpful to think of these computational 
tools and systems within a conceptual framework in order 
to compare and contrast them. In the following section, 
we will review the work of others who previously sought 
to classify computational steering systems. Afterwards, we 
will present a cohesive taxonomy for describing computa­
tional steering systems and toolsets.

4.1 Previous Classifications

Burnett, et al. [2] propose a taxonomy for computational 
steering using visual languages. Visualization systems stud­
ied vary on a continuum from post-processing through

tracking to interactive visualization to steering. Interfaces 
presented range from a textual interface to a graphical user 
interface to a visual programming language interface. The 
authors argue for a merging of the interactive experimenta­
tion allowed by steering capabilities and the ease of use of 
a visual programming language for a researcher not trained 
in programming.

Vetter and Schwan [20] delineate two types of steering in 
existing systems: human-interactive steering and algorith­
mic steering. In human-interactive steering, a person mon­
itors the computation and manipulates parameters of the 
computation while it is executing. In algorithmic steering, 
the computer makes decisions by monitoring information 
and other sources such as history files. Vetter and Schwan 
describe a simple feedback model for computational steer­
ing wherein output is monitored by a steering agent, either 
human or algorithm. The steering agent performs steering 
actions (which could be changes to the parameters of the 
computation) based on monitored inputs. They provide ex­
amples demonstrating the steering of an application's per­
formance (load-balancing), which automatically adapts the 
distributed load based upon run-time statistics.

As noted by Burnett et al.for human-interactive steering, 
the mechanism of interaction affects the ease of use of the 
system to a scientist. Systems range from providing a tex­
tual interface from which to steer to providing a graphical 
interface. Of course, a visual programming language could 
foster the creation of a steering environment that allows the 
user to view the program, the simulation, and the steering 
mechanism potentially all at the same time. On the other 
hand, algorithmic steering would be programmed entirely 
behind the scenes, but would require more programming 
expertise.

While both of these classifications provide insight into 
differing tools and applications for simulation steering, they 
provide orthogonal views. Burnett's work focuses on the 
level of steering and the visual interface while Vetter’s clas­
sification is based upon whether the steering process could 
be automated. Next, we will review existing tools for sim­
ulation steering and present a different taxonomy that at­
tempts to highlight the richness of a simulation steering en­
vironment or toolset.

4.2 Some Existing Tools for Steering

Lightweight Steering: Scripting Languages and Wrap­
pers: Beazley and Lomdahl [1] demonstrate the use of a 
lightweight method of steering a very large-scale molecular 
dynamics simulation. Using a Simplified Wrapper Inter­
face Generator (SWIG) to wrap existing simulation codes, 
a scientific researcher can easily build a scripting language 
interface, such as Tcl/Tk or Python, for steering a computa­
tion. Their work highlights the ease of converting existing
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scientific codes into a form in which they can be glued to­
gether by a control language. Then, the researcher monitors 
and manipulates the computation or simulation using script­
ing commands. Clearly, this method requires knowledge of 
how to program in scripting languages and does not explic­
itly constitute a steering toolkit.
CUMULVS: The CUMULVS library [5], developed at 
ORNL, acts as a middle layer between PVM applications 
and existing visualization packages such as AVS. After ini­
tializing a viewer, the application programmer can provide a 
list of parameters to be adjusted on-the-fly in a CUMULVS 
steering initialization procedure call. Separate procedure 
calls are used for altering scalar or vector parameters from 
within the application. CUMULVS supports multiple view­
ers viewing the same running application to assist collabo­
rations. An interesting checkpointing capability for rolling 
back and restarting a failed program run has the potential to 
allow cross-platform migration and heterogeneous restart of 
an application.
Progress and Magellan: The Progress Toolkit [19], devel­
oped at the Georgia Institute of Technology, assists applica­
tion programmers in developing steerable applications. Pro­
grammers instrument their applications with library calls, 
using “steerable objects,” which can be altered at runtime 
through the use of the Progress runtime system. Steerable 
objects include sensors, actuators, probes, function hooks, 
complex actions, and synchronization points. Progress uses 
a client/server program model.

Developed by the same group, the Magellan Steering 
System [21] is derived from the Progress system, and ex­
tends the steering clients and steering servers model used 
in the initial system. This system uses a specialized spec­
ification language, ACSL, which provides commands for 
monitoring and steering using probes, sensors and actua­
tors. However, application codes still must be instrumented 
with these commands in order to utilize the steering capa­
bilities of this system. These systems have been used for 
Molecular Dynamics simulations.

Both systems are layered on top of the Falcon system [6], 
also developed at GIT, which monitors a running program, 
capturing information ranging from a single program vari­
able, much as a debugger would, to complex expressions. 
It also permits the monitoring of performance data, with 
interfaces to visualization systems, such as Iris Explorer. 
However, decisions about which steering actions to take are 
based on previously encoded routines stored in a steering 
event database located on a steering server.
VASE: The Visualization and Application Steering Envi­
ronment [8] (VASE), from the Center for Supercomputing 
Research and Development at UIUC, provides a toolset for 
interactive visualization and steering in a distributed envi­
ronment. The VASE user model identifies three distinct 
roles: an application developer who writes the scientific

codes; a configurer who sets up the distributed environ­
ment (including interprocess communication); and an end 
user (or researcher) who uses and steers the application. 
Steering is accomplished through the use of steerable loca­
tions (programmer-defined breakpoints), altering the values 
of variables and parameters, and adding programming state­
ments and scripts as the computation proceeds. VASE uses 
a control-flow programming model, which is displayed to 
the end user to guide steering. VASE allows algorithm re­
finement through the use of script modification at run-time. 
Thus, the steering process can modify not only the compu­
tational parameters and performance characteristics but also 
the actual code.
Pablo: The Pablo performance environment [14], also de­
signed at UIUC, provides library routines for instrument­
ing source code to extract performance data as the code 
executes. This system follows the Falcon model of utiliz­
ing sensors to collect information from the executing code, 
and altering system characteristics or parameters through 
the use of actuators. It seeks to tune the performance of 
running applications as they execute. Two different models 
for performance-directed adaptive control (or performance 
steering) are discussed: closed-loop adaptive control and 
interactive adaptive control. First, a neural network classi­
fies file access patterns qualitatively in order to change the 
file policy on-the-fly, varying cache size and cache block 
replacement policy as needed by the executing code. Sec­
ondly, to enable human-interactive steering, Pablo develop­
ers argue for the use of an immersive environment, specifi­
cally the Avatar virtual environment prototype [15] built at 
the UIUC/NCSA.

4.3 A Taxonomy for Steering

After examining the tools presented above (among oth­
ers), we identified three distinct types of steering in cur­
rent systems: application steering, algorithm refinement, 
and performance steering. Application steering refers to the 
capability to modify the computational process through pa­
rameter changes, mesh modifications, or other changes that 
affect the computational aspects of the simulation. Steer­
ing by algorithm refinement allows the underlying code to 
be modified or refined at runtime. Performance steering fo­
cuses on changing computational resources that affect the 
simulation performance such as load balancing, I/O, cache 
strategies or other performance related modifications.

Similarly, there is a continuum of interaction strategies 
from textual to visual programming that provide means for 
a user to interactively steer the computation. It should be 
noted that any steering modification could also be accom­
plished through automated means (i.e.,requiring no end user 
interaction), as described in some of the systems above. 
Figure 2 places these systems within this steering taxon-
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Figure 2. Taxonomy of Steering Systems and 
Tools.

omy. Arrows extend from each system to show a range of 
interaction possibilities.

SCIRun was designed to allow many forms of interac­
tion for scientists within a stand alone system. It provides 
application steering and algorithm refinement, but currently 
provides little true performance steering. Scripting, while 
mostly limited to text-only manipulation, spans the gamut 
of steering functionality, permitting performance steering, 
algorithm refinement, and application steering. Other sys­
tems fill a steering niche, such as Pablo’s focus on perfor­
mance steering. Finally, some systems, such as Progress, 
Magellan, Falcon and CUMULVS, provide a range of steer­
ing functionality and many forms of interaction when cou­
pled with a visualization system such as AVS or IRIS Ex­
plorer.

5 Advantages of Problem Solving Environ­
ments for Steering

The usefulness of computational steering tools and sys­
tems need not be argued. However, the mechanisms for im­
plementing these tools differ tremendously as we illustrate 
in the steering taxonomy. Many times, steering mechanisms 
limit the steering to either modifications during the algo­
rithm development phase or during the modeling and com­
putational cycle but inhibit steering for all phases. Problem 
Solving Environments (PSEs) extend capabilities by allow­
ing similar steering mechanisms to be exploited during all 
phases of development, application, and performance steer­
ing. They also allow the same visualization and analysis 
tools to be used during all phases.

A Problem Solving Environment attempts to integrate 
a domain-specific library with a high-level user interface, 
consisting of a very high-level language and a graphical in­
terface, through the use of software infrastructure. Problem 
solving in scientific computation typically involves sym­
bolic computation, numeric computation, and visualization. 
Thus, many PSEs, such as MatLab, Mathematica, Maple, 
and ELLPACK [17] integrate numerical libraries with visu­
alization post-processing. In most PSEs, the flow of data is 
unidirectional, inhibiting steering of the computation. An 
extensive list of PSEs can be found on-line [3].

An integrated problem solving environment provides a 
complete set of tools for a scientist to solve a class of prob­
lems. In this context, computational steering can be a ver­
satile tool for making changes in models, for developing 
new algorithms, for visualizing and analyzing results, and 
for tuning the performance of an application. Programming 
tools may be a necessary evil of the process, but the in­
tent is for the PSE to help the scientist accurately solve 
a problem in a minimum amount of time. Nonetheless, 
scientists typically expend significant energy on program­
ming, and they want answers to “what-if” questions for 
things like cache performance, multiprocessor communica­
tion patterns, memory usage, and so forth.

Steering a large scientific application involves much 
more than slapping a graphical user interface on a few pa­
rameters. Several of the papers mentioned above have sug­
gested excellent methods for extracting information from 
running programs, for injecting updates back into the pro­
gram, and for managing these changes. We argue that these 
techniques will be most effective when used in a highly 
integrated environment, where data can be shared among 
the various computing and visualization tasks. For our re­
search, this integrated environment is called SCIRun.

SCIRun employs a blend of object-oriented (C++), im­
perative (C and Fortran), scripted (Tcl) and visual (the 
SCIRun Dataflow interface) languages to build this inter­
active environment. The basic SCIRun system provides an 
optimized dataflow programming environment, a sophisti­
cated C++ data model library, resource management and 
development features. SCIRun modules implement compo­
nents for computational, modeling and visualization tasks.

5.1 Steering in a Dataflow System

Computational steering has been implemented in several 
dataflow environments [2, 20, 5]. The naive approach uti­
lized by these systems allows modifying computation based 
upon outputs from the modules (inter-module steering). As 
Vetter and Schwan point out, there are three basic problems 
with this approach: module granularity is crucial; modifica­
tions require re-computation; and modifications are limited 
to the number of module inputs [20]. Most dataflow-based
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computational steering tools suffer from these limitations. 
The first and third limitation are related. If one provides too 
few modules within the dataflow network (very coarse gran­
ularity), steering options are limited since changes are based 
on connections between the modules. It is obvious that the 
number of module inputs limit the options for steerable pa­
rameters. The second limitation relates to whether interme­
diate results can be retained or not. If upstream modules 
modify their output, downstream modules without internal 
state must recompute since their inputs will change.

SCIRun removes these limitations by expanding meth­
ods for implementing steering. Four different methods are 
used to implement steering in the dataflow-oriented SCIRun 
system:
Feedback loops in the dataflow program. For a time- 
varying problem, the program usually goes through a time- 
stepping loop with several major operations inside. The 
boundary conditions are integrated in one or more of these 
operations. If this loop is implemented in the dataflow sys­
tem, then the user can make changes in those operators that 
will be integrated on the next trip through the loop. This is 
the typical inter-module steering.
Cancellation. When parameters are changed, the module 
can choose to cancel the current operation. For example, if 
boundary conditions are changed, it may make sense to can­
cel the computation and focus on the new solution. Cancel­
ing is sensible when solving elliptic boundary value prob­
lems, since the solution does not depend on any previous 
solution.
Direct lightweight param eter changes. An iterative ma­
trix solver module allows the user to change the target error 
even while the module is executing. The parameter change 
does not pass a new token through the dataflow network, but 
simply changes the internal state of the module, effectively 
changing the definition of the operator rather than trigger­
ing a new dataflow event. This allows intra-module steering 
rather than just inter-module steering. This technique al­
lows changes to take place outside of the dataflow stream. 
Retained state across module firings. Modules are not 
required to be stateless. They may use knowledge from pre­
vious iterations to optimize the currently executing opera­
tions. For example, the matrix solver module uses the solu­
tion vector from the previous execution as the initial guess 
for an iterative solution method. When the changes made to 
the system are small, the solver will converge very quickly, 
similar to a time-dependent system exploiting temporal co­
herence by using the previous time-step as the initial guess 
for the next time step. A more complex example of re­
tained state is a Delaunay triangulation module that only 
re-meshes local regions around boundaries that have moved 
since the previous iteration.

These methods provide the mechanisms whereby com­
putational parameters can be changed during program exe­

cution. This technique creates a much richer set of steerable 
parameters than previous systems.

5.2 Steering Optimizations

To accommodate the large datasets required by high 
resolution computational models, we have optimized and 
streamlined the dataflow implementation. These optimiza­
tions are made necessary by the limitations many scientists 
have experienced with currently available dataflow visual­
ization systems [16].

Progressive Refinement: Unfortunately, because of mem­
ory and speed limitations of current computing technolo­
gies, it will not always be possible to complete these large 
scale computations at an interactive rate. To maintain in­
teractivity, the system displays intermediate results as soon 
as they are available. Such results include partially con­
verged iterative matrix solutions, partially adapted finite el­
ement grids, and incomplete streamlines or isosurfaces. In 
this way, an engineer or scientist can watch a solution con­
verge and decide, based on the results observed, to make 
changes and start over or allow the simulation to continue 
to full convergence.

Exploiting Interaction Coherence: Another common in­
teractive change consists of moving and orienting portions 
of the geometry. Because of the nature of this interaction, 
surface movement is apt to be restricted to a small region of 
the domain. As mentioned above, state can be maintained 
across module executions to allow incremental updates to 
the results.

Data structure management: A naive implementation of 
the dataflow paradigm might use the interconnection struc­
ture to make copies of the data. SCIRun uses shared copies 
of application data to allow the computation and visualiza­
tion algorithms to work without making copies of the data. 
These shared regions may allow synchronized or unsyn­
chronized access to common data. Resources are managed 
with a simple reference counting scheme.

Through coupling these techniques, we are able to in­
troduce some degree of interactivity into a process that for­
merly took hours, days or even weeks. Most of the opti­
mizations come from the reduced requirement for human 
intervention, translation programs and large file I/O. While 
some of these techniques (such as displaying intermediate 
results) will add to the computation time of the process, we 
attempt to compensate by providing optimizations (such as 
exploiting interaction coherence) that are not available with 
the old “data file” paradigm.
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5.3 Responsibilities of a Problem Solving Envi­
ronment

A problem solving environment should be an efficient 
tool for solving all aspects of a problem. It should provide 
flexible modeling, visualization and computational compo­
nents, but it will never provide a comprehensive set. As a 
result, it should also provide facilities for implementing, de­
bugging and tuning new components. The scientist should 
be able to use these same tools throughout the process - dur­
ing development, debugging, tuning, production and publi­
cation. To provide an efficient environment for developing 
and controlling scientific computations, the problem solv­
ing environment assumes responsibilities.

The first responsibility is to provide a flexible interface 
for reusing modeling, computational and visualization com­
ponents. SCIRun accomplishes this through a visual pro­
gramming interface that allows a scientist to compose ap­
propriate tools for analyzing and visualizing various data 
(including end results, intermediate results, and even debug 
data).

A problem solving environment should also be responsi­
ble for providing an appropriate development environment 
for PSE components. Development includes debugging and 
performance tuning. Traditional debuggers are typically not 
efficient at dealing with the amount of data that scientific 
programs produce, so SCIRun allows the scientist to use the 
same visual analysis tools to examine and probe intermedi­
ate results. SCIRun also provides visualizations of mem­
ory usage, module CPU usage reports, and execution states. 
The development environment is further enhanced through 
cooperation with a traditional debugger, which allows the 
user to closely examine internal data structures when a mod­
ule fails. SCIRun employs dynamic shared libraries to al­
low the user to recompile only a specific module without 
the expense of a complete re-link. Another SCIRun window 
contains an interactive prompt that gives the user access to a 
Tcl shell that can be used to interactively query and change 
parameters in the simulation.

Another responsibility of a problem solving environment 
is to assure the efficient use of system resources. In a so­
phisticated simulation, each of the individual components 
(modeling, mesh generation, nonlinear/linear solvers, visu­
alization, etc.) typically consumes a large amount of mem­
ory and CPU resources. When all of these pieces are con­
nected into a single program, the potential computational 
load is enormous. To use the resources effectively, SCIRun 
adopts a role similar to an operating system in managing 
these resources. SCIRun manages scheduling and prioriti­
zation of threads, mapping of threads to processors, inter­
thread communication, thread stack growth, memory allo­
cation policies, and memory exception signals.

Steering tools and environments, such as Magellan and

Pablo, that focus on performance steering and algorithm 
refinement, address some of these issues. They provide 
mechanisms for performance tuning that can either be con­
trolled by the user/developer or automated based upon per­
formance statistics. However, they do not provide a rich set 
of components for computational steering of an application. 
By having an integrated steering environment for both de­
veloping and running an application, the user/developer has 
the capability to easily migrate from development to pro­
duction. Furthermore, steering modifications that affect the 
performance can be more easily understood if discovered in 
an interactive setting.

5.4 Requirements of the Application

A problem solving environment provides a framework 
for constructing and executing steerable scientific and engi­
neering applications. However, the application programmer 
must assume the responsibility of breaking up an applica­
tion into suitable components. In practice, this modular­
ization is already present inside most codes, since modular 
programming has been preached by software engineers as a 
sensible programming style for years.

More importantly, it is the responsibility of the appli­
cation programmer to ensure that parameter changes make 
sense with regard to the underlying physics of the problem. 
In a CFD simulation, for example, it is not physically possi­
ble for a boundary to move within a single timestep without 
a dramatic impact on the flow. The application program­
mer may be better off allowing the user to apply forces to a 
boundary that would move the boundary in a physically co­
herent manner. Alternatively, the user could be warned that 
moving a boundary in a non-physical manner would cause 
gross errors in the transient solution.

6 Conclusions

SCIRun attempts to overcome the artificial distinctions 
between scientific computing, scientific visualization, and 
computational steering. Many visualization tasks are sci­
entific computing problems themselves, hence are further 
candidates for steering. The primary goal of SCIRun is 
to provide the scientist with a comprehensive environment 
with interfaces to control and interact with the simulation 
at both application and system levels, and to use scientific 
visualization in all aspects of the problem. This control can 
be implemented with the best available techniques, such as 
those reviewed above. By integrating computational and vi­
sualization components, SCIRun avoids the transfer of large 
datasets to a separate visualization process. In addition, the 
scientist can use the same visualization tools in the develop­
ment stages, the performance tuning stages, the production
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stages, and even the publication stages of the scientific ap­
plication.

At the application level, the mathematical requirements 
of steering are as important as the program implementation, 
yet those requirements receive much less focus. For exam­
ple, it is very easy for a “steerer” to input new data that rep­
resents a mathematically invalid or physically impossible 
transition. Opponents of steering point at these occurrences 
and question the validity of the results from such a system. 
Methods of integrating changes in a scientifically meaning­
ful manner need considerable investigation. While it is im­
portant to have complete control of all parameters while de­
bugging a simulation, production simulations should have 
either tight requirements for valid steering input or a flex­
ible system to help the scientist assess the validity of the 
transformation.

Computational steering systems are best implemented as 
a part of an integrated problem solving and development 
environment. With limited programming effort, computa­
tional scientists should be able to interactively create, con­
trol, execute, and visualize complex scientific simulations.
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