
Computational Steering and
the SCIRun Integrated Problem Solving Environment

Steven G. Parker, Michelle Milled, Charles D. Hansen and Christopher R. Johnson

Department of Computer Science * Department of Computer Science

University of Utah University of Tennessee

Salt Lake City, UT 84112 Knoxville, TN 37996

{sparker,hansen,crj} @cs.utah.edu miller@cs.utk.edu

Abstract

SCIRun is a problem solving environment that allows the
interactive construction, debugging, and steering o f large-
scale scientific computations. We review related systems
and introduce a taxonomy that explores different computa­
tional steering solutions. Considering these approaches, we
discuss why a tightly integrated problem solving environ­
ment, such as SCIRun, simplifies the design and debugging
phases o f computational science applications and how such
an environment aids in the scientific discovery process.

1. Introduction

Since the introduction of computers, scientists and en­
gineers have attempted to harness their power to simulate
complex physical phenomena. Today, the computer is an
almost universal tool used in a wide range of scientific and
engineering domains.

Computational science and engineering is the field that
has grown out of the widespread use of computers to nu­
merically simulate the physical phenomena associated with
many problems in science and engineering. In a typical sce­
nario, a computational scientist follows this algorithm:
Construct a model of the physical problem domain.
Specify the shape of the problem domain, as well as other
physical properties, such as electrical conductivity, density
or viscosity. Simple problems may have relatively simple
models, such as cubes, spheres or other simple geometries.
However, current trends typically require the use of “real”
life models that accurately portray a related physical prob­
lem domain. For example, computational medicine prob­
lems typically addressed by the Utah Scientific Computing
and Imaging (SCI) group involve creating a detailed model
of the human anatomy which describes the shape and elec­

trical conductivities for the bones, muscles and organs in a
human torso [9]. Modeling may also include the specifi­
cation of initial conditions for the simulation, such as the
current weather conditions for a weather simulation.
Apply boundary conditions. Boundary conditions are the
forces that drive a particular problem. Typical boundary
conditions may include the velocity of wind at the input of a
wind tunnel, the electrical sources for an electrical problem,
or boundary temperatures for a heat conduction problem.
Conditions are defined on a boundary that couple with the
governing equations to define the behavior of the system at
these boundaries. Parameters to these equations may also
be specified in conjunction with other model parameters.
Develop a numerical approximation to the governing
equations. Governing equations are a set of partial differen­
tial equations that define the behavior of the problem. Since
the computer cannot operate on these equations directly, the
equations are discretized using methods such as Finite Dif­
ference, Finite Element, Finite Volume, Boundary Element
methods.
Compute. Once the data has been specified, the computer is
used to solve this numerical approximation. This typically
involves solving a linear or non-linear system of algebraic
equations. For realistic models, these systems of equations
can be extremely large, incorporating thousands to millions
of unknowns.
Validate the results. Once the solution has been found, the
scientist must determine if the results are correct. Valida­
tion methods include computing known problem invariants
(a form of “checksum”), comparing results with experimen­
tal data, comparing results with those of simple problems
with analytical solution, and determining that the answer is
plausible according to the scientists' expertise on the prob­
lem.
Understand the results. Early scientists printed out stacks
of numbers on continuous sheet line printers and stared at

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

mailto:miller@cs.utk.edu

them for hours. As computers grew more powerful, scien­
tists were able to perform more complex simulations. For­
tunately, these more powerful computers are able to present
information in a more meaningful way using Scientific Vi­
sualization.

Over the years, scientific computing has grown into a
widely accepted method of scientific investigation. Scien­
tists are continuously trying to perform more accurate sim­
ulations, to create more realistic physical models, and to ob­
tain solutions in less time with less work. Many scientists
are also applying these techniques to new problem domains
and are using them to solve new practical problems.

1.1 Computational Steering

Currently, organizing, running and visualizing a new
large-scale simulation still requires hours, days or weeks
of a researcher’s time. Data I/O and conversion time fur­
ther complicates and slows the process. Even for experi­
enced scientists who may employ scripts and conversion
programs to aid them in the task, the process is anything
but streamlined. As noted at the NSF sponsored workshop
on Health Care and High Performance Computing in 1994,
scientists and engineers want a system in which all these
computational components are linked. In other words, they
wish to “close the loop,” so that all aspects of the model­
ing and simulation process can be controlled graphically
within the context of a single application program. In areas
such as healthcare, researchers cannot afford the predomi­
nant batch-mode approach since their applications are time
critical in nature.

In 1987, the Visualization in Scientific Computing
(ViSC) workshop reported [4]: “Scientists... want to
drive the scientific discovery process; they want to interact
with their data. Interactive visual computing is a process
whereby scientists communicate with data by manipulating
its visual representation during processing. The more so­
phisticated process of navigation allows scientists to steer,
or dynamically modify computations while they are occur­
ring. These processes are invaluable tools for scientific dis­
covery.”

Although these thoughts were recorded over ten years
ago, they express a very simple, still current idea: that
scientists want more interaction than is permitted by most
simulation codes. Computational steering has been de­
fined as “the capacity to control the execution of long-
running, resource-intensive programs” [7]. In computa­
tional science, we apply this concept to link visualization
with computation and geometric design to interactively ex­
plore (steer) a simulation in time and/or space. As the appli­
cation is developed, a scientist can leverage the steering and
visualization to assist in the debugging process as well as
modify the computational aspects based upon performance

feedback. As knowledge is gained, a scientist can change
the input conditions, algorithms, or other parameters of the
simulation.

Implementation of a computational steering environment
requires a successful integration of the many aspects of
scientific computing, including performance analysis, ge­
ometric modeling, numerical analysis, and scientific visu­
alization. These requirements need to be effectively coor­
dinated within an efficient computing environment (which,
for large-scale problems, means dealing with the subtleties
of various high-performance architectures).

Recently, several tools and environments for computa­
tional steering have been developed. These range from tools
that modify performance characteristics of running applica­
tions, either by automated means or by user interaction, to
tools that modify the underlying computational application,
thereby allowing application steering of the computational
process. Our view is that a Problem Solving Environment
(PSE) that encompasses all of these characteristics, from al­
gorithm development through performance tuning to appli­
cation steering, for scientific exploration and visualization
and provides a rich environment for accomplishing compu­
tational science.

In the remainder of this paper, we first describe the ap­
plication of a system we have developed, SCIRun, to the
domain of computational field problems. Next, we briefly
describe the SCIRun software architecture. We review re­
lated work and introduce a taxonomy that explores differ­
ent computational steering solutions. We then present our
thoughts on why a Problem Solving Environment such as
SCIRun is crucial to computational science and engineer­
ing.

2 Computational Field Problems and
SCIRun

SCIRun is a scientific programming environment that al­
lows the interactive construction, debugging, and steering
of large-scale scientific computations. The primary pur­
pose of SCIRun is to enable the user to interactively control
scientific simulations while the computation is in progress.
This control allows the user, for example, to vary bound­
ary conditions, model geometries, and/or various compu­
tational parameters during simulation. Currently, many de­
bugging systems provide this capability in a low-level form.
SCIRun, on the other hand, provides high-level control over
parameters in an efficient and intuitive way through graph­
ical user interfaces and scientific visualization [13, 12].
These methods permit the scientist or engineer to “close the
loop” and use the visualization to steer phases of the com­
putation.

The ability to steer a large scale simulation provides
many advantages to the scientific programmer. As changes

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

in parameters become more instantaneous, the cause-effect
relationships within the simulation become more evident,
allowing the scientist to develop more intuition about the
effect of problem parameters, to detect program bugs, to
develop insight into the operation of an algorithm, or to
deepen an understanding of the physics of the problem(s)
being studied.

Initially, we designed SCIRun to solve specific problems
in Computational Medicine [9, 10], but we have made ex­
tensive efforts to make SCIRun applicable in other compu­
tational science and engineering problem domains. In ad­
dressing specific problems, we found that there were a wide
range of disparate demands placed on a steerable problem
solving environment such as the SCIRun system. We now
provide a more detailed discussion of solving computational
field problems.

2.1 Geometric Modeling

In most computational engineering and science applica­
tions, significant geometric modeling must take place prior
to simulation and visualization. Modeling efforts usually
involve geometrical construction of a physical domain, in
which a continuous structure must be discretized and ade­
quately rendered into discrete spatial elements.

Construction of the geometric model is often one of
the most time consuming aspects of modeling and simu­
lation. For each new configuration, a new model must be
assembled. Once a model is up and running simulations,
a researcher must wait through an entire simulation be­
fore making changes to the geometry or before learning if
the changes already enacted have been effective. Because
making such changes and recomputing the effects of those
changes is very time consuming, researchers are often re­
stricted in the number of options they can effectively test.

In the SCIRun computational steering system, a goal is
to change geometric features of the model or the spatial dis­
cretization of the solution domain interactively. Ideally, the
user receives some degree of feedback on the calculation
almost immediately, and is allowed to change input bound­
ary conditions, such as spatial location and magnitude of a
source, or the timestep with which the calculation proceeds.
These changes automatically trigger the computational and
visualization phases of the problem. Such an environment
allows more immediate access to simulation results, signif­
icantly reducing the time spent in making simulation and
modeling design changes.

2.2 Numerical Analysis

A variety of techniques are used to numerically approx­
imate the partial differential equations (PDEs) that govern
most computational field problems. We discuss the finite

element (FE) method here, although most of the concepts
apply to finite difference, boundary element, and multigrid
methods. Application of the FE method yields a linear sys­
tem, A x = b, where A is the so-called “stiffness matrix”
and can vary from hundreds of thousands to millions of de­
grees of freedom.

For solving this system, the scientist can choose from
a variety of direct and iterative solution methods, as well
as from different preconditioners. A user interface is pro­
vided to change tolerances, maximum iteration counts, and
other numerical parameters. During the solution process,
SCIRun provides feedback on several numerical and per­
formance parameters, such as residual error, iteration count,
MFLOPS, etc. The scientist can also interactively decide
upon the level of accuracy used for a given simulation based
upon a priori design criteria. Upon initiating the simula­
tion, the scientist views the initial results and is presented
with a visual representation of the computation's effective­
ness (based on various quantitative measures, such as the
error per element of the finite element analysis). Then, the
scientist decides if (s)he would like to continue the compu­
tation using a more (or less) refined level of discretization
or restart the computation with different input conditions.

2.3 Scientific Visualization

Certainly, effective interpretation of computer simula­
tions depends upon the visualization of the data. Tradition­
ally, visualization has been entirely separate from the com­
putation phase. Computations were stored off to disk and/or
piped into a separate visualization software package once
all computations are completed. Furthermore, many sci­
entists relied on current “off the shelf” visualization pack­
ages that are not well suited for use with large engineer­
ing datasets (at least not in an interactive fashion). Within
SCIRun, visualization is an integral part of the computa­
tional and geometrical modeling phases The user is able to
visualize and explore intermediate results while the calcu­
lations continue to progress. Refined datasets are automati­
cally substituted for the less accurate ones as they are com­
pleted.

SCIRun brings together a large collection of algorithms
for realizing the components of a scientific computing en­
vironment outlined above. Connecting these algorithms in
an efficient manner into a flexible environment contributes
to the computational steering goal. Although creating new
modules for the system is ongoing work, current efforts
have concentrated on building an integrated and interac­
tive environment for solving large-scale computational field
problems.

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

3 SCIRun - A Computational Steering Envi­
ronment

SCIRun is a problem solving environment in which large
scale computer simulations can be composed, executed,
controlled and tuned interactively. Composing the simula­
tion is accomplished via a visual programming interface to a
dataflow network. Software systems such as AVS from Ad­
vanced Visualization Systems Inc.[18], Iris Explorer from
NAG, and Visualization Data Explorer from IBM [11] have
made this archetype popular for scientific visualization [22].
Our work has extended this paradigm into the realm of sci­
entific computation and steering.

To execute the program, one specifies parameters with a
graphical user interface rather than with the traditional text-
based datafile. Controlling a simulation involves steering
the simulation interactively as it progresses. In SCIRun, the
typical components of the computational paradigm - geo­
metric modeling, numerical analysis, and scientific visual­
ization - are integrated into a visual programming environ­
ment that provides the researcher with the ability to inter­
actively steer any one phase of the process and to see the
effects propagate throughout the system automatically.

As an example of the SCIRun system interface, see Fig­
ure 1. A graphical representation of the dataflow network
is shown in the lower right. The boxes represent computa­
tional algorithms (modules), while lines represent data con­
nections between the modules. Each module may have a
separate user interface, such as the matrix solver interface
at the left, that allows the user to control various parame­
ters. An interactive 3D viewer that combines visualization
output and data probes is found at the top.

When the user changes a parameter in any of the module
user interfaces, the module is re-executed, and all changes
are automatically propagated to all connecting modules.
The user is freed from worrying about details of data depen­
dencies and data file formats. Changes can be made with­
out stopping the computation, thus “steering” the computa­
tional process. When other changes are made, the computa­
tions will be canceled and automatically re-started, making
the computer efficient as a “computational workbench.”

3.1 SCIRun - Dataflow System and Visual Pro­
gramming

Designing an environment to allow the steering of com­
plex scientific models is an enormous multi-faceted prob­
lem, one which requires attention in many different ar­
eas, including programming of the system, exploiting par­
allelism, and interacting with the human user.
Programming SCIRun: A network of modules in SCIRun
forms a dataflow program. The system is programmed vi­
sually, with pre-packaged modules connected through use

Figure 1. An example SCIRun network, show­
ing the dataflow programming interface, user
interfaces for controlling simulation parame­
ters, and results from an large finite element
model.

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

of the mouse. If the system does not provide the neces­
sary components for a particular task, new modules may be
created by the user. When building a new module, the pro­
grammer may leverage off of existing data structures (hash
tables, binary trees, linked lists, etc.) and utility routines
(point and vector geometry, numerical integration, etc.).
Currently, adding a new module is accomplished by imple­
menting a C++ class.
Parallelism: The system is able to exploit parallelism
within or between modules. Inter-module parallelism al­
lows each module to be executed in parallel as soon as data
is available on any of its input ports. Intra-module par­
allelism can be exploited by the module writer to achieve
maximum performance for a specific algorithm. For exam­
ple, a Streamline module may compute each streamline us­
ing a different processor, or may utilize an existing domain
decomposition to pass the advecting particles from one pro­
cessor to another. The system provides the module writer
with hooks for exploiting parallel resources, but the parallel
algorithms must be implemented manually by the module
writer. Deciding how to allocate resources among the avail­
able parallel tasks is an open research problem that we (and
many others) are still investigating. Eventually, we would
like such allocations to be under the control of the user, to
permit steering all aspects of the computation.
User Interaction: SCIRun facilitates control over many pa­
rameters, including model parameters in 3D space. While
scientists are excited by this opportunity, 3D interaction
presents a very complex human computer interaction prob­
lem. While we have not entirely solved these problems, we
have addressed them by employing 3D widgets [23] to as­
sist interaction. Clear presentation of the large quantities
of information produced will require further research in 2D
and 3D user interface design.

4 Taxonomy of Steering Systems

Even though the area of computational steering is fairly
young, many systems and tools exist to assist programmers
and scientific researchers in tuning and running scientific
codes. It would be helpful to think of these computational
tools and systems within a conceptual framework in order
to compare and contrast them. In the following section,
we will review the work of others who previously sought
to classify computational steering systems. Afterwards, we
will present a cohesive taxonomy for describing computa­
tional steering systems and toolsets.

4.1 Previous Classifications

Burnett, et al. [2] propose a taxonomy for computational
steering using visual languages. Visualization systems stud­
ied vary on a continuum from post-processing through

tracking to interactive visualization to steering. Interfaces
presented range from a textual interface to a graphical user
interface to a visual programming language interface. The
authors argue for a merging of the interactive experimenta­
tion allowed by steering capabilities and the ease of use of
a visual programming language for a researcher not trained
in programming.

Vetter and Schwan [20] delineate two types of steering in
existing systems: human-interactive steering and algorith­
mic steering. In human-interactive steering, a person mon­
itors the computation and manipulates parameters of the
computation while it is executing. In algorithmic steering,
the computer makes decisions by monitoring information
and other sources such as history files. Vetter and Schwan
describe a simple feedback model for computational steer­
ing wherein output is monitored by a steering agent, either
human or algorithm. The steering agent performs steering
actions (which could be changes to the parameters of the
computation) based on monitored inputs. They provide ex­
amples demonstrating the steering of an application's per­
formance (load-balancing), which automatically adapts the
distributed load based upon run-time statistics.

As noted by Burnett et al.for human-interactive steering,
the mechanism of interaction affects the ease of use of the
system to a scientist. Systems range from providing a tex­
tual interface from which to steer to providing a graphical
interface. Of course, a visual programming language could
foster the creation of a steering environment that allows the
user to view the program, the simulation, and the steering
mechanism potentially all at the same time. On the other
hand, algorithmic steering would be programmed entirely
behind the scenes, but would require more programming
expertise.

While both of these classifications provide insight into
differing tools and applications for simulation steering, they
provide orthogonal views. Burnett's work focuses on the
level of steering and the visual interface while Vetter’s clas­
sification is based upon whether the steering process could
be automated. Next, we will review existing tools for sim­
ulation steering and present a different taxonomy that at­
tempts to highlight the richness of a simulation steering en­
vironment or toolset.

4.2 Some Existing Tools for Steering

Lightweight Steering: Scripting Languages and Wrap­
pers: Beazley and Lomdahl [1] demonstrate the use of a
lightweight method of steering a very large-scale molecular
dynamics simulation. Using a Simplified Wrapper Inter­
face Generator (SWIG) to wrap existing simulation codes,
a scientific researcher can easily build a scripting language
interface, such as Tcl/Tk or Python, for steering a computa­
tion. Their work highlights the ease of converting existing

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

scientific codes into a form in which they can be glued to­
gether by a control language. Then, the researcher monitors
and manipulates the computation or simulation using script­
ing commands. Clearly, this method requires knowledge of
how to program in scripting languages and does not explic­
itly constitute a steering toolkit.
CUMULVS: The CUMULVS library [5], developed at
ORNL, acts as a middle layer between PVM applications
and existing visualization packages such as AVS. After ini­
tializing a viewer, the application programmer can provide a
list of parameters to be adjusted on-the-fly in a CUMULVS
steering initialization procedure call. Separate procedure
calls are used for altering scalar or vector parameters from
within the application. CUMULVS supports multiple view­
ers viewing the same running application to assist collabo­
rations. An interesting checkpointing capability for rolling
back and restarting a failed program run has the potential to
allow cross-platform migration and heterogeneous restart of
an application.
Progress and Magellan: The Progress Toolkit [19], devel­
oped at the Georgia Institute of Technology, assists applica­
tion programmers in developing steerable applications. Pro­
grammers instrument their applications with library calls,
using “steerable objects,” which can be altered at runtime
through the use of the Progress runtime system. Steerable
objects include sensors, actuators, probes, function hooks,
complex actions, and synchronization points. Progress uses
a client/server program model.

Developed by the same group, the Magellan Steering
System [21] is derived from the Progress system, and ex­
tends the steering clients and steering servers model used
in the initial system. This system uses a specialized spec­
ification language, ACSL, which provides commands for
monitoring and steering using probes, sensors and actua­
tors. However, application codes still must be instrumented
with these commands in order to utilize the steering capa­
bilities of this system. These systems have been used for
Molecular Dynamics simulations.

Both systems are layered on top of the Falcon system [6],
also developed at GIT, which monitors a running program,
capturing information ranging from a single program vari­
able, much as a debugger would, to complex expressions.
It also permits the monitoring of performance data, with
interfaces to visualization systems, such as Iris Explorer.
However, decisions about which steering actions to take are
based on previously encoded routines stored in a steering
event database located on a steering server.
VASE: The Visualization and Application Steering Envi­
ronment [8] (VASE), from the Center for Supercomputing
Research and Development at UIUC, provides a toolset for
interactive visualization and steering in a distributed envi­
ronment. The VASE user model identifies three distinct
roles: an application developer who writes the scientific

codes; a configurer who sets up the distributed environ­
ment (including interprocess communication); and an end
user (or researcher) who uses and steers the application.
Steering is accomplished through the use of steerable loca­
tions (programmer-defined breakpoints), altering the values
of variables and parameters, and adding programming state­
ments and scripts as the computation proceeds. VASE uses
a control-flow programming model, which is displayed to
the end user to guide steering. VASE allows algorithm re­
finement through the use of script modification at run-time.
Thus, the steering process can modify not only the compu­
tational parameters and performance characteristics but also
the actual code.
Pablo: The Pablo performance environment [14], also de­
signed at UIUC, provides library routines for instrument­
ing source code to extract performance data as the code
executes. This system follows the Falcon model of utiliz­
ing sensors to collect information from the executing code,
and altering system characteristics or parameters through
the use of actuators. It seeks to tune the performance of
running applications as they execute. Two different models
for performance-directed adaptive control (or performance
steering) are discussed: closed-loop adaptive control and
interactive adaptive control. First, a neural network classi­
fies file access patterns qualitatively in order to change the
file policy on-the-fly, varying cache size and cache block
replacement policy as needed by the executing code. Sec­
ondly, to enable human-interactive steering, Pablo develop­
ers argue for the use of an immersive environment, specifi­
cally the Avatar virtual environment prototype [15] built at
the UIUC/NCSA.

4.3 A Taxonomy for Steering

After examining the tools presented above (among oth­
ers), we identified three distinct types of steering in cur­
rent systems: application steering, algorithm refinement,
and performance steering. Application steering refers to the
capability to modify the computational process through pa­
rameter changes, mesh modifications, or other changes that
affect the computational aspects of the simulation. Steer­
ing by algorithm refinement allows the underlying code to
be modified or refined at runtime. Performance steering fo­
cuses on changing computational resources that affect the
simulation performance such as load balancing, I/O, cache
strategies or other performance related modifications.

Similarly, there is a continuum of interaction strategies
from textual to visual programming that provide means for
a user to interactively steer the computation. It should be
noted that any steering modification could also be accom­
plished through automated means (i.e.,requiring no end user
interaction), as described in some of the systems above.
Figure 2 places these systems within this steering taxon-

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

Visual
Programming
Language

Graphical
User
Interface

Textual

Figure 2. Taxonomy of Steering Systems and
Tools.

omy. Arrows extend from each system to show a range of
interaction possibilities.

SCIRun was designed to allow many forms of interac­
tion for scientists within a stand alone system. It provides
application steering and algorithm refinement, but currently
provides little true performance steering. Scripting, while
mostly limited to text-only manipulation, spans the gamut
of steering functionality, permitting performance steering,
algorithm refinement, and application steering. Other sys­
tems fill a steering niche, such as Pablo’s focus on perfor­
mance steering. Finally, some systems, such as Progress,
Magellan, Falcon and CUMULVS, provide a range of steer­
ing functionality and many forms of interaction when cou­
pled with a visualization system such as AVS or IRIS Ex­
plorer.

5 Advantages of Problem Solving Environ­
ments for Steering

The usefulness of computational steering tools and sys­
tems need not be argued. However, the mechanisms for im­
plementing these tools differ tremendously as we illustrate
in the steering taxonomy. Many times, steering mechanisms
limit the steering to either modifications during the algo­
rithm development phase or during the modeling and com­
putational cycle but inhibit steering for all phases. Problem
Solving Environments (PSEs) extend capabilities by allow­
ing similar steering mechanisms to be exploited during all
phases of development, application, and performance steer­
ing. They also allow the same visualization and analysis
tools to be used during all phases.

A Problem Solving Environment attempts to integrate
a domain-specific library with a high-level user interface,
consisting of a very high-level language and a graphical in­
terface, through the use of software infrastructure. Problem
solving in scientific computation typically involves sym­
bolic computation, numeric computation, and visualization.
Thus, many PSEs, such as MatLab, Mathematica, Maple,
and ELLPACK [17] integrate numerical libraries with visu­
alization post-processing. In most PSEs, the flow of data is
unidirectional, inhibiting steering of the computation. An
extensive list of PSEs can be found on-line [3].

An integrated problem solving environment provides a
complete set of tools for a scientist to solve a class of prob­
lems. In this context, computational steering can be a ver­
satile tool for making changes in models, for developing
new algorithms, for visualizing and analyzing results, and
for tuning the performance of an application. Programming
tools may be a necessary evil of the process, but the in­
tent is for the PSE to help the scientist accurately solve
a problem in a minimum amount of time. Nonetheless,
scientists typically expend significant energy on program­
ming, and they want answers to “what-if” questions for
things like cache performance, multiprocessor communica­
tion patterns, memory usage, and so forth.

Steering a large scientific application involves much
more than slapping a graphical user interface on a few pa­
rameters. Several of the papers mentioned above have sug­
gested excellent methods for extracting information from
running programs, for injecting updates back into the pro­
gram, and for managing these changes. We argue that these
techniques will be most effective when used in a highly
integrated environment, where data can be shared among
the various computing and visualization tasks. For our re­
search, this integrated environment is called SCIRun.

SCIRun employs a blend of object-oriented (C++), im­
perative (C and Fortran), scripted (Tcl) and visual (the
SCIRun Dataflow interface) languages to build this inter­
active environment. The basic SCIRun system provides an
optimized dataflow programming environment, a sophisti­
cated C++ data model library, resource management and
development features. SCIRun modules implement compo­
nents for computational, modeling and visualization tasks.

5.1 Steering in a Dataflow System

Computational steering has been implemented in several
dataflow environments [2, 20, 5]. The naive approach uti­
lized by these systems allows modifying computation based
upon outputs from the modules (inter-module steering). As
Vetter and Schwan point out, there are three basic problems
with this approach: module granularity is crucial; modifica­
tions require re-computation; and modifications are limited
to the number of module inputs [20]. Most dataflow-based

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

computational steering tools suffer from these limitations.
The first and third limitation are related. If one provides too
few modules within the dataflow network (very coarse gran­
ularity), steering options are limited since changes are based
on connections between the modules. It is obvious that the
number of module inputs limit the options for steerable pa­
rameters. The second limitation relates to whether interme­
diate results can be retained or not. If upstream modules
modify their output, downstream modules without internal
state must recompute since their inputs will change.

SCIRun removes these limitations by expanding meth­
ods for implementing steering. Four different methods are
used to implement steering in the dataflow-oriented SCIRun
system:
Feedback loops in the dataflow program. For a time-
varying problem, the program usually goes through a time-
stepping loop with several major operations inside. The
boundary conditions are integrated in one or more of these
operations. If this loop is implemented in the dataflow sys­
tem, then the user can make changes in those operators that
will be integrated on the next trip through the loop. This is
the typical inter-module steering.
Cancellation. When parameters are changed, the module
can choose to cancel the current operation. For example, if
boundary conditions are changed, it may make sense to can­
cel the computation and focus on the new solution. Cancel­
ing is sensible when solving elliptic boundary value prob­
lems, since the solution does not depend on any previous
solution.
Direct lightweight param eter changes. An iterative ma­
trix solver module allows the user to change the target error
even while the module is executing. The parameter change
does not pass a new token through the dataflow network, but
simply changes the internal state of the module, effectively
changing the definition of the operator rather than trigger­
ing a new dataflow event. This allows intra-module steering
rather than just inter-module steering. This technique al­
lows changes to take place outside of the dataflow stream.
Retained state across module firings. Modules are not
required to be stateless. They may use knowledge from pre­
vious iterations to optimize the currently executing opera­
tions. For example, the matrix solver module uses the solu­
tion vector from the previous execution as the initial guess
for an iterative solution method. When the changes made to
the system are small, the solver will converge very quickly,
similar to a time-dependent system exploiting temporal co­
herence by using the previous time-step as the initial guess
for the next time step. A more complex example of re­
tained state is a Delaunay triangulation module that only
re-meshes local regions around boundaries that have moved
since the previous iteration.

These methods provide the mechanisms whereby com­
putational parameters can be changed during program exe­

cution. This technique creates a much richer set of steerable
parameters than previous systems.

5.2 Steering Optimizations

To accommodate the large datasets required by high
resolution computational models, we have optimized and
streamlined the dataflow implementation. These optimiza­
tions are made necessary by the limitations many scientists
have experienced with currently available dataflow visual­
ization systems [16].

Progressive Refinement: Unfortunately, because of mem­
ory and speed limitations of current computing technolo­
gies, it will not always be possible to complete these large
scale computations at an interactive rate. To maintain in­
teractivity, the system displays intermediate results as soon
as they are available. Such results include partially con­
verged iterative matrix solutions, partially adapted finite el­
ement grids, and incomplete streamlines or isosurfaces. In
this way, an engineer or scientist can watch a solution con­
verge and decide, based on the results observed, to make
changes and start over or allow the simulation to continue
to full convergence.

Exploiting Interaction Coherence: Another common in­
teractive change consists of moving and orienting portions
of the geometry. Because of the nature of this interaction,
surface movement is apt to be restricted to a small region of
the domain. As mentioned above, state can be maintained
across module executions to allow incremental updates to
the results.

Data structure management: A naive implementation of
the dataflow paradigm might use the interconnection struc­
ture to make copies of the data. SCIRun uses shared copies
of application data to allow the computation and visualiza­
tion algorithms to work without making copies of the data.
These shared regions may allow synchronized or unsyn­
chronized access to common data. Resources are managed
with a simple reference counting scheme.

Through coupling these techniques, we are able to in­
troduce some degree of interactivity into a process that for­
merly took hours, days or even weeks. Most of the opti­
mizations come from the reduced requirement for human
intervention, translation programs and large file I/O. While
some of these techniques (such as displaying intermediate
results) will add to the computation time of the process, we
attempt to compensate by providing optimizations (such as
exploiting interaction coherence) that are not available with
the old “data file” paradigm.

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

5.3 Responsibilities of a Problem Solving Envi­
ronment

A problem solving environment should be an efficient
tool for solving all aspects of a problem. It should provide
flexible modeling, visualization and computational compo­
nents, but it will never provide a comprehensive set. As a
result, it should also provide facilities for implementing, de­
bugging and tuning new components. The scientist should
be able to use these same tools throughout the process - dur­
ing development, debugging, tuning, production and publi­
cation. To provide an efficient environment for developing
and controlling scientific computations, the problem solv­
ing environment assumes responsibilities.

The first responsibility is to provide a flexible interface
for reusing modeling, computational and visualization com­
ponents. SCIRun accomplishes this through a visual pro­
gramming interface that allows a scientist to compose ap­
propriate tools for analyzing and visualizing various data
(including end results, intermediate results, and even debug
data).

A problem solving environment should also be responsi­
ble for providing an appropriate development environment
for PSE components. Development includes debugging and
performance tuning. Traditional debuggers are typically not
efficient at dealing with the amount of data that scientific
programs produce, so SCIRun allows the scientist to use the
same visual analysis tools to examine and probe intermedi­
ate results. SCIRun also provides visualizations of mem­
ory usage, module CPU usage reports, and execution states.
The development environment is further enhanced through
cooperation with a traditional debugger, which allows the
user to closely examine internal data structures when a mod­
ule fails. SCIRun employs dynamic shared libraries to al­
low the user to recompile only a specific module without
the expense of a complete re-link. Another SCIRun window
contains an interactive prompt that gives the user access to a
Tcl shell that can be used to interactively query and change
parameters in the simulation.

Another responsibility of a problem solving environment
is to assure the efficient use of system resources. In a so­
phisticated simulation, each of the individual components
(modeling, mesh generation, nonlinear/linear solvers, visu­
alization, etc.) typically consumes a large amount of mem­
ory and CPU resources. When all of these pieces are con­
nected into a single program, the potential computational
load is enormous. To use the resources effectively, SCIRun
adopts a role similar to an operating system in managing
these resources. SCIRun manages scheduling and prioriti­
zation of threads, mapping of threads to processors, inter­
thread communication, thread stack growth, memory allo­
cation policies, and memory exception signals.

Steering tools and environments, such as Magellan and

Pablo, that focus on performance steering and algorithm
refinement, address some of these issues. They provide
mechanisms for performance tuning that can either be con­
trolled by the user/developer or automated based upon per­
formance statistics. However, they do not provide a rich set
of components for computational steering of an application.
By having an integrated steering environment for both de­
veloping and running an application, the user/developer has
the capability to easily migrate from development to pro­
duction. Furthermore, steering modifications that affect the
performance can be more easily understood if discovered in
an interactive setting.

5.4 Requirements of the Application

A problem solving environment provides a framework
for constructing and executing steerable scientific and engi­
neering applications. However, the application programmer
must assume the responsibility of breaking up an applica­
tion into suitable components. In practice, this modular­
ization is already present inside most codes, since modular
programming has been preached by software engineers as a
sensible programming style for years.

More importantly, it is the responsibility of the appli­
cation programmer to ensure that parameter changes make
sense with regard to the underlying physics of the problem.
In a CFD simulation, for example, it is not physically possi­
ble for a boundary to move within a single timestep without
a dramatic impact on the flow. The application program­
mer may be better off allowing the user to apply forces to a
boundary that would move the boundary in a physically co­
herent manner. Alternatively, the user could be warned that
moving a boundary in a non-physical manner would cause
gross errors in the transient solution.

6 Conclusions

SCIRun attempts to overcome the artificial distinctions
between scientific computing, scientific visualization, and
computational steering. Many visualization tasks are sci­
entific computing problems themselves, hence are further
candidates for steering. The primary goal of SCIRun is
to provide the scientist with a comprehensive environment
with interfaces to control and interact with the simulation
at both application and system levels, and to use scientific
visualization in all aspects of the problem. This control can
be implemented with the best available techniques, such as
those reviewed above. By integrating computational and vi­
sualization components, SCIRun avoids the transfer of large
datasets to a separate visualization process. In addition, the
scientist can use the same visualization tools in the develop­
ment stages, the performance tuning stages, the production

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

stages, and even the publication stages of the scientific ap­
plication.

At the application level, the mathematical requirements
of steering are as important as the program implementation,
yet those requirements receive much less focus. For exam­
ple, it is very easy for a “steerer” to input new data that rep­
resents a mathematically invalid or physically impossible
transition. Opponents of steering point at these occurrences
and question the validity of the results from such a system.
Methods of integrating changes in a scientifically meaning­
ful manner need considerable investigation. While it is im­
portant to have complete control of all parameters while de­
bugging a simulation, production simulations should have
either tight requirements for valid steering input or a flex­
ible system to help the scientist assess the validity of the
transformation.

Computational steering systems are best implemented as
a part of an integrated problem solving and development
environment. With limited programming effort, computa­
tional scientists should be able to interactively create, con­
trol, execute, and visualize complex scientific simulations.

7 Acknowledgments

This work was supported in part by the DOE Center
for the Simulation of Accidental Fires and Explosions (C-
SAFE) an ASCI Level 1 Alliance, the DOE Advanced Vi­
sualization Technology Center (AVTC), NSF, NIH, and the
Utah State Centers of Excellence.

References

[1] D. Beazley. Using SWIG to control, prototype, and debug C
program with Python. 4 th In te rn a tio n a l P y th o n C onference,
1997 (to appear).

[2] M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and
X. Yang. Toward visual programming languages for steer­
ing scientific computations. IE E E C o m p u ta tio n a l S c ience
a n d E n g in e erin g , 1(4):44-62, 1994.

[3] Problem Solving Environments - Projects,
Products, Applications and Tools:
http://www.cs.purdue.edu/research/cse/pses/research.html.

[4] T. D. F. et al. Special issue on visualization in scientific
computing. C o m p u te r G raph ics, 21(6), Nov. 1987.

[5] G. Geist, J. Kohl, and P. Papadopoulos. Cumulvs: Providing
fault-tolerance, visualization and steering of parallel appli­
cations. SIA M , Aug. 1996.

[6] W. Gu, G. Eisenhauer, E. Kramer, K. Schwan, J. Stasko, and
J. Vetter. Falcon: On-line monitoring and steering of large-
scale parallel programs. In P ro ceed in g s o f the 5 th S y m ­
p o s iu m o f the F ron tiers o f M a ss iv e ly P a ra lle l C o m p u tin g ,
pages 422 - 429. ACM, Feb. 1995.

[7] W. Gu, J. Vetter, and K. Schwan. An annotated bibliography
of interactive program steering. G eo rg ia In s titu te o f T ech­
n o lo g y T echn ica l R e p o r t , 1994.

[8] D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. Vase:
The visualization and application steering environment. In
P ro ceed in g s o f Sup erco m p u tin g ‘93, pages 560 - 569. IEEE
Computer Society Press, 1993.

[9] C. Johnson, R. MacLeod, and M. Matheson. Computational
medicine: Bioelectric field problems. IE E E C O M P U T E R ,
pages 59-67, Oct., 1993.

[10] C. Johnson and S. Parker. A computational steering model
for problems in medicine. In S u p erco m p u tin g ‘9 4 , pages
540-549. IEEE Press, 1994.

[11] B. Lucas and et al. An architecture for a scientific visual­
ization system. In P ro ceed in g s o f V isua liza tion '92 , pages
107-114. IEEE Press, 1992.

[12] S. Parker and C. Johnson. SCIRun: A scientific program­
ming environment for computational steering. In S u p erco m ­
p u tin g ‘95. IEEE Press, 1995.

[13] S. Parker, D. Weinstein, and C. Johnson. The SCIRun com­
putational steering software system. In E. Arge, A. Bruaset,
and H. Langtangen, editors, M o d e rn S o ftw are T ools in S c i­
en tific C o m pu ting , pages 1-44. Birkhauser Press, 1997.

[14] D. Reed, C. Elford, T. Madhyastha, E. Smirni, and S. Lamm.
The next frontier: Interactive and closed loop performance
steering. In P ro ceed in g s o f the 2 5 th A n n u a l C onference o f
In te rn a tio n a l C onference on P a ra lle l P ro cess in g , 1996.

[15] D. Reed, K. Shields, L. Tavera, W. Scullin, and C. Elford.
Virtual reality and parallel systems performance analysis.
IE E E C om pu ter, pages 57 - 67, Nov. 1995.

[16] B. Ribarsky and et al. Object-oriented, dataflow visualiza­
tion systems— A paradigm shift? In P ro ceed in g s o f V isual­
iza tio n '92, pages 384-388. IEEE Press, 1992.

[17] J. Rice and B. R.F. So lv in g E llip tic P ro b lem s usin g E L L -
P A C K . Springer-Verlag, 1984.

[18] C. Upson and et al. The application visualization system:
A computational environment for scientific visualization.
IE E E C o m p u ter G ra p h ics & A p p lic a tio n s , 9(4):30-42, July
1989.

[19] J. Vetter and K. Schwan. Progress: A toolkit for interactive
program steering. In P ro ceed in g s o f the 2 4 th A n n u a l C on­
fe r e n c e o f In te rn a tio n a l C on ference on P a ra lle l P rocessing ,
pages 139 - 142, 1995.

[20] J. Vetter and K. Schwan. Models for computational steer­
ing. In P ro ceed in g s o f the T h ird In te rn a tio n a l C onference
o n C onfigurab le D is tr ib u te d S ys tem s , 1996.

[21] J. Vetter and K. Schwan. High performance computational
steering of physical simulations. In P ro ceed in g s o f the
11 th In te rn a tio n a l P ara lle l P ro cessin g S ym p o siu m . Geneva,
Switzerland, Apr. 1997.

[22] C. Willams, J. Rasure, and C. Hansen. The state of the art
of visual languages for visualization. In P ro ceed in g s o f Vi­
su a liza tio n ’92, pages 202-209. IEEE Press, 1992.

[23] R. Zeleznik and et al. An interactive 3d toolkit for con­
structing 3d widgets. C o m p u ter G raph ics (P ro ceed in g s o f
S IG G R A P H ’93), pages 81-84, July 1993.

Authorized licensed use limited to: The University of Utah. Downloaded on September 1, 2009 at 16:29 from IEEE Xplore. Restrictions apply.

http://www.cs.purdue.edu/research/cse/pses/research.html

