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A novel eigenfunction expansion technique, based in part on separa tion  o f th e  thickness-variable, is 
developed to  derive th ree-d im ensional asym pto tic  stress field in th e  vicinity o f th e  front o f a sem i-infinite 
th rough-th ickness crack/anticrack w eakening/reinforcing  an infinite o rtho trop ic /o rthorhom bic  plate, of 
finite thickness and subjected to far-held an ti-p lane  shear loading. Crack/anticrack-face boundary  condi­
tions and those th a t  are  prescribed on th e  top and bo ttom  (free, fixed and lubricated) surfaces o f the  
o rtho trop ic  p la te  are  exactly satisfied. Five d ifferent through-th ickness crack/anticrack-face boundary 
conditions are  considered: (i) slit crack, (ii) an ticrack  or perfectly  bonded rigid inclusion, (iii) transversely  
rigid inclusion (longitudinal slip perm itted), (iv) rigid inclusion in p a rt perfectly  bonded, th e  rem ainder 
w ith  slip, and (v) rigid inclusion located alongside a crack. Explicit expressions for th e  singular stress 
fields in th e  vicinity  of th e  fronts of th e  th rough-th ickness cracks, an ticracks o r m ixed crack-an ticrack  
type d iscontinuities, w eakening/reinforcing  o rtho trop ic /o rthorhom bic  plates, subjected to  far-held 
an ti-p lane  shear (m ode III) loadings, are  p resen ted . In addition, singular residual stress fields in th e  vicin­
ity o f th e  fronts of these  cracks, anticracks and sim ilar discontinuities are  also discussed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Asymptotic behavior of two-dimensional stress fields at the tips 
of cracks, anticracks and homogeneous/bimaterial wedges, has 
been studied extensively in the literature [1-4]. An anticrack is a 
rigid (line in two-dimension, planar in three-dimension) inclusion, 
and is essentially a through slit crack filled with an infinitely rigid 
lamella, which unlike a crack transmits tractions, but prevents a 
displacement discontinuity. A rigid lamella may be in the form of 
a single crystal layer, or an atomic hydrogen layer diffused into 
metallic lattice or grain boundary. More likely scenario may, how­
ever, involve reaction products that are often brittle ceramic com­
pounds, formed at high temperatures during the processing of 
metal matrix composites. Anticracks have important applications 
in the field of materials science, because they can be idealized rep­
resentations of manufacturing defects such as embrittlements (e.g., 
hydrogen embrittlement) or ceramic reaction products, and are as 
much a source of materials failure as cracks. As regards hydrogen 
embrittlement, it is presently believed by materials scientists that 
molecular hydrogen is dissociated by a chemisorption process, 
which allows the liberated atomic hydrogen to diffuse internally 
into the metallic lattice and grain boundary thus forming an
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embrittled layer [5]. Atomic hydrogen can diffuse rapidly through 
a metal lattice, because its size is smaller than the lattice parame­
ter [5]. The first objective of the present investigation is to solve 
the crack and anticrack problems of orthotropic materials, such 
as fiber reinforced composites and orthorhombic single crystals, 
from a three-dimensional perspective. Discovery of superconduc­
tivity in La-Ba-Cu-0 system in th el980s by Bednorz and Muller 
(1987 Nobel laureates in Physics) had spurred an enormous 
amount of interests in such monocrystalline perovskite type oxides 
as the oxygen deficient YBa2Cu3Ox, which are of orthorhombic 
symmetry [6]. However, practical applications of such monocrys­
talline superconductors are restricted at cryogenic temperature 
by their poor fracture toughness and associated mechanical char­
acteristics [6].

Another issue of great concern to designers of orthotropic mate­
rials, such as orthorhombic single crystals and fiber reinforced 
composites, is the residual stress. For example, the presence of 
residual stresses in silicon single crystals (cubic, being a special 
case of orthotropic materials) greatly affects the performance and 
reliability of the integrated circuits [7], Residual stresses are devel­
oped in silicon wafers during the growth phase as well as in the 
thermal processing. These stresses can be determined in wafers 
by analysis of the out-of-plane deformation. A second example re­
lates to the processing (i.e., chemical/thermal)-induced residual 
stresses in composites, which can be high enough to cause cracking
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within the matrix even before mechanical loading is applied [8]. 
This micro-cracking of the matrix can expose the fibers to degrada­
tion by chemical attack. Strength is adversely affected by residual 
stresses since a pre-loading has been introduced. These residual 
stresses are nonsingular in nature, i.e., they, when derived or com­
puted by a linear elastic analysis technique, do not “blow up" (or 
approach infinity) as a crack front is approached. Unfortunately, 
the problem of residual stress in the context of fracture mechanics 
has not been addressed in the literature, which is the second objec­
tive of the present investigation. This latter type of residual stres­
ses, which are associated with crack/anticrack type discontinuities, 
do “blow up" at the fronts of these sharp discontinuities, when de­
rived or computed using a methodology based on linear elastic 
fracture mechanics (LEFM).

A number of numerical methods, such as finite element meth­
ods (FEM) and boundary integral equation methods (B1EM), are 
nowadays widely used, because they can handle arbitrary geom e­
tries and complex far-field loadings, that would almost be intracta­
ble to any known analytical approach. In the absence of the 
knowledge of the strength of a singularity, however, in regions 
where the elastic stresses become unbounded, the majority of 
weighted residual type methods, such as the FEM, encounter over­
whelming numerical problems, such as lack of convergence and 
oscillation resulting in poor accuracy [9], Furthermore, as Stenger 
et al. [9] has observed, for traditional numerical methods such as 
finite difference, finite element and polynomial methods, the exis­
tence of corners drastically decreases the rate of convergence of 
the solution, and the order of singularity cannot be explicitly com­
puted. Current modifications of these methods introduce special 
“boundary elements" which mimic the singular behavior of the 
solution, but, to be able to do this effectively, requires a knowledge 
of the exact nature of the singularity, which may at times be diffi­
cult to deduce for a three-dimensional state of stress.

The mathematical difficulties posed by the three-dimensional 
crack and anticrack problems are substantially greater than their 
two-dimensional counterparts. A three-dimensional eigenfunction 
approach has recently been developed by Chaudhuri and Xie [10], 
and Chaudhuri [11] for understanding the singular stress behavior 
in the vicinity of a point located at the front of a crack and an anti­
crack, respectively. This has been extended to determine the 
asymptotic stress fields in the neighborhood of points located at 
the fronts of homogeneous and bimaterial pie-shaped wedges 
[12], and their special cases of bimaterial interface cracks [13] 
and free edges [14], It may also be noted here that the above 
three-dimensional eigenfunction expansion technique has also 
been utilized to compute the asymptotic stress fields in the vicinity 
of fronts of penny shaped cracks/anticracks weakening homoge­
neous and bimaterial media [15,16], and thus establishing a con­
ceptual similarity of this class of three-dimensional crack 
problems with their through-thickness counterparts. In addition, 
the three-dimensional singular stress fields near a partially deb­
onded cylindrical rigid fiber [17], and in the vicinity of the circum­
ferential tip of a fiber-matrix interfacial debond [18,19] have also 
been derived using the same afore-mentioned three-dimensional 
eigenfunction expansion technique. The three-dimensional asymp­
totic stress fields in the vicinity of the line of intersection of a cir­
cular cylindrical through/part-through open/rigidly plugged hole 
[20] as well as an elastic inclusion [21] and a plate has also been 
derived using the same three-dimensional eigenfunction expan­
sion approach. Finally, an asymptotic solution pertaining to the 
stress field in the neighborhood of the circumferential line of inter­
section of an interface of a two-layer plate made of dissimilar iso­
tropic materials and a through-hole, subjected to far-field 
extension/ bending (mode 1), in-plane shear-twisting (mode 11) 
and torsional (mode 111) loadings, has also been derived using the 
same technique [22], which is in agreement with its counterpart

derived by Folias [23], using Lure’s symbolic method. This does 
not only lend credence to the validity of the afore-mentioned 
three-dimensional eigenfunction expansion approach, but also 
establishes a conceptual as well as mathematical similarity of the 
afore-cited four classes of three-dimensional singularity problems.

In regards to the anti-plane shear problems, Ma and Hour [24] 
have solved the anti-plane problem of two dissimilar anisotropic 
wedges of arbitrary aperture angles that are bonded together along 
a common edge, using the Mellin transform technique. More re­
cently, the problems of three-dimensional asymptotic stress fields 
in the neighborhood of the fronts of bimaterial pie-shaped wedges 
of symmetric and unsymmetric geometrical configurations (with 
respect to the bimaterial interface) and subjected to anti-plane 
shear far-field loading have been solved by Xie and Chaudhuri 
[25], and Chiu and Chaudhuri [26], respectively. In what follows, 
a simple, yet novel and hitherto unavailable eigenfunction expan­
sion type method, based on the separation of the thickness-vari­
able technique, is developed in conjunction with the Stroh type 
affine transformation [1], to obtain three-dimensional asymptotic 
stress fields in the vicinity of the fronts of semi-infinite through­
thickness cracks/anticracks, weakening/reinforcing orthotropic 
plates subjected to far-field anti-plane shear loading. Section 2 
provides a mathematical statement of the problem under investi­
gation. This new three-dimensional eigenfunction expansion 
method is employed to derive explicit expressions for the three­
dimensional asymptotic singular stress fields in the vicinity of 
points located at the fronts of through-thickness cracks/anticracks, 
subjected to the five combinations of crack/anticrack-face bound­
ary conditions. Three different boundary conditions, free, fixed 
and lubricated, are applied on the top and bottom surfaces of the 
orthotropic/orthorhombic plate. These expressions for the singular 
stress fields in the vicinity of the crack/anticrack fronts weakening/ 
reinforcing orthotropic/orthorhombic plates, of finite thickness 
and subjected to anti-plane shear loading, presented in Section 3, 
reduce to their isotropic counterparts [10,11].

2. Formulation of the problem

The Cartesian coordinate system (x ,y ,z )  is convenient to de­
scribe the deformation behavior in the vicinity of a semi-infinite 
through-thickness crack/anticrack, weakening/reinforcing an infi­
nite orthotropic plate of thickness, 2 h (Figs. 1 and 2). Here, the 
z-axis is placed along the straight crack/anticrack front, while the 
coordinates x, y, are used to define the directions along the length 
of the crack/anticrack and transverse to it, respectively, in the 
plane of the plate, u, v and w represent the components of the 
displacements in the x, y  and z directions, respectively. The ortho­
tropic material investigated here is of orthorhombic type with x-y, 
y - z  and x -z  planes serving as the three planes of symmetry [27]. In 
case of continuous fiber reinforced composites, the fibers are 
placed parallel to x-direction lying on the x-y  plane (or z-plane). 
The present approach can easily be extended to an anisotropic 
lamina with arbitrary fiber orientation on a plane of symmetry, 
e.g., x -y  plane. Cracks have experimentally been observed to prop­
agate parallel to the fiber directions in a composite lamina. A local 
x - y - z  coordinate system can always be selected to coincide with 
the fiber direction (x), lateral direction (y) and thickness direction
(z).

The three equilibrium equations for a linear elastic solid can be 
expressed in terms of the displacement components u, v, and w, as 
follows:

dl u dl u dl u dl v dlw
Cll^ " C66̂ " C55̂ " (Cl2" C66)̂ " (Cl3" C55)̂ “ °-

(1 a)
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(Cl2 + C66) iM fy + C“  1W  + C:':' W  + C"" ̂  + (Cn +

(c,s + C55) 7*75 + (CM + C44) T p i+C551W + Cm + r” —

where Cy, i, j  = 1 , . . . ,  6, denotes the elastic stiffness constants 
anisotropic plate, given in the form:
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( 2 )

In Eq. (2), ax, ay and a z represent the normal stresses, while xyz, txz 
and zX}, denote the shear stresses. e.x, % and e.z are the normal strains, 
while yyz, yxz and y represent shear strains. The boundary condi­
tions include those at the plate faces and crack/anticrack-side sur­
faces. The three boundary conditions imposed on the plate faces, 
z = ±h, are given as follows:

(i) Stress-free [10,11]:

Zxz — Zy, (j, 0.

(ii) Fixed:

u — v  — w  =  0.

(iii) Lubricated

Txz =  TVZ =  W =  0.

(3a)

(3b)

(3c)

The boundary conditions at the crack or anticrack-side surfaces 
are more conveniently expressed in local cylindrical polar coordi­
nates (Figs. 1-3), which are given as follows:

(i) Crack (Fig. 1):

CT„ =  Tn, =  Tib =  0- 0 =  ± 7T

(ii) Anticrack (Fig. 2):

u, — Ufi —w — 0. 0 — ±n

(4)

(5)

(iii) Transversely rigid inclusion [11] (longitudinal slip 
permitted):

lid — Tr„ —w  — 0. 0 — ± n ( 6 )

Fig. 2. A through-thickness semi-infinite anti crack or perfectly bonded rigid planar 
inclusion in an orthotropic plate.

Fig. 1. Schematic of a through-thickness semi-infinite crack in an orthotropic plate.

Rigid 
Inclusion 
(Interface Slip)

Rigid
Inclusion (No Slip)

Fig. 3. A through-thickness semi-infinite rigid inclusion, in part perfectly bonded, 
the remainder with slip, in an orthotronic plate.
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(iv) Rigid inclusion in part perfectly bonded, the remainder with 
slip [11] (Fig. 3):

lid — ur — w  — 0. 0 =  0 (7a)

u„ =  Trt, =  X(iz =  0; 0 =  ± n  (7b)

(v) Mixed or rigid inclusion alongside a crack [11]:

<7„ =  Trt, =  X(iz =  0 ; 0 =  - n  (8a)

Ur -  U,I -  W =  0. 0 - 7 t  (8b)

where ur and u„ represent the components of the displace­
ment in r and ft directions, respectively. a r, crtl, <rz represent 
the normal stresses, and Tr„, xn, t„z denote the shear stresses, 
while i:r, r.„, v.z denote normal strains, and yw, represent 
the shear strains in the cylindrical polar coordinate system  
(r,ft,z).

U(xu y i ) =  £  os_„ (x, +  p.y. )s- 2"-’ ; (12a)
n= 0

V(xu y j)  =  +  p y - . r (12b)
n= 0

W(x1.y 1) = X > - It(x1 + p y i r 2". (12c)
n O

Flere, the combined variable x\ + pyi represents an affine transfor­
mation in the same spirit as that by Eshelby et al. [33] and Stroh 
[1], although these latter authors have employed completely differ­
ent techniques. Substitution of Eqs. (12) into Eqs. (10a,b) and equat­
ing the coefficients of (Xj 4 - p y , / ' 2" 1 yields the following recurrent 
relationships:

•;s 2n 1 )(s +  2n)(cn +  c66p2)os_„ +  c-y-,a.., •
■ ;s - 2n - 1 )(s +  2n)(c]2 +  c66)pb^„

+  (s +  2n)(cn  +  c55)cs-„ =  0, (13a)

3. Singular stress fields at the front of a crack/anticrack 
subjected to anti-plane shear loading

The assumed displacement functions for the three-dimensional 
crack/anticrack problem under consideration are selected on the 
basis of separation of z-variables. These are as given below [28]:

u(x.y .z) — e'kiU(x.y). 

v(x .y .z )  -  eik2V(x.y). 

w (x.y .z)  — eikzW(x.y).

(9a)

(9b)

(9c,)

It may be noted that since the z-dependent term and its first par­
tial derivative can either be bounded and integrable at most admit­
ting ordinary discontinuities, or the first partial derivative at worst 
be square integrable (in the sense of Lebesgue integration) in its 
interval z  e [-h , h], i.e., admitting singularities weaker than square 
root (i.e., zf Al2+::\  - > o), it can be best represented by Fourier series 
[28-30]. The latter case is justified by the Riesz-Fischer theorem  
[31], and its physical implication is that of satisfying the criterion 
of finiteness of local strain energy and path independence [32], 
Substitution of Eq. (9) into Eq. (1) yields the following system of 
coupled partial differential equations (PDE’s):

d2U d2U . try d W
Cu^ " C66W " C55U" lCu" C66)d ^ d f ^ lCn" C55)d ^ ^ °-

(10a)

. <>'U i'r'v i'r'v
(Ci2 4  Css) ^  4  4  C'2'2 -T T  4  4  (C23 4  Cm) - ^ -  — 0 .

!Ox,Oy, ' dx\ ' 11 dy2
. ow 
]Wx

(10b)

. ou . OV i'r'W i'i'W
(Cn -  C55) ^ +  (C23 -  C * , .^  - C55 ^  ' C ) ) W  ~  °'

(10c)

(s 4  2n 4  1 )(S 4  2n)(cn  4  c66)pa^„

4  ( s 4  2n 4  1 ) ( s 4  2n)(c22 +  c66p'>b..„ 4 cMbs.
4  (s 4  2n)(c2} 4  c-m)cs_„ =  0. (13b)

Likewise, substitution of Eq. (12) into Eq. (10c) and equating the 
coefficients of (Xi +  p y 1' f 2n 2 yields the following recurrent 
relationship:
(C ] 3  4  Or, iCi. .,, • 4  ( C23 4  C ^ )p b s_„

4  ( s 4  2n)(s ■ 2n 1 ){c55 4 cAAp2}cs_„ 4 i =  0. (13c)

For n = 0, Eqs. (13a-c) reduce to the following algebraic 
equations:

(s 4  1 )(C11 4  CesP2)a s 4  (s 4  1 )(C12 4  Ces)pbs 4  (C13 4  C55)CS =  0.

(14a)

(s 4  1)(c 12 4  c66)pas 4  (s 4  1)(C22 -+- CesP2)bs -+- (C23 4  c^ )cs — 0.

for s /  0, s /  -1 ;

{c55 4 c Mp2}cs = 0 .  for s ^ 0 .  s ^ 1 :  

since

0  • =  b. ■ — cs_ 1 =  0.

(14b)

(14c)

For nontrivial cs- Eq. (14c) supplies the following characteristic 
equation

C55 4 CmP2 =  0;

leading to

P1.2 =  -Lfv/P^- V M4

(15a)

(15b)

In addition, since a z-dependent term is, as mentioned earlier, 
assumed in the form of a Fourier series, the assumed displacement 
functions can be written as follows:

where

x, =  ikx. y, =  iky. ( 11 )

The solution to the system of coupled partial differential equa­
tions (10), subjected to the far-field anti-plane shear loading, can 
now be sought in the form of the following modified Frobenius 
type series in terms of the variable Xt + py  ̂ as follows [28], 
although unlike in the case of isotropic materials [10-22], the Xt 
and y-! variables are no longer separable:

w (x.y.z) =  {Di cos(fcz) 4 D 2isin(fcz)}

x  (iky

u(x.y .z) -  {D iisin(kz) 4 D 2 cos(kz)}

X ( i k f - 1

(16a)

_  I f —  X s - l  _  /  I f -  x  s-1

A , [ x + U ^ y )  + A 2 ( x - L f f i? M4 / \ V
(1 6 b )
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v(x .y .z )  — {Ot i sin(k2 ) 4 D2 cos(kz)} 

x i iki"
\  y C44 j  \  y C44 y

(16C)
It is convenient to express the components of displacements 

and stresses in terms of cylindrical polar coordinates. The general 
asymptotic form for the displacement components can be written 
as follows:

w(r.O.z) — f B b(z) cos2 (0) 4  —  sin2 (0)
Cm

C2 sin(s0)l +  Of i" ' 1

s/2
[Ct COS(S</>)

u„(r.0.z) — 0( f ~ur{r.0.z) — 0 { f ^ )  

where

(/> =  tan~1 ^ y ^ t a n ( 0 ) j .

C1 =  C1 + C2.

C? =  i(Ci 4 - C2). 

and

Bb(z) — -D i  cos(kz) 4  D2 sin(fcz). 

in which

=  - ( i k fD- i . D2 — i ( ik fD2.

(17a)

(17b)

(18)

(19a)

(19b)

( 2 0 )

( 2 1 )

wherein k is an integer. The singular stress field can be obtained 
from Eqs. (16) or (17) as follows:

r„z(r. O.z) =  Om!-s~1B(,(z)s<! cos2(0) 4 —  sin2(0)C44
1/2

is- 172

x { —  cos2(0 ) 4  sin2(0 )
{£44

■ cos(si/> 4  </>’ -  (ft) 4  C2 sin(si/> 4  — (/>)} 4  0(rs~1).
(2 2 a)

r rz(r. O.z) =  r 55rs-1 Bb(z)s \  cos2(0) +  sin2(0)
t C44

x {C, cos(S(/>) 4  C2 sin(si/))} 4  0(rs~1)

r r„ =  0( f ) .  07 =  0(rs).

=  0 (rs). ffz =  0 (rs). 

where

s/2

(/>' = tan- -cot(0 ) .

(22b) 

(2 2 c. d) 

(2 2 e .f)

(23)

For an isotropic or cubic single crystal material, c55 = C44, and 
Eqs. (18) and (23) reduce to

<l> = 0.

* = ?  + 0-

(24a)

(24b)

It may be noted that since s or Re s (when s is complex) is posi­
tive, all the higher order terms in Eqs. (22) vanish as r -► 0.

3.1. Plate surface boundary conditions

(i) Satisfaction of stress-free boundary conditions, given by Eq. 
(3a), on the plate faces results in:

Bb(±h) — Bbs(±h) 4 Bb„(±h) — 0. (25)

where
Bbs(±h) — -D , cos(±kh).  (26a)
Bba(±h) — D2 sin(±kh).  (26b)

The special case of symmetric deformation is obtained as 
follows:
D2 — 0. (27)

k,„ =
(2m 4  l  )7i 

2 h ~ - m — 1 . 2 . (28a)

Bhs(Z) =  - ^ D 1m COS | (28b)

which, on substitution into Eq. (20), yields 

( {2 m  4  l)7 iz \
„ - 2h ’ J '

The antisymmetric deformation case can also be obtained in a 
similar manner, as given below:
D1 — 0. (29)

k,„ =
mn
I T m — 1 . 2 .

Bba{z ) ^ D 2m sin (™ Z )

(30a)

(30b)

(ii, iii) Satisfaction of fixed and lubricated boundary conditions, 
given by Eqs. (3b) and (3c), respectively, on the plate faces results 
in identical expressions for the displacement and singular stress 
fields as above.

3.2. Crack/anticrack side boundary conditions

The expressions for stresses and displacements also need to sat­
isfy the boundary conditions on the crack, anticrack or mixed 
crack-anticrack-side surfaces.

3.2.1. Crack
Substitution of Eq. (22a) into Eq. (4) yields the characteristic 

equation for a crack:

sin(2 s 7i) =  0. (31)

The minimum root (eigenvalue), contributing to the singular 
stress field, is given by s = 1/2, which is the same as that for its iso­
tropic plate counterpart [10]. It must be stressed that strength of 
the stress singularity remains unchanged throughout the plate 
thickness. The stress distribution in the vicinity of a semi-infinite 
crack front can now be expressed as follows:

Tn(r. o.z) =  * 1  { c o s 2 0 +  ^  sin2 0 
' V2nr C44 I  C44

T(J (,- 0 z) =  K"l(Z) { C55 C°s2 ° +  Caa S‘n2 ° 
01 ' \f2nr  1 Cm cos2 0 4  C55 sin2 0

1/2

1/2

while the transverse displacement component is given by

w(r.O.z)  =

where

s i n g

cos( l

sin ((/>') =

2 Kui(z)
C44

cos2 0 4 —  sin2 0 
27Z I C44

C44 cos2 0 

c44 cos2 0 4  c55 sin2 0.

1/2

C44 cos2 0

C44 cos2 0 4 C55 sin2 0.

C44 cos2 0 4  c55 sin~ 0,
1/2

cos 0 .

1/2

1/2-

1/2

1/2

(32a)

(32b)

(33)

(34a)

(34b)

(3 4 0
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The above results reduce to their isotropic [10] and cubic single 
crystal [28] counterparts by virtue of Eqs. (24). Kmiz), which de­
notes the stress intensity factor, can be split into symmetric and 
antisymmetric parts (with respect to z):

Km(z) — Kms (z) + Knkl(z). 

with

Kuis — J^c^CiB^siz).

K„ 2"C44 C 2 (z ) .

C2 is a constant. It is clear that

fJ-h
Kw„dz =  0.

(35)

(36a)

(36b)

(37)

Kuia thus obtained represents the self-equilibrating stress inten­
sity factor for a semi-infinite crack, resulting in the residual stres­
ses in the orthotropic plate material. It must be noted that K,„a 
cannot be determined by a two-dimensional approximation, which 
yields constant K„ls, while both K,„a and K„ls, derived by the above 
three-dimensional approach, are functions of z.

Figs. 4 and 5 show variations of the normalized stress intensity 
factor, ICiz) -  Kiz)/KAm>hlm,shl,llrl2n), through the normalized thick­
ness coordinate, z =zjh, of an orthotropic plate and weakened by 
a through-crack investigated here. For an infinite cylindrical 
shaped body with a center-crack of length 2a, KA„,wbmi.shl.,m2m was
first given by Sih et al. [2] as xAnti plane v'o. W here *s th e
applied far-field loading. This definition of K has since been modi­
fied with a multiplying factor of Y -  s/n, with the result that 
KAniipiimt’Sht’iiruD] -  ipum,-'/**- FiS- 4 shows the through-thickness 
variation of the stress intensity factor for a far-field anti-plane 
shear (mode III) load, while its antisymmetric counterpart respon-

1.5

1

K

0.5

0
-0.5 0.5

Fig. 4. Variation o f stress intensity factor for anti-plane shear loading through 
thickness.

sible for singular residual stress field is displayed in Fig. 5. The lat­
ter types of results are, to this date, unavailable in the literature. It 
may be noted that the applied far-field anti-plane shear stress con­
sidered here is constant through the plate thickness. For a two­
dimensional LEFM analysis, such as that due to Sih et al. [2], this 
is not an issue, since there are no boundary conditions that need 
to be satisfied at the top and bottom surfaces of the plate, z  = ±1. 
Flowever, for a three-dimensional LEFM analysis carried out in 
the present study, a great complication arises in terms of
th ro u g h -th ic k n ess  c o n s tan t ap p lied  (far-fie ld) s tress, tAntiplane and
satisfying the boundary conditions at z  =±1. These conflicting 
goals are reconciled in the present analysis, by employing a large 
number of terms (about 300,000) in order to replicate the sharp 
drop to zero at the top and bottom (stress free) surfaces of the 
cracked orthotropic plate under investigation. This is clearly shown 
in Fig. 6.

3.2.2. Anticrack
Substitution of Eq. (17a) into Eq. (5) yields the characteristic 

equation for an anticrack:

sin(2s7T) =  0. (38)

The minimum root (eigenvalue), contributing to the singular 
stress field, is given by s = 1 /2, which is the same as that for its iso­
tropic plate counterpart [11]. The stress distribution in the vicinity 
of a semi-infinite anticrack front can now be expressed as follows:

Trz(r.O .Z )

T,/z(nfL z):

Sm(Z) C55 

V2nr  C44
cos2 0 + —  sin2 0C44

1/2
(39a)

(\C55 COS2 0 - c44 sin2 0
1/2

COS (j>‘
V2nr \  c44 cos2 0 + c55 sin2 0 

while the transverse displacement component is given by

£ ) •  (39b)

w(r.O.z) ■■ 2 S,
c44 V 2n

cos2 0 + —  sin2 0
C 44

1/2
cos ( J (40)

The above results reduce to their isotropic [11] counterparts by 
virtue of Eqs. (24). Sm(z), known as the stress singularity coefficient 
[3], is also a function of 2 , and can be split into symmetric and anti­
symmetric parts (with respect to z):

S„,(z) — S„,s(z) +  S„,u(z). (41)

Fig. 5. Variation of stress intensity factor for singular residual stress through 
thickness.

Fig. 6. Sharp drop of stress intensity factor to zero in the vicinity of the top surface 
of a cracked p late for constant-through-thickness far-field loading.
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with

Sm ^ ^ 44C,BlK(z). (42a)

[tz
Sma — J  2C44CiB/m(z). (42b)

Ci is a constant. It is clear that

J  S,mdz =  0. (43)

S,,k, thus obtained represents the self-equilibrating stress singu­
larity coefficient for a semi-infinite anticrack, resulting in the resid­
ual stresses in the material. It must be noted that S„k, cannot be 
determined by a two-dimensional approximation, which yields 
constant S/Hs, while both S//to and SH/s, obtained by the above 
three-dimensional approach, are functions of z. Through-thickness 
variations of these stress singularity coefficients can be repre­
sented in a manner similar to their stress intensity factor counter­
parts as shown in Figs. 4 and 5.

3.2.3. Transversely rigid inclusion (longitudinal slip permitted) 
Substitution of Eq. (17a) into Eq. (6) supplies the same charac­

teristic equation as in the case of an anticrack. Since zt„ -  O(r'), 
i.e., zt„ is nonsingular and the only boundary condition that deter­
mines the lowest eigenvalue, s, is given by w -  0. at ti -  +71, this 
situation is identical to that of case 3.2.2. The mode III stress singu­
larity coefficients are also identical, and will not be repeated here.

3.2.4. Rigid inclusion in part perfectly bonded, the remainder with slip 
Substitution of Eq. (22a) into Eq. (7b) supplies the same charac­

teristic equation as in the case of a through crack. It may be noted 
here that the interface continuity condition, given by Eq. (7a) is 
automatically satisfied. Furthermore, the only boundary condition 
that determines the lowest eigenvalue, s, is given by z,a -  0, at 
O -  +7i. Consequently, this situation is identical to that of case
3.2.1. The mode III stress intensity factors are also identical to their 
counterparts for a crack, and will not be repeated here.

inclusion, (iii) transversely rigid inclusion (longitudinal slip per­
mitted), (iv) rigid inclusion in part perfectly bonded, the remainder 
with slip, and (v) rigid inclusion located alongside a crack. Explicit 
expressions for the singular stress fields in the vicinity of the fronts 
of the through-thickness cracks, anticracks or mixed crack-anti- 
crack type discontinuities, weakening/reinforcing orthotropic/ 
orthorhombic plates, subjected to far-field anti-plane shear (mode 
III) loadings, are presented.

Among interesting conclusions of the present investigation, K„k, 
and Sma, obtained here represent the self-equilibrating stress inten­
sity factor and stress singularity coefficient, respectively, for a 
semi-infinite through-thickness crack/anticrack, resulting in resid­
ual stresses in the orthotropic plate material. It must be recognized 
that K,,ia (or S„k,) cannot be determined by a two-dimensional ap­
proach, which yields constant K,„s (or Sms), while both K„k, (or Sma) 
and K,,is (or S/Hs), obtained by the above three-dimensional ap­
proach, are functions of z.

The singular residual stress in a monociystalline orthorhombic 
(cubic as a special case) material appears to be screw disloca­
tion-like. This can be interpreted as the core of a screw dislocation 
getting trapped at the crack front. For example, since for (cubic) 
monocrystalline silicon, the room temperature is much lower than 
what is needed for brittle-to-ductile transition, such trapped screw 
dislocation core would not be able to induce large scale plasticity 
in its neighborhood. It should be possible to measure the out of 
plane displacement component, w, by cutting a cylindrical piece 
of solid radially (see e.g., Fig. 2.14 of Hertzberg [5]). The plate mate­
rial undergoes high shear deformation in the vicinity of a crack or 
anticrack in the r-z plane (O normal), and r-0 plane (z normal) 
which may cause high shear distortion in the lattice, resulting in 
both bond scission and bond rotation.

In a fiber reinforced composite material, the singular residual 
stress field can be high enough to cause cracking within the matrix. 
This micro-cracking of the matrix can expose the fibers to degrada­
tion by chemical attack [8]. In addition, the fibers may themselves 
be sheared by the action of such high t„z and t „z gradient, espe­
cially in the presence of out-of-plane waviness of fibers.

3.2.5. Rigid inclusion alongside crack
Lastly, substitution of Eq. (22a) into Eq. (8a), and that of Eq. 

(17a) into Eq. (8b) yields the characteristic equation for a mixed 
crack/anticrack:

cos(2sn) -  0. (43)

The two lowest roots (eigenvalues), contributing to the singular 
stress field, is given by 5 = 1 /4 ,5' = 3/4, which are identical to their 
isotropic plate counterpart [11]. The singular parts of trz and t „z are 
given as follows:

xn . t„z ~  0 ( r V4) + 0 ( r 1/4). (44)

4. Summary, discussions and conclusions

A heretofore-unavailable eigenfunction expansion technique, 
based partly on separation of the z-variable and in part, on the 
Eshelby et al. [33] and Stroh [1] type affine transformation, is 
developed to derive three-dimensional asymptotic displacement 
and stress fields in the vicinity of the front of a semi-infinite 
through-thickness crack/anticrack weakening/reinforcing an infi­
nite orthotropic/orthorhombic plate. Crack, anticrack or mixed 
crack-anticrack-face boundary conditions and those that are pre­
scribed on the top and bottom (free, fixed and lubricated) surfaces 
of the orthotropic plate are exactly satisfied. Five different 
through-thickness crack/anticrack-face boundary conditions are 
considered: (i) slit crack, (ii) anticrack or perfectly bonded rigid
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