
B e y o n d D e p t h - F i r s t Strategies: I m p r o v i n g
T a b l e d L o g i c P r o g r a m s t h r o u g h Alternative

S cheduling*

J u l i a n a F r e i r e ^ T e r r a n c e S w i f t D a v i d S . W a r r e n

2 7 A p r i l , 1 9 9 8

A b stra ct

Tabled evaluation ensures termination for programs with finite
models by keeping track of which subgoals have been called. Given
several variant subgoals in an evaluation, only the first one encoun
tered will use program-clause resolution; the rest will resolve with the
answers generated by the first subgoal. This use of answer resolution
prevents infinite looping that sometimes happens in SLD. Because
answers that are produced in one path of the computation may be
consumed, asynchronously, in others, tabling systems face an impor
tant scheduling choice not present in traditional top-down evaluation:
when to schedule answer resolution.

This paper investigates alternate scheduling strategies for tabling
in a WAM implementation, the SLG-WAM. The original SLG-WAM
had a simple mechanism for scheduling answer resolution that was ex
pensive in terms of trailing and choice-point creation. We propose here
a more sophisticated scheduling strategy, batched scheduling, which
reduces the overheads of these operations and provides dramatic space
reduction as well as speedups for many programs. We also propose a
second strategy, local scheduling, which has applications to nonmono
tonic reasoning, and when combined with answer subsumption, can
arbitrarily improve the performance of some programs.

*A preliminary version of this paper appeared in [FSW96].
^This research was performed while the first author was at the Department of Computer

Science, State University of New York at Stony Brook, Stony Brook, NY.
1

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §1

1 I n t r o d u c t i o n

Tabling extends the power of logic programming, since it can be used to
com pute recursive queries at the speed of Prolog but w ith much better ter
m ination properties. This property has led to the use of tabled logic program
m ing for new areas of logic program m ing. These include not only deductive
database-style applications, but other fixpoint-style problems, such as pro
gram analysis [DRW96, CDS97], compiler optim ization [DRSS96], and m odel
checking [RRR+97]. Ensuring that these new applications run efficiently may
require the use of different scheduling strategies . The possibility of different
useful strategies derives from an intrinsic asynchrony in tabling system s be
tween the generation of answers in one path of a com putation and their
return to a given consum ing tabled subgoal in another path. D epending on
how and when the return of answers is scheduled, different strategies— and
by im plication, searches— can be formulated. Furthermore, these different
searches can benefit the research and industrial applications that have begun
to emerge.

The efficient evaluation of queries to disk-resident data provides a clear
instance of how a scheduling strategy can benefit an application. Efficiently
accessing the disk requires a strategy analogous to the sem i-naive evaluation
of a m agic-transform ed [BR91] program. A separate paper [FSW97] showed
how this could be done using a breadth-first, set-at-a-tim e tabling strategy for
the SLG-WAM [SW94a], the abstract m achine of the XSB system .1 Unlike
X S B ’s original tuple-at-a-tim e engine, the engine based on the breadth-first
strategy showed good performance for disk accesses.

O f course, tabled evaluations m ust also be efficient for in-m em ory queries.
[SW94b] showed that under several different criteria of m easurem ent, tabled
evaluation incurred a m inim al execution tim e overhead compared to Prolog.
However, m em ory is also a critical resource for logic programm ing com puta
tions, and mem ory m anagem ent for tabled logic programs is com plicated by
the fact that stack space for a consum ing tabled subgoal can be reclaim ed
only after all answers have been returned to it. Since a scheduling strategy
can influence when this condition happens, it can affect the am ount of space
needed for a com putation.

Finally, a number of tabling applications require more than the simple

1XSB is a research-oriented logic programming system, and it is freely available at
http://www.cs.sunysb.edu/~sbprolog.

2

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

http://www.cs.sunysb.edu/~sbprolog

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.1

recursion needed for pure Horn clause programs. Resolving a call to a nega
tive literal requires com pletely evaluating the subgoal contained in the literal,
along w ith all other dependent subgoals. In a similar manner, waiting until
part of an evaluation has been com pletely evaluated can also benefit pro
grams that use answer subsumption (e.g., [KKTG95]), in which only the
m ost general answers need to be m aintained and returned to consum ing sub
goals. The ability to return only the m ost general answers out of a table
can be useful for program analyses (see e.g., [DRW96, JBD 95]), for deduc
tive database queries that use aggregates [vG93], and for answers involving
constraints [Tom95].

This paper m otivates and describes the design and im plem entation of two
new scheduling strategies for tabled logic programs:

• We describe batched scheduling along w ith an instruction set that has
been used to im plem ent this strategy. Batched scheduling is highly effi
cient for in-m emory programs that do not require answer subsum ption.

• We describe local scheduling, which provides a useful strategy for eval
uating both fixed-order stratified programs and programs that use an
swer subsum ption. We also describe the instruction set that is used to
im plem ent this strategy.

• We provide detailed results of experim ents comparing these two strate
gies w ith X S B ’s original single-stack scheduling (described in [SW94b]),
showing that:

— batched scheduling can provide an order of m agnitude space re
duction over the original strategy, as well as reliably provide a
significant reduction in tim e; and

— local scheduling can provide large speedups for programs that re
quire answer subsum ption, while incurring a relatively small (con
stant) cost for programs that do not.

3

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.1

2 S L G f o r D e f i n i t e P r o g r a m s : I m p l e m e n t a

t i o n

2.1 Review of Tabling for Definite Programs
Linear resolution w ith a selection function for general logic programs (SLG
resolution) [CW96] is a tabled evaluation m ethod that is sound and search-
space com plete w ith respect to the well-founded partial m odel for all non
floundering queries. In this section, we review tabling using the notation of
SLG resolution reformulated and simplified for definite programs.

As preliminary term inology, subgoals and goals are atom s. Predicates can
be annotated as either tabled or nontabled, in which case SLD resolution is
used. Evaluations are m odeled by a sequence of system s or forests of SLG
trees . Figures 1, 4, and 6, which will be discussed in detail below, illustrate
forests for a query to a sim ple recursive program.

D e f in it io n 1 (S L G S y s te m) A n SLG system consists of a forest of SLG
trees. The root nodes of SLG trees have the form:

subgoal ^ subgoal

A root node m ay be marked as com pleted when its corresponding tree is
com pletely evaluated (Definition 4)■ In a system, no two trees have the
same root nodes; that is, their corresponding subgoals cannot be renaming
variants of each other. Nonroot nodes have the form:

answer-tem pla te ^ goa ld is t

The ansvjer-template is an atom used to represent variable bindings made to
the tabled subgoal during the course of resolution, and the goaLlist contains
a sequence of unresolved atoms.

We assume throughout this paper a left-to-right com putation rule, so that
the selected literal of a node is always the leftm ost literal in the goaLlist . Two
nodes are identical if they are variants when taken as terms. We will slightly
abuse notation by allowing resolution of a clause against the selected literal
of a node.

An SLG evaluation is defined using SLG system s.

4

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.1

D e f in it io n 2 (S L G E v a lu a t io n) Given a definite program P, an SLG
evaluation E fo r a tabled goal root is a sequence of forests of SLG trees,
F q,F \ , . . . ,F n, such that:

• F 0 is the forest containing a single tree, root ^ root, and

• fo r each finite ordinal n + 1 , F n+1 is obtained from F n by an application
of one of the SLG operations (see Definition 3).

I f no operation is applicable to F n, F n is called a final system of E .

New SLG trees are created by the operation S u b g o a l C a l l when tabled
subgoals that are new to the evaluation becom e selected literals of nodes.
Roots of trees are som etim es called generator nodes. The operation P r o
g r a m C la u s e R e s o l u t i o n is used to produce the children of generator
nodes and of in ter ior nodes whose selected literals are nontabled. If the se
lected literal of a node is tabled, the node is designated as consuming , and
its children are produced by A n s w e r C la u s e R e s o l u t i o n . An answer is
a leaf node whose goaLlist is em pty. These operations are sum marized in
Definition 3.

D e f in it io n 3 (S L G O p e r a t io n s)

• S u b g o a l C a l l : Let N be a nonroot node a n sw e r . te m p la te ^ S,
g o a L lis t where S is tabled; i f S is new to the evaluation, add a new
tree with root S ^ S .

• P r o g r a m C la u s e R e s o l u t i o n : Let N be a root node S ^ S , and
let C be a program clause head ^ body where head unifies with S with
mgu 9. A dd (S ^ body)9 as a child of N , i f it is new.

Alternatively, let N be a nonroot node a n sw e r - te m p la te ^ S, go a L lis t
with S nontabled. Again, let C be a program clause clause head ^
body where head unifies with S with mgu 9. A dd (answ er-tem pla te ^
body, goaLlist)9 as a child of N .

• A n s w e r C la u s e R e s o l u t i o n : Let N be a nonroot node whose se
lected literal S is tabled, and A n s be an answer node. Also, let N ' be
the resolvent of N and A n s on S . Then i f N ' is not a child of N , add
N ' as a child of N .

5

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.1

• C o m p le t io n : Given a set S of subgoals that is completely evaluated
(Definition 4), m ark all root nodes of the trees fo r subgoals in S as
completed.

E x a m p le 1 A s an illustration of the operations in Definition 3, consider the
following double-recursive transitive closure:

table p/2.
p(X,Y) :- p(X,Z), p(Z,Y).
p(X,Y) :- a(X,Y).
a(1,2). a(1,3). a(2,3).

and the query ?- p(1,Y). An SLG system fo r this program is shown in Fig
ure 1. The initial SLG system begins with node 1. Nodes 6 and 12 are
produced via S u b g o a l C a l l operations. Nodes 2, 3, 7, 8, 13, and 14 are
produced by P r o g r a m C la u s e R e s o l u t i o n as applied to root nodes, while
nodes 4, 9, and 20 are produced by P r o g r a m C la u s e R e s o l u t i o n from in
terior nodes. Finally, nodes 5, 11, and 18 are produced by A n s w e r C la u s e
R e s o l u t i o n .

In the system depicted in Figure 1, the sets of subgoals {p (3 ,Y)}, {p(2,Y),
p(3,Y)}, and {p(1,Y), p(2,Y), p(3,Y)} are all completely evaluated— the eval
uation has produced all possible answers fo r subgoals in these sets. A C om
p l e t i o n operation can be applied to any of these sets of subgoals.

D e f in it io n 4 (C o m p le t e ly E v a lu a te d) Given an SLG system and a set
S of subgoals, S is com pletely evaluated i f at least one of the following con
ditions is satisfied fo r each Subg G S .

1. Subg has an answer that is a variant of Subg; or

2. fo r each node with selected literal S L in the tree with root Subg,

(a) S L is completed; or

(b) S L G S , and there are no applicable S u b g o a l C a l l , P r o g r a m
C la u s e R e s o l u t i o n , or A n s w e r C la u s e R e s o l u t i o n oper
ations fo r S L .

6

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n Beyond D epth-First Strategies §2.1

1. p(1,Y) <- p(1,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

5. p(1,Y) <- p(2,Y) 11. p(1,Y) <- p(3,Y) 4. p(1,2) <- 20. p(1,3) <-

V V
10. p(1,3) <- 17. Fail

6. p(2,Y) <- p(2,Y) 12. p(3,Y) <- p(3,Y)

7. p(2,Y) <- p(2,Z),p(Z,Y) 8. p(2,Y) <- a(2,Y) 13. p(3,Y) <- p(3,Z),a(Z,Y)

V
18. p(2,Y) <- p(3,Y)

V
19. Fail

V

9. p(2,3) <-

V

16. Fail

Subgoals Answer

p(1,Y) p(1,2), p(1,3)

p(2,Y) p(2,3)

,p(3,Y) J

14. p(3,Y) <- a(3,Y)

Y
15. Fail

Figure 1: An SLG system

Correctness of SLG was shown in [CW96], along w ith the correctness of
a restriction of SLG for definite programs. To restate this result, we briefly
review some term inology. Let F be a system for an SLG evaluation of a
program P and query Q. The partial interpretation of F , I (F), is a set
of ground atom s constructed as follows. A G I (F) if and only if A is a
ground instance of some answer in F ; not A G I (F) if and only if A is a
ground instance of some A', and the SLG tree for A' is com pleted in F but
does not contain A as an instance of any answer. The following theorem
states the correctness of SLG for definite programs by relating the partial
interpretations of final system s to the m inim al m odel of P restricted to the
set of subgoals S in F (M P |S).

T h e o r e m 1 ([C W 9 6]) Let Q be a query to a definite program P . Then
an SLG evaluation consisting of the operations S u b g o a l C a l l , P r o g r a m

7

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.3

C la u s e R e s o l u t i o n , A n s w e r C la u s e R e s o l u t i o n , and C o m p le t io n
will reach a final system F a in which a ground atom A is in I (F a) i f and
only if it is in M p |S , the m inim al model of P restricted to the set of subgoals
in F .

2.2 Adding Operational Features to SLG
To make SLG more suitable to im plem entation, we add two features to the
formalism: an explicit table and a m echanism for incremental completion. To
m odel the use of an explicit table, we add the N e w A n s w e r operation to
those of Definition 3. This operation adds an answer of a subgoal to a global
table when the answer is new to an evaluation. To understand increm ental
com pletion, consider that in Exam ple 1 the set {p (3 ,Y)} is com pletely evalu
ated at any tim e after nodes 13 and 14 have been created. Given an explicit
table, storage for the tree for {p (3 ,Y)} m ay be reclaimed, and this ability
to reclaim resources used in part of a com putation is term ed increm ental
com pletion. To perform increm ental com pletion, it is necessary to m aintain
or to approxim ate a subgoal dependency graph .

D e f in it io n 5 (S u b g o a l D e p e n d e n c y G r a p h) Let F be a system. We say
that a tabled subgoal S 1 directly depends on a tabled subgoal S 2 in F i f and
only i f S 1 and S 2 are noncompleted, and S 2 is the selected literal of some
node in the tree fo r S 1. The subgoal dependency graph of F , S D G (F), is a
directed graph {V , E } in which V is the set of root goals fo r noncompleted
trees in F , and (Si, S j) G E if and only i f Si directly depends on S j .

We use the relation depends on to denote the transitive closure of the
relation directly depends on . Since S D G (F) is a directed graph, it can be
partitioned into strongly connected com ponents, or SCCs. This leads to an
operational definition of sufficient conditions for com plete evaluation that
will form the basis of algorithm s presented in subsequent sections.

D e f in it io n 6 (C o m p le t e ly E v a lu a te d : O p e r a t io n a l F o r m u la t io n)
Given an SLG system and a set S of subgoals, S is completely evaluated i f at
least one of the following conditions is satisfied fo r each subgoal Subg G S :

• Subg has an answer that is a variant of Subg; or

• S is an independent SCC, and there are no applicable S u b g o a l C a l l ,
P r o g r a m C la u s e R e s o l u t i o n , or A n s w e r C la u s e R e s o l u t i o n
operations fo r Subg.

8

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.3

2.3 The SLG-WAM: A Virtual Machine for Tabling
The data structures and instruction set used by the SLG-WAM are described
in [SW94a]; here we briefly sum marize aspects of the SLG-WAM needed to
describe scheduling strategies. As m entioned in Section 2.1, there are several
types of nodes: generator, consum ing, interior, and answer. Interior nodes
are those whose selected literal is nontabled, and are represented in the SLG-
WAM by Prolog-style (or interior) choice points. An approxim ation of the
SDG is kept on the completion stack (explained below). Answer nodes are not
kept on the SLG-WAM stacks; instead, they are m aintained in an explicit
table by the instruction NewAnswer. This instruction checks whether an
answer is in the table. If so, the instruction fails; otherwise, the answer is
added to the table.

The SLG-WAM represents tables using a trie-like structure [RRS+95].
Tries provide efficient checking and inserting of subgoals and answers, good
indexing, and space savings. More specifically, the SLG-WAM uses a subgoal
trie to represent subgoals present in an evaluation. A subgoal corresponds to
a path from the root to the leaf of the subgoal trie; attached to each leaf of
the subgoal trie is an answer trie containing all answers for that subgoal. To
index answers efficiently, the order of leaves does not necessarily correspond
to the order of their derivation in an evaluation. It is useful to represent
this order so that the SLG-WAM can determ ine what answers have been
returned to a particular consum ing node. Accordingly, an answer list is also
m aintained for noncom pleted subgoals.

Special choice points are used to represent generator and consum ing
nodes. Using these choice points, other tabling operations of Definition 3
are reflected more or less directly in SLG-WAM virtual m achine instructions,
including:

• TableTry (analogous to S u b g o a l C a l l) : If a subgoal S is already in
the subgoal table, this instruction creates a consuming choice poin t .
O therwise it creates a generator choice point and a completion frame
for S .

• RetryConsuming and AnswerReturn (analogous to A n s w e r C lau se
R e s o l u t io n): RetryConsuming resolves the selected literal of a newly
derived consum ing node against a set of answers present in a table. An
swerReturn resolves a newly derived answer against the selected literals
of a set of consum ing nodes that are present in an evaluation.

9

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.3

Label Instruction Arg 1 Arg 2
L1 TableTry 2 L3
L2 TableTrust 2 L12
L3 Allocate
L4 getpbreg v4
L5 getpvar v2 r2
L6 putpvar v3 r2
L7 Call 5 p/2
L8 putpval v3 r1
L9 putpval v2 r2
L10 Call 5 p/2
L11 new_answer 2 r4
L12 Allocate
L13 getpbreg v2
L14 Call 3 a/2
L15 new_answer 2 r2

Table 1: SLG-WAM Code for Predicate p /2 of Exam ple 1.

• CheckComplete (analogous to C o m p l e t io n): Determ ines when a set
of subgoals is com pletely evaluated.

Table 1 shows SLG-WAM code for the predicate p /2 of Exam ple 1. The
actions of these instructions under various scheduling strategies are explained
in Section 3.

Two other changes m ust be m ade to the WAM to support these instruc
tions. To see the first change, note that children of a consum ing node in one
SLG tree may be derived using answers produced by other trees. Indeed,
trees m ay be m utually dependent so that an answer in tre e 1 is consum ed by
a node in t r e e 2, which allows the production of a new answer by tree2 to
be consum ed by t r e e 1. We m ay thus speak of an asynchronism between the
production of answers by one tree and its consum ption by nodes in another.
To handle this asynchronism , the SLG-WAM m ust be able to move back
and forth between different consum ing nodes. The SLG-WAM achieves this
by freezing the various WAM stacks at the point where a new consum ing
node is created. In fact, the SLG-WAM keeps a linearized version of the
search space in its stacks (similar to the cactus stacks of OR-parallel im ple
m entations such as Aurora [LBD+88]). Switching from one environment to

10

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §2.3

another is performed by backtracking to a com m on ancestor, and then using
a forward trail to reconstitute the environm ents of consum ing nodes.

The second change arises from the need to approxim ate the subgoal de
pendency graph, and thus to provide increm ental com pletion. The SLG-
WAM adds a new mem ory area to the WAM: the completion s tack . The
following exam ple illustrates how the com pletion stack is used.

E x a m p le 2 Consider the following program:

:- table p /1 , q /1 , r/1.
p(X) :- q(X).
p(X) :- r(X).
r(X) :- p(X).
r(X) :- s(X).
s (1).

and the query :-p(X). Evaluation starts with the initial query, p(X). A com
pletion fram e is created fo r it, and its depth-first number (DFN) is se t to
1 (see Figure 2a). Next, q(X) and subsequently r(X) are called; a comple
tion frame with a unique D F N (2 and 3, respectively) is created fo r each.
When r(X) calls p(X), a backward dependency is detected, since p(X) is al
ready present in the evaluation. This causes the D F N fields in the completion
frames between (and including) r(X) and p(X) to be set to the D F N of p(X), as
Figure 2b shows. A sequence of completion fram es with the same D F N form s
an approximate S C C (A SC C). Note in Figure 2b that q(X) is in the same
A S C C as r(X) and p(X), even though it does not depend on either. Later,
when s(X) is called (Figure 2c), a new frame is created and a new D F N is
assigned to it.

(3) r(X)

(2) q(X)

(1) P(X)

r(X) p(X)
(1) r(X)

(1) q(X)

(1) P(X)

r(X) :- s(X)

(4) s(X)

(1) r(X)

(1) q(X)

(1) P(X)

ASCC 2

ASCC 1

(a) (b) (c)

Figure 2: C om pletion stack sequence for program and query in Exam ple 2

11

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.1

Throughout this paper we will distinguish between the SCCs of an SLG
system and their (safe) approxim ation by the com pletion stack, or ASCCs.

3 S c h e d u l i n g S t r a t e g i e s

3.1 Single-Stack Scheduling
The scheduling of program clause resolution in Prolog [AK91, War83] is con
ceptually simple. The engine performs forward execution for as long as it
possibly can. If it cannot— because of failure of resolution, or because all
solutions to the initial query are desired— it checks a scheduling stack (the
choice-point stack) to determ ine a failure continuation to execute.

The SLG-WAM m ust also schedule resolution of answers against consum
ing nodes. A natural way of extending the WAM paradigm to do this is to
distinguish between the acts of returning old answers to newly created con
sum ing nodes and returning newly derived answers to old consum ing nodes.
The first case is simple: when a new consum ing node is created, a choice
point is set up to backtrack through answers in the table much as if they
were unit clauses. To handle the second case, whenever a new answer is de
rived for which there are existing consum ing nodes, an answer-return choice
point is placed on the choice-point stack. This choice-point will m anage the
resolution of the new answer w ith the appropriate consum ing nodes. For
ward execution is then continued until failure, at which tim e the top of the
choice-point stack is then used for scheduling. The choice-point stack thus
serves as a scheduling stack for both returning answers and resolving program
clauses. Accordingly, we call this scheduling strategy single-stack scheduling.
The operational sem antics of this scheduling strategy was described in detail
in [Swi94], and forms the basis of the SLG-WAM, as described in [SW94a].
The following exam ple dem onstrates how this strategy works.

E x a m p le 3 The node numbers in Figure 1 represent the order in which the
actions of single-stack scheduling on the program of Example 1 take place,
while Figure 3 represents the choice-point stack at various phases of the pro
gra m ’s evaluation. When p(1,Y) is called, it is inserted into the table and a
generator choice point is created (Figure 3a), which corresponds to node 1 in
Figure 1. Procgram-clau.se resolution is then used to create node 2. Since the
selected literal in node 2 is a variant of a tabled subgoal, a consuming choice-
point fram e (corresponding to the consuming node 2) is laid down to serve as

12

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.1

freeze

Answer Return

4. p(1,2)

Interior

3. a(1,Y)

Consuming

2. p(1,Z)

Generator

1. p(1,Y)

freeze

freeze

freeze

freeze

Consuming

13. p(3,Z)

Generator

12. p(3,Y)

Answer Return

9. p(2,3)

Consuming

7. p(2,Z)

Generator

6. p(2,Y)

Interior

3. a(1,Y)

Consuming

2. p(1,Z)

Generator

1. p(1,Y)

freeze

freeze

freeze

freeze

Answer Return

9. p(2,3)

Consuming

7. p(2,Z)

Generator

6. p(2,Y)

Interior

3. a(1,Y)

Consuming

2. p(1,Z)

Generator

1. p(1,Y)

freeze

Interior

3. a(1,Y)

Consuming

2. p(1,Z)

Generator

1. p(1,Y)

freeze

Interior

4. a(1, Y)

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

(a) (b) (c) (d) (e)

Figure 3: Snapshots of the choice-point stack during the evaluation of the
program in Exam ple 3 under single-stack scheduling

an environment through which to return answers, and the stacks are frozen
(see Figure 3b), so that backtracking will not overwrite any fram es below that
point. I f there were any answers in the table, the RetryConsuming instruc
tion would backtrack through them and return each answer to the consuming
node. Since there are no answers in the table fo r p(1,Y), the second clause
fo r p /2 is tried. A s the selected literal is not a tabled predicate, program-
clause resolution is applied, and an interior choice point is laid down fo r a/2.
The evaluation then gives rise to an answer, p(1,2) (in node 4). Since there
are no variants of p(1.2) associated with p(1.Y), the answer is inserted into
the table, and an answer-return choice point is laid down. A t this stage, the
choice-point stack is represented in Figure 3b.

When the engine backtracks into the answer-return choice point fo r p(1,2)
(see Figure 3c), the AnswerReturn instruction freezes the stacks and proceeds
to return the answer to consuming nodes. A f ter an answer-return choice point
returns the answer to the last consuming node, it removes itself from the

13

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.1

backtracking chain. However, owing to freezing, it m ay not always be possible
to deallocate space fo r choice po in ts— a situation that would arise i f a second
consuming node existed fo r p(1,Y). In the example, p(1,2) will be returned
to node 2, which in turn will trigger a call to p(2,Y). The evaluation of
p(2,Y) (see node 6 in Figure 1) is s im ilar to that of node 1: it is inserted
into the table and a generator choice point is created. The tree fo r p(2,Y) will
eventually generate an answer (p(2,3) in node 9), which is inserted into the
table fo r p(2,Y). In addition, an answer-return choice point is laid down, and
the bindings fo r the answer are propagated to node 5, which will then derive
the answer p(1,3). When this la tter answer is returned to node 2, it prom pts
a call to p(3,Y) in node 11.

A s with the other two trees, a generator and eventually a consuming choi-
cepoint are created fo r p(3,Y). A fter the creation of node 14, the subgoal
is completely evaluated and can be completed. Upon completion, the choice
points fo r p(3,Y) can be reclaimed— as Figure 3d shows. A t this point, the
engine backtracks into the answer-return choice point p(2,3), and this answer
is returned to the consuming node 7. Node 7 then calls p(3,Y), which is com
pleted and has no answers. The subgoal p(2,Y) is now completely evaluated,
and space fo r it can be reclaimed in the stacks (see Figure 3e).

The evaluation then returns to the choice point fo r a /2 (node 3), and the
next clause is tried. The answer p(1,3) is generated (node 20), but since a
variant of this answer is already in the table (from node 10), this answer
is disregarded, and the computation path fails. Finally, when the engine
backtracks to the generator node fo r p(1,Y) (node 1) and there are no other
choices to be tried, the last subgoal in the system can be completed.

W hile single-stack scheduling is sim ple to conceptualize, it contains sev
eral drawbacks. The m ost severe problem is m em ory usage: to perform
answer-clause resolution at different points in the SLG forest, the stacks
have to be frozen so that the environm ent can be correctly reconstructed
to later continue resolution at these points. This need to freeze stacks may
lead to inefficient space usage by the SLG-WAM, as some frames m ight get
trapped (e.g., the interior choice point in Figure 3c). Also, the addition of
new choice points and the need to move around in the SLG forest to re
turn answers m eans that trailed variables m ust be continually set and reset
to sw itch binding environm ents, causing further inefficiencies. Finally, the
integration of the action of returning answers into the m echanism of the
choice-point stack makes single-stack scheduling not easily adaptable to a

14

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.2

parallel engine [FHSW 95].

3.2 Batched Scheduling
Batched scheduling can be seen as an attem pt to address the problems with
single-stack scheduling m entioned above. Indeed, versions 1.5 and higher of
X SB use this new strategy as a default. Batched scheduling reduces the need
to freeze and move around the search tree by batching the return of answers.
T hat is, if the engine generates answers while evaluating a particular subgoal,
the answers are added to the table and the subgoal continues its normal eval
uation until it resolves all available program clauses. O nly then will it return
the answers it generated during the evaluation to consum ing nodes. As will
be dem onstrated in Section 5, this new strategy makes better use of space: by
reducing the need to freeze branches, it reduces the number of trapped nodes
in the search tree. A long w ith reducing space, batched scheduling shows sig
nificantly better execution tim es. The following exam ple illustrates some of
the differences between single-stack scheduling and batched scheduling.

E x a m p le 4 The execution of the program and query from Example 1 under
batched scheduling is depicted through the SLG forest in Figure 4 and the
sequence of choice-point stacks in Figure 5. A s can be seen from comparing
the forests in Figure 1 and Figure 4, the procedures are identical through the
f irst four resolution steps, but differ in the fifth step. Here, batched schedul
ing resolves a program clause against node 3, while single-stack scheduling
returns the answer p(1,2) to node 2. This difference reflects the freezing and
m ovem ent problems mentioned above. First, single-stack scheduling requires
an environment switch from node 3 to node 2 to return the answer, and will
later require a switch back to node 3 to finish program-clause expansion fo r
that node. Furthermore, the unexpanded program clause fo r node 3 is stored
in the engine as a choice point. This choice point not only takes up space
itself, but the need to later switch back to it requires the AnswerReturn instruc
tion to freeze the stack at that choice point (see Figure 3b). This frozen space
cannot be reclaimed until completion of the A S C C in which it lies. Similarly,
when the answer p(2,3) is returned to the consuming node 6, the return of this
answer requires the placem ent of an explicit choice point and a freeze (c.f.,
the choice-point stack of Figure 3c). In Figure 5, both of these overheads are
avoided.

15

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.2

1. p(1,Y) <- p(1,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

6. p(1,Y) <- p(2,Y) 19. p(1,Y) <- p(3,Y) 4. p(1,2) <-

j j
11. p(1,3) <- 20. Fail

5. p(1,3) <-

7. p(2,Y) <- p(2,Y) 13. p(3,Y) <- p(3,Y)

8. p(2,Y) <- p(2,Z),p(Z,Y) 9. p(2,Y) <- a(2,Y) 14. p(3,Y) <- p(3,Z),p(Z,Y) 15. p(3,Y) <- a(3,Y)

I
12. p(2,Y) <- p(3,Y)

I
10. p(2,3) <- 17. Fail 16. Fail

18. Fail

Figure 4: SLG evaluation under batched scheduling

W hen the generator choice point of a subgoal S has exhausted all program-
clause resolution, the SLG-WAM sets the failure continuation for the choice
point to a CheckComplete instruction, rather than disposing of the choice
point as in the WAM. For batched scheduling, the first action of the Check-
Complete instruction is to schedule any unresolved answers to the consum ing
nodes of S so that each consum ing node will backtrack through the unre
solved answers (as in the RetryConsuming instruction of single-stack schedul
ing). Furthermore, the engine resolves answers against each consum ing node
as long as there are any answers to resolve, and m ay resolve answers in the
same iteration in which they are added. This latter step gives good perfor
m ance for in-m em ory queries, but makes the batched scheduling algorithm
differ from traditional deductive-database-style evaluations such as the semi-
naive evaluation of a M agic-transformed program [BR91]. After all answers
are returned, the engine backtracks to the generator choice point of S . If
there are no unresolved answers for the consum ing nodes of S , the actions
of CheckComplete differ, depending on whether the corresponding subgoal is
designated as a leader of its ASCC or not. (In practice, the oldest subgoal
in an ASCC is chosen as leader). If the generator choice point corresponds

16

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.3

freeze

Interior

3. a(1,Y)

Consuming

2. p(1,Z)

Generator

1. p(1,Y)

freeze

Interior

4. a(1, Y)

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

freeze

freeze

freeze

Consuming

11. p(3, Z)

Generator

12. p(3, Y)

Consuming

8. p(2, Z)

Generator

7. p(2, Y)

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

Consuming

8. p(2, Z)

Generator

7. p(2, Y)

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

freeze

Consuming

2. p(1, Z)

Generator

1 .p(1, Y)

(a) (b) (c) (d) (e)

Figure 5: Snapshots of the choice point stack during the evaluation of the
program in Exam ple 4 under Batched Scheduling

to a subgoal S that is a not a leader, CheckComplete will sim ply fail and
execute the failure continuation of the generator choice point. Otherwise, if
S is a leader, the engine cycles through the subgoals in the ASCC to return
unresolved answers to every consum ing node whose selected literal is in the
ASCC. This process repeats until a fixpoint is reached, and the ASCC can
be com pleted.

3.3 Local Scheduling
For a number of problems, it may be preferable to evaluate a single exact
SCC at a tim e, preserving the (dynam ic) SCC ordering during the evaluation.
We call such an evaluation a local evaluation, and define it as follows.

D e f in it io n 7 (L o c a lity P r o p e r ty) Let F be an SLG system. Resolution
of an answer A against a consuming node N occurs in an independent S C C
of F if the root subgoal fo r N is in an independent S C C in S D G (F). An SLG
evaluation has the locality property i f any A n s w e r R e s o l u t i o n operation
applied to a state F n occurs in an independent S C C of F n .

In other words, in a local evaluation, answers are returned to consum ing
nodes outside of an SCC only after that SCC is com pletely evaluated. In

17

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

F r e ir e , S w i f t , a n d W a r r e n B eyon d D ep th -F irst S trateg ies §3.3

the previous section, we argued that batched scheduling can be more tim e
and m em ory efficient than single-stack scheduling, so that it is worthwhile to
investigate how batched scheduling can be m odified to support the locality
property, a strategy we call local scheduling . Figure 6 illustrates the actions
of a local evaluation of the program and query of Exam ple 1. N ote that the
answer generated for subgoal p(2,Y) in node 10 is only returned to its calling
environment (in node 5) after the tree for p(2,Y) is com pletely evaluated.

1. p(1,Y) <- p(1,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

6. p(1,Y) <- p(2,Y)

Y
18. p(1,3) <-

19. p(1,Y) <- p(3,Y) 4. p(1,2) <-

Y
20. Fail

5. p(1,3) <-

7. p(2,Y) <- p(2,Y) 12. p(3,Y) <- p(3,Y)

8. p(2,Y) <- p(2,Z),p(Z,Y) 9. p(2,Y) <- a(2,Y) 13. p(3,Y) <-
p(3,Z), p(Z,Y)

Y
11. p(2,Y) <- p(3,Y)

Y
17. Fail

Y
10. p(2,3) <- \l

16. Fail

14. p(3,Y) <- a(3,Y)

V
15. Fail

Figure 6: SLG evaluation under local scheduling

It was shown in [Swi94] that the SLG-W AM ’s com pletion stack m aintains
exact dependencies for local evaluations. M aintaining exact dependencies
allows the engine to verify whether loops through negation exist, and to
delay literals (to break these loops [CW96]) only when it is necessary. Even
though negation handling and scheduling strategies are orthogonal issues,
some strategies m ay be more efficient for evaluating normal programs. The
following exam ple shows how a local evaluation can benefit the evaluation of
programs w ith negation.

E x a m p le 5 Let P be the stratified program:

18

T h e J o u r n a l o f F u n c t io n a l a n d L o g ic P r o g r a m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §3.3

:- table a /0 ,b /0 ,c /0 ,d /0 ,e /0 ,g /0 ,h /0 ,i/0 ,j/0 .

a:-b,c,d. b:-e. c:-h

g.:-b: c:-i.

d:-~h. b,:-e: g.

h:-j. j:-~e. i.

fo r which the query ?- a is to be evaluated. I f evaluated under either single
stack scheduling or batched scheduling, an SD G will be produced with cascad
ing negative dependencies, as shown in Figure 7a.

A
h

V

(a) negative dependencies (b) no negative dependencies

Figure 7: Subgoal dependency graphs for the program of Example 5 under
different search strategies

Even though there is no cycle through negation, detecting the exact SDG
can complicate the evaluation o f stratified programs. However i f a local eval
uation is used, a simpler SD G is created (as depicted in in Figure 7b). To
obtain this latter SDG, each independent SC C has to be completely evaluated
before returning any answers to subgoals outside the SC C — m aking the search
depth-first with respect to SCCs. In a local evaluation, the SCCs {b, e} and
{g} are completely evaluated before b returns any answers to a. Thus, e is
completely evaluated when ~ e is called, and negative dependencies are not
created. The negative link from j to e , and that from d to h are avoided, since
both e and h are completed by the tim e they are called negatively.

19

a a

d

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §3.3

Local evaluation can also improve the performance of programs th a t ben
efit from answer subsumption. Answer subsumption can be performed as a
variation of the N ew A nsw er operation. While adding an answer, the en
gine may check whether th a t answer is more general than those currently in
the table. If it is more general, this new answer is added, and the subsumed
answers are removed. Otherwise, the com putation path fails. Given th a t
a local evaluation evaluates each SCC completely before returning any an
swers out of it, we are guaranteed th a t only the most general answers will be
returned out of th a t SCC. This process is presented in detail in Example 6.

E x a m p le 6 Consider the following HiLog [CKW 93] variation o f the same-
generation program, which finds the sm allest distance between two people in
the same generation:

sg i(X,Y)(I) :-
ancestor(X.Z).
subsumes(min)(sgi(Z,Z1),I1),
ancestor(Y,Z1),
I is I1+1.

sgi(X,X)(0).
:- subsumes(min)(sgi(joan,carl),I).

where subsumes(min)/2 is a HiLog tabled predicate that perform s answer sub
sum ption by deleting all nonm inim al answers every tim e it adds an answer to
the table. Given the facts in Figure 8, there are a number o f ways this query
can be evaluated. I t is well known that fo r shortest-path-like problems, a
breadth-first search can behave exponentially better than a depth-first search;
nevertheless, in this example, a breadth-first search is still not optimal.

The above query seeks to determ ine how close joan and carl are. Note
that they have three common ancestors (louis, mary, and bob), and thus they
are cousins o f first, second, and third degree. I f evaluated under a breadth-
firs t strategy (the behavior o f batched scheduling fo r this example), all possible
subpaths between joan and carl are considered, and i f at some point during the
evaluation a subpath is found whose length is less than those so fa r derived, it
is im m ediately propagated, even though it m ay not be a m inim al subpath. For
instance, batched scheduling first finds the distance between two im mediate
ancestors o f joan and carl to be 2, and concludes the distance between joan and
carl is 3. Then evaluation continues, a new distance between the im m ediate

20

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §3.3

bob

anc(mary, bob).
anc(john, bob).
anc(louis, mary).
anc(eve, john).
anc(eve, mary).
anc(joan, louis).
anc(carl, eve).
anc(carl, louis).

mary

A

loui

A

joan carl

Figure 8: Ancestor relation for Example 6

ancestors is found to be 1, and a new answer (1=2) is generated fo r the top-
level query. Finally, the m in im al distance between joan and carl is found to
be 1, and the correct answer is returned.

If a local evaluation is used on the above example, only minimal subpaths
are propagated, and the engine is able to prune a number of superfluous
choices. This behavior might significantly improve the performance of pro
gram analyzers such as those based on Bruynooghe’s abstract interpretation
framework [Bru91]. In this framework, after all the clauses for a predicate
have been analyzed, the abstract substitution for the predicate is computed
by taking the most general substitution among the clauses.

Local evaluation can also lead to a reduction in memory usage for some
programs, as the following example illustrates.

E x a m p le 7 Given a program o f the form :

table p/1, q/1, r/1.
p(X,Y)
q(X,Y)
qi(X,Y)

- q(X,Z),r(Z,Y).
- qi(X,Y)
- q2(X,Y)

r(X,Y) :
ri(X,Y)

ri(X,Y)
- r2(X,Y)

q„-i(X,Y) :- qn(X,Y)
q„(1,2). q„(2,3).

rn-i(X,Y) :- rn(X,Y)
rra(2,4). rra(2,5).

and the query p(X,Y). Under batched scheduling, completion fram es are cre
ated fo r each call to q̂ and r̂ . The completion stack at the point when rm(X,Y)

21

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §4.1

(m+2) rm(X,Y)

(3) r1(X,Y)

(2) r(X,Y)

(1) p(X,Y)

(b)

Figure 9: Completion stacks for Example 7 under batched scheduling (a)
and local scheduling (b)

is called is depicted in Figure 9a. Under local scheduling, since the SCCs of
q(X,Z) and its descendents are completely evaluated before r(Z,Y) is called,
all the space allocated fo r the SCCs can be reclaimed before the call to r(Z,Y),
as Figure 9b shows.

4 A l g o r i t h m s a n d W A M - L e v e l I m p l e m e n t a

t i o n

4.1 Implementation of Batched Scheduling
As mentioned in Section 2, a batched-scheduling evaluation can be thought
of as a series of iterations where answers are returned to each of a set of
consuming nodes until a fixpoint is reached for th a t set. We explain the im
plementation of batched scheduling by contrasting it to single-stack schedul
ing. W hen a new consuming node is created under single-stack scheduling,
the node backtracks through answers th a t are already in the table. To do
this, a consuming choice point is placed on the choice-point stack. Any new
answers are later returned through answer-return choice points, as depicted in

22

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

(n+m) rm(X,Y)

(n+4) r1(X,Y)

(n+3) r(X,Y)

(n+2) qn(X,Y)

(3) q 1(X,Y)

(2) q(X,Y)

(1) p(X,Y)

(a)

Freire, Swift, and Warren Beyond Depth-First Strategies §4.1

Figure 3. Batched scheduling makes heavy use of consuming choice points, so
th a t it is worthwhile to consider in detail these choice points and the actions
they support. In addition to the environment information kept in regular
WAM choice points, a consuming choice point keeps a pointer to the previ
ous consuming node for the same subgoal. These pointers m aintain a list of
all consuming nodes for a subgoal. The consuming choice point also keeps a
pointer to the list of answers in the table associated with its subgoal. When
the engine backtracks into a consuming choice point, the RetryConsuming in
struction is executed. This instruction backtracks through each answer in the
answer list, and returns it to the corresponding consuming node. W hen there
are no more answers left, RetryConsuming executes the failure continuation
for the consuming choice point.

Batched scheduling does not differ from single-stack scheduling in regard
to actions taken for answers derived before a given consuming node was
created. However, when an answer is derived after a given consuming node,
the answer will be returned through a later invocation of the consuming choice
point, rather than creating an answer-return choice point as in single-stack
scheduling. In addition, the consuming choice point is modified to continue
backtracking through answers for a given consuming node as long as any
answers exist.

The changes in the SLG-WAM to implement batched scheduling are the
following:

• The NewAnswer instruction no longer needs to lay down an answer-
return choice point when a new answer is derived.

• The consuming choice point for each consuming node will have to keep
track of which answers it has consumed, by means of a pointer into the
answer list to the last answer it resolved. In addition, the table data
structure requires a new pointer to the end of the answer list, since new
answers are now inserted at the end of this list.

• The RetryConsuming instruction (Algorithm 1) must fail when there
are no more answers to resolve, so th a t either the action for the previ
ous consuming choice point (RetryConsuming) or for the generator choice
point (TableRetry, TableTrust, or CheckComplete) is reinvoked.

• In the CheckComplete instruction (Algorithm 2):

23

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §4.1

— An extra step is added to the CheckComplete of a subgoal S to
handle the return of batched answers. Note th a t the subgoal S
has to schedule any unresolved answers to the consuming nodes of
S before the actual completion check for S is issued (see Schedule
Answers, Algorithm 3).

— If S is the leader of its ASCC, the engine has to perform a fixpoint
check. The instruction scans through all the subgoals in the ASCC
for S , and checks whether the consuming nodes for these subgoals
still have answers to resolve. If so, the instruction schedules the
subgoals on the choice-point stack and arranges the stack so th a t
when their evaluation is finished, another completion check is is
sued for the leader S . Otherwise, if there is nothing to schedule, a
fixpoint has been reached, and the ASCC can be safely completed.

A lg o r ith m 1 (R etryC onsum ing(C onsum ing N o d e C o n s))
Switch environments to Cons;
If Cons has new answers to resolve

Mark current answer as used;
Return answer to Cons;
Set the forward continuation;

Else
Set the failure continuation;

Some general advantages of batched scheduling over single-stack schedul
ing are claimed in Section 2. We also note in passing th a t the RetryConsum
ing instruction requires fewer machine instructions than the AnswerReturn
instruction, so th a t the trade-off of substituting RetryConsumings for An-
swerReturns is likely to be beneficial at this level as well. However, batched
scheduling also imposes some overheads: the scheduling of answers before the
completion check for each subgoal; and the need to perform a fixpoint check
for each leader. Section 5 will dem onstrate th a t the advantages of batched
scheduling outweigh its overheads.

A lg o r ith m 2 (C heckC om plete(S ubgoal S))
If ScheduleAnswers(S)

Backtrack through each node in the schedule_chain
to return any unresolved answers;

If S is the leader of its ASCC
24

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §4.2

Fixpoint = true;
For each subgoal S ’ in the ASCC of S

If S ’ is not completed
If ScheduleAnswers(S')

Fixpoint = false;
If Fixpoint = = false backtrack to return answers;
Mark every subgoal in the ASCC as completed, and
deallocate stack space

Else fail;

A lg o r ith m 3 (Schedule A nsw ers(S ubgoal S))
Sched = false;
While there exists an consuming node Cons whose
selected literal is S

If Cons has unresolved answers
Add Cons to the schedule_chain;
Sched = true;

Return sched;

4.2 Implementation of Local Scheduling
In Section 3.3 we introduced local scheduling, a strategy th a t completes sub
goals as early as possible by evaluating one SCC completely before returning
any answers out of it. We shall now explain how local scheduling is im
plemented on top of batched scheduling. First, we note th a t SLG-WAM
implementations of nonlocal strategies implement what may be term ed first-
call optim ization, which allows a root subgoal S root to share its bindings with
the first consuming node Scalling th a t initially called it in the evaluation,
and eliminates the need for a consuming choice-point frame for S calling. For
instance, in Figure 4 (Section 2), nodes 6 and 7 of Figure 4 share the vari
able Y under first-call optimization. In local scheduling, the SLG-WAM is
still able to coalesce the choice point for S calling and S root, but the genera
tor choice point for S root must be able to delay returning answers until it is
found not to be the leader of its SCC, or until the completion of the SCC
of S root. Accordingly, it is referred to as a generator-consuming choice point
in local scheduling. The NewAnswer instruction also requires a modification.
In batched scheduling, whenever a new answer is generated, the engine goes

25

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §4.2

on to execute the continuation for the corresponding tabled subgoal to ef
fectively return the answer in the calling environment. For local scheduling,
however, when an answer is generated, it is simply inserted into the table,
and the engine then backtracks (to avoid returning the answer). Also, recall
from Algorithm 2 th a t during the batched scheduling completion check, the
engine has to: (1) schedule answers, (2) check for fixpoint, and (3) reclaim
space for completely evaluated subgoals. Each of these steps is performed
in local scheduling, but in slightly different ways to accommodate the extra
batching of answers among different SCCs.

The original Schedule Answers routine described in Algorithm 3 sim
ply scheduled any available answer to all applicable consuming nodes of a
subgoal. In Algorithm 4, Local Schedule Answers needs to distinguish be
tween consuming and generator-consuming nodes. Local Schedule Answers
can schedule unresolved answers except in the following case. If the subgoal
being considered is the leader of its SCC, the engine cannot schedule the
resolution of its answers through the generator-consuming choice point, since
this would return answers out of an SCC before its completion. In Local Find
Fixpoint (Algorithm 5), the engine simply scans through the topmost SCC
(using the completion stack), checks whether any subgoal still has consuming
nodes with unresolved answers, and schedules any such subgoals. However,
the engine need not schedule a subgoal if only its generator-consuming node
has unresolved answers. If Local Find Fixpoint succeeds, the engine is guar
anteed th a t the topmost SCC is completed. At this point, all subgoals in
the SCC can be marked as completed, and space can be reclaimed. Finally,
if the leader of the SCC has answers in the table, these should be returned.
The completion check for local scheduling is described in Algorithm 6.

A lg o r ith m 4 (Local Schedule A nsw ers(S ubgoal S))
Sched = false;
If there are consuming nodes and answers in the
table for S

While there exists a consuming node Cons whose selected
literal is S

If Cons has unresolved answers
Add Cons to the schedule_chain;
Sched = true;

If S is not the leader of its SCC
Add the generator-consuming choice point of S to the schedule_chain;

26

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5

Sched = true;
Return sched;

A lg o r ith m 5 (Local Find F ixpoin t(S ubgoal S))
Fixpoint = true;
For each subgoal S ’ in the SCC of S

If Local Schedule Answers(Subgoal S ’)
Fixpoint = false;

Return fixpoint;

A lg o r ith m 6 (Local C heckC om plete(S ubgoal S))
Local Schedule Answers(S);
If S is the leader of its SCC

If Local Find Fixpoint(S)
Mark all subgoals in the SCC as completed, and
deallocate stack space;
If there are answers for S

Switch environments to the generator-consuming
choice point for S;
Backtrack through the completed table to return answers
to the generator-consuming choice point for S ;

Else fail and backtrack through the schedule_chain to return
unresolved answers;

Else fail;

5 E x p e r i m e n t a l R e s u l t s

In this section we compare both execution time and memory usage of SLG-
WAM engines, based on the different scheduling strategies described in the
previous sections—XSB version 1.4 uses single-stack scheduling, XSB ver
sion 1.5 uses batched scheduling, and Local uses local scheduling—these en
gines differ only in the scheduling strategy used. For execution time, we
considered not only the running time, but also the dynamic count of SLG-
WAM instructions and operations. Benches were run on a SPARC2 with 64
MB RAM under SUNOS.

27

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5.1

Transitive Closure reach(X,Y) :- arc(X, Y)
reach(X, Y) :- reach(X, Z), arc(Z, Y)

Shortest Path sp(X, Y)(D) :- arc(X, Y, D)
sp(X, Y)(D) :-

subsumes(min)(sp(X, Z), D1),
arc(Z, Y, D2), D is D1 + D2

Same Generation sgi(X, Y)(D) :- arc(X, Y)
sgi(X, Y)(D) :-

arc(X, Z), subsumes(min)(sgi(Z, Z1), D1)
arc(Y, Z1), D is D1 + 1

Table 2: Bench programs

The bench programs consisted of variations of transitive closure, same
generation, and shortest path on various graphs (the programs are given in
Table 2). We experimented with graphs th a t have well-defined structures,
such as linear chains and complete binary trees, as well as less-regular graphs
(e.g., variations of K nuth’s Words2).

5.1 Performance of Batched Scheduling
Let us first examine the differences between single-stack scheduling and
batched scheduling for left-recursive transitive closure on a linear chain con
taining 1,024 nodes, with the query reach(1,X). Under single-stack schedul
ing, first all facts are used (by backtracking through the facts for arc/2 in the
first clause), and when the consuming node is laid down for the subgoal in the
second clause, each answer in the table is consumed. Each time a new answer
is derived in this process, com putation is suspended and the new answer is
immediately returned, by freezing the stacks and pushing an answer-return
choice point onto the choice-point stack. Under batched scheduling s tra t
egy, all answers in the table are returned before any newly derived answer is
considered.

Table 3 shows a profile3 of SLG-WAM execution for the different engines.

2The nodes of these graphs are a subset of the 5,757 more common five-letter English
words; there is an arc between two words if they differ in a single character [Knu93].

3Note that for both Table 3 and 4, we considered only the trailings and untrailings that
result from environment switches.

28

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5.1

Instructions/Operations XSB Version 1.4 XSB Version 1.5 Local
RetryConsuming 0 1,023 1,023
RetryGenConsuming n/a n/a 1,023
AnswerReturn 1,022 n/a n/a
CheckComplete 1 1 1
SwitchEnvironments 1,026 1,027 2,050
Freeze 1,022 0 0
Trail 0 0 0
Untrail 2,047 2,047 3,070
Schedule Answers n/a 1 1
Fixpoint n/a 1 1
Subgoals 1 1 1
Consuming Nodes 1 1 1

Table 3: SLG-WAM Execution Profile for Left-Recursive Transitive Closure
on a Linear Chain with 1,024 Nodes

Instructions/Operations XSB Version 1.4 XSB Version 1.5 Local
RetryConsuming 1 2,046 2,046
RetryGenConsuming n/a n/a 2,046
AnswerReturn 2,044 n/a n/a
CheckComplete 1 1 1
SwitchEnvironments 3,072 3,073 5,119
Freeze 2,044 0 0
Trail 1,022 0 0
Untrail 5,115 4,093 6,139
Schedule Answers n/a 1 1
Fixpoint n/a 1 1
Subgoals 1 1 1
Consuming Nodes 1 1 1

Table 4: SLG-WAM Execution Profile for Left-Recursive Transitive Closure
on a Complete Binary Tree of Height 9

29

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5.1

Notice th a t the main difference between XSB versions 1.4 and 1.5 for this
example lies in the fact th a t AnswerReturns are replaced by RetryConsumings.
Since RetryConsuming requires about 30% fewer machine instructions than
AnswerReturn (Section 4.1), the trade-off is beneficial. The times for the
different engines to compute the transitive closure on trees and chains are
given in Figure 10. The speedup of XSB version 1.5 over XSB version 1.4 for
these examples varies between 11% and 16%.

More significantly, because batched scheduling does not require any stack
freezing, it utilizes memory better. Figure 11a gives the to tal stack space us
age (local, global, choice point, trail, and completion stack) for the strategies
under consideration (for left-recursive transitive closure on chains of varying
lengths). Note th a t whereas memory consumption grows linearly with the
number of facts for XSB version 1.4, the space remains constant for XSB ver
sion 1.5 at 2.7 KB (as it does for Local, which is built on XSB version 1.5).

(a) linear chains of varying length (b) complete binary trees of varying
heights

Figure 10: Times for left-recursive transitive closure

Table 4 shows the SLG-WAM instruction/operation count for left-
recursive transitive closure on complete binary trees of varying height. The
numbers in this table are similar to those of Table 3, but the batching of an
swer resolution reduces the need for the engine to move around in the SLG
forest; thus batched scheduling also reduces the setting/resetting of trailed
variables. Memory savings are even bigger than for chains, as Figure 11b

30

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5.1

Number of K Edges Number of K Edges

(a) Linear chains of varying length (b) Complete binary trees of varying
height

Figure 11: Total memory usage for left-recursive transitive closure

shows (note th a t for the two new strategies, the space remains constant at
2.88KB).

Single-stack scheduling, as its name implies, uses a stack-based schedul
ing for answers; when executing transitive closure over, say, a binary tree, it
traverses the tree in a depth-first manner. Because batched scheduling effec
tively uses a queue for returning answers, when executing transitive closure
it will traverse the same tree in a breadth-first manner. Accordingly, opti
mization problems such as shortest path th a t can (1) be formulated through
left-recursive transitive closure, and (2) benefit from a breadth-first search,
can be run more efficiently under batched scheduling.4 To dem onstrate this,
we first consider the artificial graph described in Figure 12a. If a depth-first
search is used to compute the shortest path between nodes 1 and n in this
graph, it will run in exponential time. However, the shortest path can be
computed in polynomial time if the graph is searched in a breadth-first m an
ner. Figure 12b shows the times XSB version 1.4, XSB version 1.5, and Local
take to compute sp(1,n)(Dist) for different values of n. In addition to running
slower, XSB version 1.4 ran out of memory on graphs with more than 512

4It is worth pointing out that only the underlying data structures are searched in a
breadth-first manner. The predominantly depth-first nature of program-clause resolu
tion in the WAM is maintained through all strategies discussed in this paper. However,
[FSW97] discusses the SLG-WAM implementation of a general breadth-first search that
is also suitable for queries to disk-resident data.

31

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5.2

XSB v. 1.4
XSB v. 1.5

Local

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Edges

(a) (b)

2

4

6

n

Figure 12: The time is shown for XSB version 1.4 and XSB version 1.5 to
find the shortest path between the two endpoints (1 and n) of a graph of

the form depicted at left

nodes. XSB version 1.5 is also consistently faster than XSB version 1.4 for
graphs th a t are less regular, such as variations of Words. Figure 13 shows
the times for the engines to compute two shortest-path queries.

In Section 4.1, we mentioned th a t batched scheduling adds some overhead
when compared to single-stack scheduling. The CheckComplete instruction
becomes more expensive. At CheckComplete, not only does batched schedul
ing need to schedule all unresolved answers, but for each leader subgoal it has
to check whether all subgoals in the leader’s SCC are completely evaluated.
Clearly, for programs th a t do not benefit from batching answers, these extra
tasks might result in loss of efficiency. One example where XSB version 1.5
performs worse than XSB version 1.4 is right recursive-transitive closure on a
linear chain. In this example, there are as many tabled subgoals as there are
nodes in the graph, and each subgoal is the leader of its own SCC. Note tha t
since there are no consuming nodes, answers are not batched. However, at
CheckComplete for each subgoal, XSB version 1.5 still has to check whether
there are unresolved answers to be scheduled and whether fixpoint has been
reached—steps which, in this case, are superfluous.

32

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §5.2

100 200 300 400 500 600 700 800 900 10001100
Number of Edges

(a) sp(words,X)(Dist)—500 iterations

Number of Edges

(b) sp(there,white)(Dist)—1000 itera
tions

Figure 13: Timings for shortest-path on Words

5.2 Performance of Local Scheduling
R ather than sharing the bindings as in batched scheduling and single-stack
scheduling, the implementation of local scheduling incurs the cost of explic
itly returning an answer of a generator node to its calling environment. This
overhead is reflected in Tables 3 and 4—aside from the 1,023 RetryConsumings
th a t are done for XSB version 1.5, Local requires another 1,023 RetryGen
Consuming to explicitly return answers to the calling environment. Note tha t
this also incurs a higher number of environment switches: one for each an
swer returned outside of an SCC (e.g., in Table 3, notice th a t the number
of SwitchEnvironments for Local is 2,050, which is the sum of the number of
SwitchEnvironments for XSB version 1.5 and the number of answers). These
extra operations add between 10% and 20%, as is evidenced in Figure 10.

As for memory consumption, local scheduling has the same constant be
havior as batched scheduling for transitive closure on trees and chains, as
evidenced in Figure 11 (notice th a t the lines for Local and XSB version 1.5
overlap). In Figure 10, we can see th a t Local adds a roughly constant 15%
overhead to XSB version 1.5, and the execution times for the Local engine
are comparable to XSB version 1.4. Local also has approximately the same
performance as XSB version 1.5 for shortest path (see Figures 12b and 13).

We have stated in Section 4.2 th a t for programs th a t use answer subsump
tion, local scheduling can perform arbitrarily better than batched scheduling.

33

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §6

The graph in Figure 14b substantiates this statem ent. This experiment mea
sured the times to find the shortest distance between the two deepest nodes
(n-1 and n) on graphs of the form depicted in Figure 14a, for varying n, us
ing the same-generation program of Example 6. Not only is local scheduling
considerably faster, but its execution times increase linearly with the size of
the data, whereas for batched scheduling, this growth is exponential.5

n-3 . n-2

4500 |—
4000 -
3500 -
3̂000 -T3

o 2500 -
■̂ 2000 -
eH1500 -

1000 -
500

0
0

XSB v. 1.5̂
Local'

200 400 600 800 1000 1200
n-1 n

(a) (b)

Figure 14: The execution time for the query subsumes(min)(sgi(n-1,n),I) is
shown on graphs of the form depicted at left for varying n

Local scheduling is an efficient way to find all answers for a given query;
however, it is not useful for so-called existential queries—queries th a t involve
an existential variable, or certain forms of ground negation. In these cases,
a single answer is required, and local scheduling is inefficient since it fully
evaluates SCCs before passing answers back up to consuming nodes. For
practical query evaluation, then, one would expect th a t a mixture of strate
gies may become useful: batched scheduling for existential queries, and local
scheduling for queries th a t involve answer subsumption, while either may
evaluate the remaining class of queries.

5In Figure 14b, the times for the Local engine vary from 0.06-15.7, whereas for XSB
version 1.5, they range between 0.09-4007.8.

2

n

34

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies §6

6 D i s c u s s i o n a n d F u t u r e D i r e c t i o n s

Batched scheduling bears some resemblance to two independently developed
approaches: the ET* algorithm from [FD92] and the AMAI from [JBD95].
However, in [FD92], Fan and Dietrich do not consider strongly connected
components in the fixpoint check, and their strategy is fair for answers.6 The
extra check for fairness may result in inefficiencies for in-memory queries such
as transitive closure over a chain. In [JBD95], Janssens, Bruynoohge, and
Dumortier describe an abstract machine specialized for abstract interpreta
tion, and use a similar scheduling strategy for their fixpoint iterations. Even
though they take SCCs into account, these are detected statically. In the
SLG-WAM, dynamic detection of SCCs has been proven useful in the eval
uation of logic programs with negation (stratified or not). Local scheduling
resembles the strategy proposed by Zukowski and Freitag in [ZF96], where
program fragments are evaluated by different fixpoints.

The scheduling strategies proposed in this paper can improve the
performance—memory usage and execution time—of tabled evaluations.
Owing to its performance, batched scheduling is now the default scheduling
strategy for XSB. The gains from this strategy are twofold: by eliminating
the answer-return choice point and the freezing of stacks done at Answer
Return, memory usage is greatly reduced; and because of the reduction of
trailings/untrailings, the execution time decreases.

Local scheduling can perform asymptotically better than batched schedul
ing when combined with answer subsumption. This can be of use in many
different areas, such as aggregate selection and program analysis. In ad
dition, local scheduling may have an im portant role to play in evaluating
programs under the well-founded semantics [vGRS91]. Currently, in the
default-scheduling strategy of XSB, the engine may have to construct part of
the SDG to check for loops through negation. Since local scheduling main
tains exact SCCs, it does not require this step, as was dem onstrated by
Example 5. Furthermore, when negative literals actually are involved in a
loop through negation, SLG uses a D e la y operation to attem pt to break
the loop. This use of D e la y may create an answer A th a t is conditional on
the tru th of some unevaluated literal. However, other derivation paths may
create an unconditional answer for A (for example, all answers considered in
this paper are unconditional). Clearly, conditional answers are not needed

6That is, answers are not returned in the same fixpoint iteration they are created.

35

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

for A if there is a corresponding unconditional answer, and the use of D e la y
gives rise to a form of answer subsumption, leading to another advantage of
locality. As the well-founded semantics becomes used by practical programs,
the advantages of local scheduling may become increasingly necessary for
their efficient evaluation.7

We have shown th a t even though local scheduling can achieve near-
optimal performance for some applications, for others it may add overheads
and even lead to unacceptable inefficiency. This is also true of other schedul
ing strategies devised for SLG. The ideal would be to use a strategy or set
of strategies tha t results in the best performance for a desired application.
Further research is needed to assess the feasibility of combining different
scheduling strategies in the same evaluation.

A ck n o w led g m en t o f s u p p o r t: This work was supported in part by CAPES-
Brazil, and NSF grants CDA-9303181 and CCR-9404921.

R e f e r e n c e s

[AK91] H. Ai't-Kaci. W AM: A Tutorial Reconstruction. Cambridge, MA,
1991, MIT Press.

[BR91] C. Beeri and R. Ramakrishnan. On the power of Magic. Journal
of Logic Programming, 10(3):255-299, 1991.

[Bru91] M. Bruynooghe. A practical framework for the abstract inter
pretation of logic programs. Journal o f Logic Programming ,
10(1/2/3&4):91-124, 1991.

[CDS97] M. Codish, B. Demoen, and K. Sagonas. XSB as the natural
habitat for general purpose program analysis. In Proceedings
of the In ternational Conference on Logic Programming (IC L P),
page 416, Cambridge, MA, 1997. MIT Press.

[CKW93] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for
higher-order logic programming. Journal o f Logic Programming ,
15(3):187-230, 1993.

7Versions 1.7 and higher of XSB can evaluate the well-founded semantics using either
batched scheduling or local scheduling.

36

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

[CW96]

[DRSS96]

[DRW96]

[FD92]

[FHSW95]

[FSW96]

[FSW97]

[JBD95]

W. Chen and D. S. Warren. Tabled evaluation with delaying
for general logic programs. Journal o f the ACM , 43(1):20-74,
January 1996.

S. Dawson, C. R. Ramakrishnan, S. Skiena, and T. Swift. Princi
ples and practice of unification factoring. A C M Transactions on
Programming Languages and System s, 18(5):528-563, September
1996.

S. Dawson, C. R. Ramakrishnan, and D. S. Warren. P racti
cal program analysis using general purpose logic programming
systems—a case study. In Proceedings o f the A C M Conference on
Programming Language Design and Im plem entation, pages 117
125, New York, 1996. ACM.

C. Fan and S. Dietrich. Extension table built-ins for Prolog.
Software— Practice and Experience, 22(7):573-597, July 1992.

J. Freire, R. Hu, T. Swift, and D. S. Warren. Exploiting par
allelism in tabled evaluations. In Proceedings o f the 7th In ter
national Sym posium , P L IL P 95, volume 982 of Lecture Notes in
Com puter Science, pages 115-132, Berlin, 1995. Springer-Verlag.

J. Freire, T. Swift, and D. S. Warren. Beyond depth-first: Im
proving tabled logic programs through alternative scheduling
strategies. In Proceedings o f the Eighth In ternational Sym po
sium o f Programming Languages, Im plem entations, Logics and
Programs, pages 243-258, Berlin, March 1996. Springer-Verlag.

J. Freire, T. Swift, and D. S. Warren. Taking I/O seriously:
Resolution reconsidered for disk. In Proceedings o f the In terna
tional Conference on Logic Programming (ICLP), pages 198-212,
Cambridge, MA, 1997. MIT Press.

G. Janssens, M. Bruynooghe, and V. Dumortier. A blueprint for
an abstract machine for abstract interpretation of (constraint)
logic programs. In Proceedings o f the In ternational Sym posium
on Logic Programming, pages 336-350, Cambridge, MA, 1995.
M IT Press.

37

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

[KKTG95]

[Knu93]

[LBD+88]

[RRR+97]

[RRS+95]

[SW94a]

[SW94b]

[Swi94]

[Tom95]

G. Kostler, W. Kiessling, H. Thone, and U. Guntzer. Fixpoint
iteration with subsumption in deductive databases. Journal of
Intelligent In form ation System s, 4(2):123-148, March 1995.

D. E. Knuth. The Stanford GraphBase: A Platform fo r Combi
natorial Computing. Reading, MA, 1993. Addison-Wesley.

E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, D. H. D. W ar
ren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carls-
son, A. Ciepielewski, and B. Hausman. The Aurora or-parallel
Prolog system. In Proceedings o f the In ternational Conference
on Fifth Generation Com puter System s, pages 819-830, 1988.
ICOT (Institute for New Generation Computer Technology), Ed.
OHMSHA Ltd. Tokyo and Springer-Verlag.

Y. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan,
S. Smolka, T. Swift, and D. Warren. Efficient model checking
using tabled resolution. In Proceedings o f Com puter Aided V eri
fication, pages 143-154, Berlin, 1997. Springer-Verlag.

I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S.
Warren. Efficient table access mechanisms for logic programs. In
Proceedings o f the In ternational Conference on Logic Program
m ing , pages 697-711, Cambridge, MA, 1995. MIT Press.

T. Swift and D. S. Warren. An abstract machine for SLG res
olution: Definite programs. In Proceedings o f the In ternational
Sym posium on Logic Programming , pages 633-654, Cambridge,
MA, 1994. MIT Press.

T. Swift and D. S. Warren. Analysis of sequential SLG evalu
ation. In Proceedings o f the International Sym posium on Logic
Programming, pages 219-238, Cambridge, MA, 1994. MIT Press.

T. Swift. Efficient evaluation of normal logic programs. PhD
Thesis, Departm ent of Computer Science, State University of
New York at Stony Brook, 1994.

D. Toman. Top-down beats bottom -up for constraint extensions
of datalog. In Proceedings o f the In ternational Logic Program-

38

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

[vG93]

[vGRS91]

[War83]

[ZF96]

m ing Sym posium , pages 98-115, Cambridge, MA, 1995. MIT
Press.

A. van Gelder. Foundations of aggregation in deductive
databases. In Proceedings o f the In ternational Conference on
Deductive and Object-Oriented Databases, pages 13-34, Berlin,
1993. Springer-Verlag.

A. van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets
and well-founded semantics for general logic programs. Journal
of the ACM , 38(3):620-650, 1991.

D. H. D. Warren. An abstract Prolog instruction set. Technical
Report 309, Stanford Research Institute, 1983.

U. Zukowski and B. Freitag. Adding flexibility to query evalu
ation for modularly stratified databases. In Proceedings of the
Join t In ternational Conference and Sym posium on Logic Pro
gramming, pages 304-318, Cambridge, MA, 1996. M IT Press.

39

T h e J o u rn a l o f F u n c tio n a l a n d Logic P ro g ra m m in g 1998-3

