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A b stra ct

Tabled evaluation ensures termination for programs with finite 
models by keeping track of which subgoals have been called. Given 
several variant subgoals in an evaluation, only the first one encoun
tered will use program-clause resolution; the rest will resolve with the 
answers generated by the first subgoal. This use of answer resolution 
prevents infinite looping that sometimes happens in SLD. Because 
answers that are produced in one path of the computation may be 
consumed, asynchronously, in others, tabling systems face an impor
tant scheduling choice not present in traditional top-down evaluation: 
when to schedule answer resolution.

This paper investigates alternate scheduling strategies for tabling 
in a WAM implementation, the SLG-WAM. The original SLG-WAM 
had a simple mechanism for scheduling answer resolution that was ex
pensive in terms of trailing and choice-point creation. We propose here 
a more sophisticated scheduling strategy, batched scheduling, which 
reduces the overheads of these operations and provides dramatic space 
reduction as well as speedups for many programs. We also propose a 
second strategy, local scheduling, which has applications to nonmono
tonic reasoning, and when combined with answer subsumption, can 
arbitrarily improve the performance of some programs.

*A preliminary version of this paper appeared in [FSW96].
^This research was performed while the first author was at the Department of Computer 

Science, State University of New York at Stony Brook, Stony Brook, NY.
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1  I n t r o d u c t i o n

Tabling extends the power of logic programming, since it can be used to  
com pute recursive queries at the speed of Prolog but w ith much better ter
m ination properties. This property has led to  the use of tabled logic program
m ing for new areas of logic program m ing. These include not only deductive 
database-style applications, but other fixpoint-style problems, such as pro
gram analysis [DRW96, CDS97], compiler optim ization [DRSS96], and m odel 
checking [RRR+97]. Ensuring that these new applications run efficiently may 
require the use of different scheduling strategies . The possibility of different 
useful strategies derives from an intrinsic asynchrony in tabling system s be
tween the generation of answers in one path of a com putation and their 
return to  a given consum ing tabled subgoal in another path. D epending on  
how and when the return of answers is scheduled, different strategies— and 
by im plication, searches— can be formulated. Furthermore, these different 
searches can benefit the research and industrial applications that have begun  
to  emerge.

The efficient evaluation of queries to  disk-resident data provides a clear 
instance of how a scheduling strategy can benefit an application. Efficiently 
accessing the disk requires a strategy analogous to the sem i-naive evaluation  
of a m agic-transform ed [BR91] program. A separate paper [FSW97] showed 
how this could be done using a breadth-first, set-at-a-tim e tabling strategy for 
the SLG-WAM [SW94a], the abstract m achine of the XSB system .1 Unlike 
X S B ’s original tuple-at-a-tim e engine, the engine based on the breadth-first 
strategy showed good performance for disk accesses.

O f course, tabled evaluations m ust also be efficient for in-m em ory queries. 
[SW94b] showed that under several different criteria of m easurem ent, tabled  
evaluation incurred a m inim al execution tim e overhead compared to Prolog. 
However, m em ory  is also a critical resource for logic programm ing com puta
tions, and mem ory m anagem ent for tabled logic programs is com plicated by 
the fact that stack space for a consum ing tabled subgoal can be reclaim ed  
only after all answers have been returned to  it. Since a scheduling strategy  
can influence when this condition happens, it can affect the am ount of space 
needed for a com putation.

Finally, a number of tabling applications require more than the simple

1XSB is a research-oriented logic programming system, and it is freely available at 
http://www.cs.sunysb.edu/~sbprolog.
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recursion needed for pure Horn clause programs. Resolving a call to  a nega
tive literal requires com pletely evaluating the subgoal contained in the literal, 
along w ith all other dependent subgoals. In a similar manner, waiting until 
part of an evaluation has been com pletely evaluated can also benefit pro
grams that use answer subsumption  (e.g., [KKTG95]), in which only the  
m ost general answers need to be m aintained and returned to consum ing sub
goals. The ability to  return only the m ost general answers out of a table  
can be useful for program analyses (see e.g., [DRW96, JBD 95]), for deduc
tive database queries that use aggregates [vG93], and for answers involving  
constraints [Tom95].

This paper m otivates and describes the design and im plem entation of two 
new scheduling strategies for tabled logic programs:

•  We describe batched scheduling along w ith an instruction set that has 
been used to  im plem ent this strategy. Batched scheduling is highly effi
cient for in-m emory programs that do not require answer subsum ption.

•  We describe local scheduling, which provides a useful strategy for eval
uating both  fixed-order stratified programs and programs that use an
swer subsum ption. We also describe the instruction set that is used to  
im plem ent this strategy.

•  We provide detailed results of experim ents comparing these two strate
gies w ith X S B ’s original single-stack scheduling (described in [SW94b]), 
showing that:

— batched scheduling can provide an order of m agnitude space re
duction over the original strategy, as well as reliably provide a 
significant reduction in tim e; and

— local scheduling can provide large speedups for programs that re
quire answer subsum ption, while incurring a relatively small (con
stant) cost for programs that do not.
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2  S L G  f o r  D e f i n i t e  P r o g r a m s :  I m p l e m e n t a 

t i o n

2.1 Review of Tabling for Definite Programs
Linear resolution w ith a selection function for general logic programs (SLG 
resolution) [CW96] is a tabled evaluation m ethod that is sound and search- 
space com plete w ith respect to  the well-founded partial m odel for all non
floundering queries. In this section, we review tabling using the notation of 
SLG resolution reformulated and simplified for definite programs.

As preliminary term inology, subgoals and goals are atom s. Predicates can 
be annotated as either tabled or nontabled, in which case SLD resolution is 
used. Evaluations are m odeled by a sequence of system s  or forests  of SLG  
trees . Figures 1, 4, and 6, which will be discussed in detail below, illustrate 
forests for a query to a sim ple recursive program.

D e f in it io n  1 (S L G  S y s te m )  A n  SLG system  consists of a forest of SLG  
trees. The root nodes of SLG  trees have the form:

subgoal ^  subgoal

A root node m ay be marked as com pleted when its corresponding tree is 
com pletely evaluated (Definition 4)■ In a system, no two trees have the 
same root nodes; that is, their corresponding subgoals cannot be renaming  
variants of each other. Nonroot nodes have the form:

answer-tem pla te  ^  goa ld is t

The ansvjer-template is an atom  used to represent variable bindings made to 
the tabled subgoal during the course of resolution, and the goaLlist contains  
a sequence of unresolved atoms.

We assume throughout this paper a left-to-right com putation rule, so that 
the selected literal of a node is always the leftm ost literal in the goaLlist . Two 
nodes are identical if they are variants when taken as terms. We will slightly  
abuse notation by allowing resolution of a clause against the selected literal 
of a node.

An SLG evaluation is defined using SLG system s.
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D e f in it io n  2 (S L G  E v a lu a t io n )  Given a definite program P, an SLG  
evaluation E fo r  a tabled goal root is a sequence of forests of SLG  trees, 
F q,F \ , .  . .  ,F n, such that:

•  F 0 is the forest containing a single tree, root ^  root, and

•  fo r  each finite ordinal n  + 1 ,  F n+1 is obtained from  F n by an application  
of one of the SLG operations (see Definition 3).

I f  no operation is applicable to F n, F n is called a final system  of E .

New SLG trees are created by the operation S u b g o a l  C a l l  when tabled  
subgoals that are new to  the evaluation becom e selected literals of nodes. 
Roots of trees are som etim es called generator  nodes. The operation P r o 
g r a m  C la u s e  R e s o l u t i o n  is used to  produce the children of generator 
nodes and of in ter ior  nodes whose selected literals are nontabled. If the se
lected literal of a node is tabled, the node is designated as consuming , and 
its children are produced by A n s w e r  C la u s e  R e s o l u t i o n .  An answer  is 
a leaf node whose goaLlist is em pty. These operations are sum marized in 
Definition 3.

D e f in it io n  3 (S L G  O p e r a t io n s )

•  S u b g o a l  C a l l :  Let N  be a nonroot node a n sw e r  . te m p la te  ^  S, 
g o a L lis t  where S  is tabled; i f  S  is new to the evaluation, add a new 
tree with root S  ^  S .

•  P r o g r a m  C la u s e  R e s o l u t i o n :  Let N  be a root node S  ^  S , and 
let C  be a program clause head ^  body where head unifies with S  with 
mgu 9. A dd (S  ^  body)9 as a child of N , i f  it  is new.

Alternatively, let N  be a nonroot node a n sw e r - te m p la te  ^  S, go a L lis t  
with S  nontabled. Again, let C  be a program clause clause head ^  
body where head unifies with S  with mgu 9. A dd (answ er-tem pla te  ^  
body, goaLlist)9  as a child of N .

•  A n s w e r  C la u s e  R e s o l u t i o n :  Let N  be a nonroot node whose se
lected literal S  is tabled, and A n s  be an answer node. Also, let N '  be 
the resolvent of N  and A n s  on S . Then i f  N ' is not a child of N , add 
N ' as a child of N .
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•  C o m p le t io n :  Given a set S  of subgoals that is completely evaluated 
(Definition 4), m ark all root nodes of the trees fo r  subgoals in S  as 
completed.

E x a m p le  1 A s an illustration of the operations in Definition 3, consider the 
following double-recursive transitive closure:

table p/2. 
p(X,Y) :- p(X,Z), p(Z,Y). 
p(X,Y) :- a(X,Y). 
a(1,2). a(1,3). a(2,3).

and the query ?- p(1,Y). An SLG  system  fo r  this program is shown in Fig
ure 1. The initial SLG  system  begins with node 1. Nodes 6 and 12 are 
produced via  S u b g o a l  C a l l  operations. Nodes 2, 3, 7, 8, 13, and 14 are 
produced by P r o g r a m  C la u s e  R e s o l u t i o n  as applied to root nodes, while 
nodes 4, 9, and 20 are produced by P r o g r a m  C la u s e  R e s o l u t i o n  from  in
terior nodes. Finally, nodes 5, 11, and 18 are produced by A n s w e r  C la u s e  
R e s o l u t i o n .

In the system  depicted in Figure 1, the sets of subgoals {p (3 ,Y )}, {p(2,Y), 
p(3,Y )}, and  {p(1,Y ), p(2,Y), p(3,Y)} are all completely evaluated— the eval
uation has produced all possible answers fo r  subgoals in these sets. A  C om 
p l e t i o n  operation can be applied to any of these sets of subgoals.

D e f in it io n  4  (C o m p le t e ly  E v a lu a te d )  Given an SLG  system  and a set  
S  of subgoals, S  is com pletely evaluated i f  at least one of the following con
ditions is satisfied fo r  each Subg  G S .

1. Subg has an answer that is a variant of Subg; or

2. fo r  each node with selected literal S L  in the tree with root Subg,

(a) S L  is completed; or

(b) S L  G S , and there are no applicable S u b g o a l  C a l l ,  P r o g r a m  
C la u s e  R e s o l u t i o n ,  or  A n s w e r  C la u s e  R e s o l u t i o n  oper
ations fo r  S L .
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1. p(1,Y) <- p(1,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

5. p(1,Y) <- p(2,Y) 11. p(1,Y) <- p(3,Y) 4. p(1,2) <- 20. p(1,3) <-

V V
10. p(1,3) <- 17. Fail

6. p(2,Y) <- p(2,Y) 12. p(3,Y) <- p(3,Y)

7. p(2,Y) <- p(2,Z),p(Z,Y) 8. p(2,Y) <- a(2,Y) 13. p(3,Y) <- p(3,Z),a(Z,Y)

V
18. p(2,Y) <- p(3,Y)

V
19. Fail

V

9. p(2,3) <-

V

16. Fail

Subgoals Answer

p(1,Y) p(1,2), p(1,3)

p(2,Y) p(2,3)

,p(3,Y) J

14. p(3,Y) <- a(3,Y)

Y
15. Fail

Figure 1: An SLG system

Correctness of SLG was shown in [CW96], along w ith the correctness of 
a restriction of SLG for definite programs. To restate this result, we briefly 
review some term inology. Let F  be a system  for an SLG evaluation of a 
program P  and query Q. The partial interpretation of F , I ( F ), is a set 
of ground atom s constructed as follows. A G I ( F ) if and only if A is a 
ground instance of some answer in F ; not A  G I ( F ) if and only if A is a 
ground instance of some A', and the SLG tree for A' is com pleted in F  but 
does not contain A  as an instance of any answer. The following theorem  
states the correctness of SLG for definite programs by relating the partial 
interpretations of final system s to the m inim al m odel of P  restricted to  the  
set of subgoals S  in F  ( M P |S).

T h e o r e m  1 ([C W 9 6 ])  Let Q  be a query to a definite program P . Then 
an SLG  evaluation consisting of the operations S u b g o a l  C a l l ,  P r o g r a m
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C la u s e  R e s o l u t i o n ,  A n s w e r  C la u s e  R e s o l u t i o n ,  and  C o m p le t io n  
will reach a final system  F a in which a ground atom  A  is in I ( F a ) i f  and 
only if  it  is in M p  |S , the m inim al model of P  restricted to the set of subgoals 
in F .

2.2 Adding Operational Features to SLG
To make SLG more suitable to  im plem entation, we add two features to  the  
formalism: an explicit table and a m echanism  for incremental completion. To 
m odel the use of an explicit table, we add the N e w  A n s w e r  operation to  
those of Definition 3. This operation adds an answer of a subgoal to  a global 
table when the answer is new to an evaluation. To understand increm ental 
com pletion, consider that in Exam ple 1 the set {p (3 ,Y )}  is com pletely evalu
ated at any tim e after nodes 13 and 14 have been created. Given an explicit 
table, storage for the tree for {p (3 ,Y )}  m ay be reclaimed, and this ability 
to  reclaim  resources used in part of a com putation is term ed increm ental 
com pletion. To perform increm ental com pletion, it is necessary to  m aintain  
or to  approxim ate a subgoal dependency graph .

D e f in it io n  5 (S u b g o a l D e p e n d e n c y  G r a p h ) Let F  be a system. We say  
that a tabled subgoal S 1 directly depends on a tabled subgoal S 2 in F  i f  and  
only i f  S 1 and  S 2 are noncompleted, and  S 2 is the selected literal of some  
node in the tree fo r  S 1. The subgoal dependency graph of F , S D G (F ), is a 
directed graph {V ,  E }  in which V is the set of root goals fo r  noncompleted  
trees in F ,  and (Si, S j ) G E  if  and only i f  Si directly depends on S j .

We use the relation depends on to  denote the transitive closure of the  
relation directly depends on . Since S D G (F )  is a directed graph, it can be 
partitioned into strongly connected com ponents, or SCCs. This leads to  an 
operational definition of sufficient conditions for com plete evaluation that 
will form the basis of algorithm s presented in subsequent sections.

D e f in it io n  6 (C o m p le t e ly  E v a lu a te d :  O p e r a t io n a l F o r m u la t io n )
Given an SLG  system  and a set S  of subgoals, S  is completely evaluated i f  at 
least one of the following conditions is satisfied fo r  each subgoal Subg  G S :

•  Subg has an answer that is a variant of Subg; or

•  S  is an independent SCC, and there are no applicable S u b g o a l  C a l l ,  
P r o g r a m  C la u s e  R e s o l u t i o n ,  or  A n s w e r  C la u s e  R e s o l u t i o n  
operations fo r  Subg.
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2.3 The SLG-WAM: A Virtual Machine for Tabling
The data structures and instruction set used by the SLG-WAM are described  
in [SW94a]; here we briefly sum marize aspects of the SLG-WAM needed to  
describe scheduling strategies. As m entioned in Section 2.1, there are several 
types of nodes: generator, consum ing, interior, and answer. Interior nodes 
are those whose selected literal is nontabled, and are represented in the SLG- 
WAM by Prolog-style (or interior) choice points. An approxim ation of the  
SDG is kept on the completion stack  (explained below). Answer nodes are not 
kept on the SLG-WAM stacks; instead, they are m aintained in an explicit 
table by the instruction NewAnswer. This instruction checks whether an 
answer is in the table. If so, the instruction fails; otherwise, the answer is 
added to the table.

The SLG-WAM represents tables using a trie-like structure [RRS+95]. 
Tries provide efficient checking and inserting of subgoals and answers, good  
indexing, and space savings. More specifically, the SLG-WAM uses a subgoal 
trie  to  represent subgoals present in an evaluation. A subgoal corresponds to  
a path from the root to  the leaf of the subgoal trie; attached to each leaf of 
the subgoal trie is an answer trie  containing all answers for that subgoal. To 
index answers efficiently, the order of leaves does not necessarily correspond 
to  the order of their derivation in an evaluation. It is useful to  represent 
this order so that the SLG-WAM can determ ine what answers have been  
returned to  a particular consum ing node. Accordingly, an answer list is also 
m aintained for noncom pleted subgoals.

Special choice points are used to represent generator and consum ing  
nodes. Using these choice points, other tabling operations of Definition 3 
are reflected more or less directly in SLG-WAM virtual m achine instructions, 
including:

•  TableTry (analogous to  S u b g o a l  C a l l ) :  If a subgoal S  is already in 
the subgoal table, this instruction creates a consuming choice poin t . 
O therwise it creates a generator choice point  and a completion frame  
for S .

•  RetryConsuming and AnswerReturn (analogous to  A n s w e r  C lau se  
R e s o l u t io n ): RetryConsuming resolves the selected literal of a newly  
derived consum ing node against a set of answers present in a table. An
swerReturn resolves a newly derived answer against the selected literals 
of a set of consum ing nodes that are present in an evaluation.
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Label Instruction Arg 1 Arg 2
L1 TableTry 2 L3
L2 TableTrust 2 L12
L3 Allocate
L4 getpbreg v4
L5 getpvar v2 r2
L6 putpvar v3 r2
L7 Call 5 p/2
L8 putpval v3 r1
L9 putpval v2 r2
L10 Call 5 p/2
L11 new_answer 2 r4
L12 Allocate
L13 getpbreg v2
L14 Call 3 a/2
L15 new_answer 2 r2

Table 1: SLG-WAM Code for Predicate p /2  of Exam ple 1.

•  CheckComplete (analogous to C o m p l e t io n ): Determ ines when a set 
of subgoals is com pletely evaluated.

Table 1 shows SLG-WAM code for the predicate p /2  of Exam ple 1. The 
actions of these instructions under various scheduling strategies are explained  
in Section 3.

Two other changes m ust be m ade to  the WAM to support these instruc
tions. To see the first change, note that children of a consum ing node in one 
SLG tree may be derived using answers produced by other trees. Indeed, 
trees m ay be m utually dependent so that an answer in tre e 1 is consum ed by 
a node in t r e e 2, which allows the production of a new answer by tree2 to  
be consum ed by t r e e 1. We m ay thus speak of an asynchronism  between the  
production of answers by one tree and its consum ption by nodes in another. 
To handle this asynchronism , the SLG-WAM m ust be able to  move back 
and forth between different consum ing nodes. The SLG-WAM achieves this  
by freezing  the various WAM stacks at the point where a new consum ing  
node is created. In fact, the SLG-WAM keeps a linearized version of the 
search space in its stacks (similar to the cactus stacks of OR-parallel im ple
m entations such as Aurora [LBD+88]). Switching from one environment to
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another is performed by backtracking to a com m on ancestor, and then using  
a forward trail to  reconstitute the environm ents of consum ing nodes.

The second change arises from the need to  approxim ate the subgoal de
pendency graph, and thus to  provide increm ental com pletion. The SLG- 
WAM adds a new mem ory area to  the WAM: the completion s tack . The 
following exam ple illustrates how the com pletion stack is used.

E x a m p le  2 Consider the following program:

:- table p /1 , q /1 , r/1. 
p(X) :- q(X). 
p(X) :- r(X). 
r(X) :- p(X). 
r(X) :- s(X).
s ( 1 ).

and the query :-p(X). Evaluation starts with the initial query, p(X). A com
pletion fram e is created fo r  it, and its depth-first number (DFN) is se t to
1 (see Figure 2a). Next, q(X) and subsequently r(X) are called; a comple
tion frame with a unique D F N  (2 and 3, respectively) is created fo r  each. 
When r(X) calls p(X), a backward dependency is detected, since p(X) is al
ready present in the evaluation. This causes the D F N  fields in the completion  
frames between (and including) r(X) and  p(X) to be set to the D F N  of  p(X), as 
Figure 2b shows. A sequence of completion fram es with the same D F N  form s  
an approximate S C C  (A SC C ). Note in Figure 2b that q(X) is in the same  
A S C C  as r(X) and  p(X), even though it does not depend on either. Later, 
when s(X) is called (Figure 2c), a new frame is created and a new D F N  is 
assigned to it.

(3) r(X) 

(2) q(X) 

(1) P(X)

r(X) p(X)
(1) r(X) 

(1) q(X) 

(1) P(X)

r(X) :- s(X)

(4) s(X) 

(1) r(X) 

(1) q(X) 

(1) P(X)

ASCC 2

ASCC 1

(a) (b) (c)

Figure 2: C om pletion stack sequence for program and query in Exam ple 2
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Throughout this paper we will distinguish between the SCCs of an SLG 
system  and their (safe) approxim ation by the com pletion stack, or ASCCs.

3  S c h e d u l i n g  S t r a t e g i e s

3.1 Single-Stack Scheduling
The scheduling of program clause resolution in Prolog [AK91, War83] is con
ceptually simple. The engine performs forward execution for as long as it 
possibly can. If it cannot— because of failure of resolution, or because all 
solutions to  the initial query are desired— it checks a scheduling stack (the 
choice-point stack) to  determ ine a failure continuation  to  execute.

The SLG-WAM m ust also schedule resolution of answers against consum 
ing nodes. A natural way of extending the WAM paradigm  to do this is to  
distinguish between the acts of returning old answers to newly created con
sum ing nodes and returning newly derived answers to old consum ing nodes. 
The first case is simple: when a new consum ing node is created, a choice 
point is set up to  backtrack through answers in the table much as if they  
were unit clauses. To handle the second case, whenever a new answer is de
rived for which there are existing consum ing nodes, an answer-return choice 
point is placed on the choice-point stack. This choice-point will m anage the  
resolution of the new answer w ith the appropriate consum ing nodes. For
ward execution is then continued until failure, at which tim e the top of the  
choice-point stack is then used for scheduling. The choice-point stack thus 
serves as a scheduling stack for both  returning answers and resolving program  
clauses. Accordingly, we call this scheduling strategy single-stack scheduling. 
The operational sem antics of this scheduling strategy was described in detail 
in [Swi94], and forms the basis of the SLG-WAM, as described in [SW94a]. 
The following exam ple dem onstrates how this strategy works.

E x a m p le  3 The node numbers in Figure 1 represent the order in which the 
actions of single-stack scheduling on the program of Example 1 take place, 
while Figure 3 represents the choice-point stack at various phases of the pro
gra m ’s evaluation. When p(1,Y) is called, it  is inserted into the table and a 
generator choice point is created (Figure 3a), which corresponds to node 1 in 
Figure 1. Procgram-clau.se resolution is then used to create node 2. Since the 
selected literal in node 2 is a variant of a tabled subgoal, a consuming choice- 
point fram e (corresponding to the consuming node 2) is laid down to serve as
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freeze

Answer Return 

4. p(1,2) 

Interior 

3. a(1,Y) 

Consuming

2. p(1,Z)

Generator 

1. p(1,Y)

freeze

freeze

freeze

freeze

Consuming 

13. p(3,Z) 

Generator 

12. p(3,Y) 

Answer Return 

9. p(2,3) 

Consuming 

7. p(2,Z) 

Generator 

6. p(2,Y) 

Interior 

3. a(1,Y) 

Consuming 

2. p(1,Z) 

Generator 

1. p(1,Y)

freeze

freeze

freeze

freeze

Answer Return

9. p(2,3)

Consuming 

7. p(2,Z)

Generator

6. p(2,Y)

Interior 

3. a(1,Y) 

Consuming 

2. p(1,Z) 

Generator 

1. p(1,Y)

freeze

Interior 

3. a(1,Y)

Consuming 

2. p(1,Z) 

Generator 

1. p(1,Y)

freeze

Interior 

4. a(1, Y) 

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

(a) (b) (c) (d) (e)

Figure 3: Snapshots of the choice-point stack during the evaluation of the  
program in Exam ple 3 under single-stack scheduling

an environment through which to return answers, and the stacks are frozen  
(see Figure 3b), so that backtracking will not overwrite any fram es below that 
point. I f  there were any answers in the table, the RetryConsuming instruc
tion would backtrack through them and return each answer to the consuming  
node. Since there are no answers in the table fo r  p(1,Y), the second clause 
fo r  p /2  is tried. A s  the selected literal is not a tabled predicate, program- 
clause resolution is applied, and an interior choice point is laid down fo r  a/2.  
The evaluation then gives rise to an answer, p(1,2) (in node 4). Since there 
are no variants of p(1.2) associated with p(1.Y), the answer is inserted into 
the table, and an answer-return choice point is laid down. A t  this stage, the 
choice-point stack is represented in Figure 3b.

When the engine backtracks into the answer-return choice point fo r  p(1,2) 
(see Figure 3c), the AnswerReturn instruction freezes the stacks and proceeds 
to return the answer to consuming nodes. A f ter  an answer-return choice point 
returns the answer to the last consuming node, it removes itself from  the
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backtracking chain. However, owing to freezing, it  m ay not always be possible 
to deallocate space fo r  choice po in ts— a situation that would arise i f  a second 
consuming node existed fo r  p(1,Y). In the example, p(1,2) will be returned 
to node 2, which in turn will trigger a call to p(2,Y). The evaluation of 
p(2,Y) (see node 6 in Figure 1) is s im ilar to that of node 1: it  is inserted  
into the table and a generator choice point is created. The tree fo r  p(2,Y) will 
eventually generate an answer  (p(2,3) in node 9), which is inserted into the 
table fo r  p(2,Y). In addition, an answer-return choice point is laid down, and 
the bindings fo r  the answer are propagated to node 5, which will then derive  
the answer  p(1,3). When this la tter  answer is returned to node 2, it  prom pts  
a call to p(3,Y) in node 11.

A s  with the other two trees, a generator and eventually a consuming choi- 
cepoint are created fo r  p(3,Y). A fter  the creation of node 14, the subgoal 
is completely evaluated and can be completed. Upon completion, the choice 
points fo r  p(3,Y) can be reclaimed— as Figure 3d shows. A t  this point, the 
engine backtracks into the answer-return choice point p(2,3), and this answer  
is returned to the consuming node 7. Node 7 then calls p(3,Y), which is com
pleted and has no answers. The subgoal p(2,Y) is now completely evaluated, 
and space fo r  it  can be reclaimed in the stacks (see Figure 3e).

The evaluation then returns to the choice point fo r  a /2  (node 3), and the 
next clause is tried. The answer  p(1,3) is generated (node 20), but since a 
variant of this answer is already in the table (from node 10), this answer  
is disregarded, and the computation path fails. Finally, when the engine 
backtracks to the generator node fo r  p(1,Y) (node 1) and there are no other  
choices to be tried, the last subgoal in the system  can be completed.

W hile single-stack scheduling is sim ple to conceptualize, it contains sev
eral drawbacks. The m ost severe problem  is m em ory usage: to  perform  
answer-clause resolution at different points in the SLG forest, the stacks 
have to be frozen so that the environm ent can be correctly reconstructed  
to  later continue resolution at these points. This need to  freeze stacks may 
lead to inefficient space usage by the SLG-WAM, as some frames m ight get 
trapped (e.g., the interior choice point in Figure 3c). Also, the addition of 
new choice points and the need to move around in the SLG forest to  re
turn answers m eans that trailed variables m ust be continually set and reset 
to  sw itch binding environm ents, causing further inefficiencies. Finally, the  
integration of the action of returning answers into the m echanism  of the  
choice-point stack makes single-stack scheduling not easily adaptable to  a
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parallel engine [FHSW 95].

3.2 Batched Scheduling
Batched scheduling can be seen as an attem pt to  address the problems with  
single-stack scheduling m entioned above. Indeed, versions 1.5 and higher of 
X SB use this new strategy as a default. Batched scheduling reduces the need  
to  freeze and move around the search tree by batching the return of answers. 
T hat is, if the engine generates answers while evaluating a particular subgoal, 
the answers are added to the table and the subgoal continues its normal eval
uation until it resolves all available program clauses. O nly then will it return  
the answers it generated during the evaluation to  consum ing nodes. As will 
be dem onstrated in Section 5, this new strategy makes better use of space: by 
reducing the need to  freeze branches, it reduces the number of trapped nodes 
in the search tree. A long w ith reducing space, batched scheduling shows sig
nificantly better execution tim es. The following exam ple illustrates some of 
the differences between single-stack scheduling and batched scheduling.

E x a m p le  4  The execution of the program and query from  Example 1 under 
batched scheduling is depicted through the SLG  forest in Figure 4 and the 
sequence of choice-point stacks in Figure 5. A s  can be seen from  comparing 
the forests in Figure 1 and Figure 4, the procedures are identical through the 
f irst  four resolution steps, but differ in the fifth step. Here, batched schedul
ing resolves a program clause against node 3, while single-stack scheduling 
returns the answer  p(1,2) to node 2. This difference reflects the freezing and  
m ovem ent problems mentioned above. First, single-stack scheduling requires 
an environment switch from  node 3 to node 2 to return the answer, and will 
later require a switch  back to node 3 to finish program-clause expansion fo r  
that node. Furthermore, the unexpanded program clause fo r  node 3 is stored  
in the engine as a choice point. This choice point not only takes up space 
itself, but the need to later switch back to it  requires the AnswerReturn instruc
tion to freeze the stack at that choice point (see Figure 3b). This frozen space 
cannot be reclaimed until completion of the A S C C  in which it lies. Similarly, 
when the answer  p(2,3) is returned to the consuming node 6, the return of this 
answer requires the placem ent of an explicit choice point and a freeze (c.f., 
the choice-point stack of Figure 3c). In Figure 5, both of these overheads are 
avoided.
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1. p(1,Y) <- p(1,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

6. p(1,Y) <- p(2,Y) 19. p(1,Y) <- p(3,Y) 4. p(1,2) <-

j j
11. p(1,3) <- 20. Fail

5. p(1,3) <-

7. p(2,Y) <- p(2,Y) 13. p(3,Y) <- p(3,Y)

8. p(2,Y) <- p(2,Z),p(Z,Y) 9. p(2,Y) <- a(2,Y) 14. p(3,Y) <- p(3,Z),p(Z,Y) 15. p(3,Y) <- a(3,Y)

I
12. p(2,Y) <- p(3,Y)

I
10. p(2,3) <- 17. Fail 16. Fail

18. Fail

Figure 4: SLG evaluation under batched scheduling

W hen the generator choice point of a subgoal S  has exhausted all program- 
clause resolution, the SLG-WAM sets the failure continuation for the choice 
point to  a CheckComplete instruction, rather than disposing of the choice 
point as in the WAM. For batched scheduling, the first action of the Check- 
Complete instruction is to  schedule any unresolved answers to the consum ing  
nodes of S  so that each consum ing node will backtrack through the unre
solved answers (as in the RetryConsuming instruction of single-stack schedul
ing). Furthermore, the engine resolves answers against each consum ing node 
as long as there are any answers to  resolve, and m ay resolve answers in the  
same iteration in which they are added. This latter step gives good perfor
m ance for in-m em ory queries, but makes the batched scheduling algorithm  
differ from traditional deductive-database-style evaluations such as the semi- 
naive evaluation of a M agic-transformed program [BR91]. After all answers 
are returned, the engine backtracks to the generator choice point of S . If 
there are no unresolved answers for the consum ing nodes of S , the actions 
of CheckComplete differ, depending on whether the corresponding subgoal is 
designated as a leader of its ASCC or not. (In practice, the oldest subgoal 
in an ASCC is chosen as leader). If the generator choice point corresponds
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freeze

Interior 

3. a(1,Y) 

Consuming

2. p(1,Z)

Generator 

1. p(1,Y)

freeze

Interior 

4. a(1, Y) 

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

freeze

freeze

freeze

Consuming

11. p(3, Z)

Generator

12. p(3, Y)

Consuming 

8. p(2, Z) 

Generator 

7. p(2, Y) 

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

Consuming 

8. p(2, Z) 

Generator 

7. p(2, Y) 

Consuming

2. p(1, Z)

Generator

1. p(1, Y)

freeze

Consuming

2. p(1, Z)

Generator

1 .p(1, Y)

(a) (b) (c) (d) (e)

Figure 5: Snapshots of the choice point stack during the evaluation of the  
program in Exam ple 4 under Batched Scheduling

to a subgoal S  that is a not a leader, CheckComplete will sim ply fail and 
execute the failure continuation of the generator choice point. Otherwise, if
S  is a leader, the engine cycles through the subgoals in the ASCC to  return  
unresolved answers to every consum ing node whose selected literal is in the  
ASCC. This process repeats until a fixpoint is reached, and the ASCC can 
be com pleted.

3.3 Local Scheduling
For a number of problems, it may be preferable to evaluate a single exact 
SCC at a tim e, preserving the (dynam ic) SCC ordering during the evaluation. 
We call such an evaluation a local evaluation, and define it as follows.

D e f in it io n  7 (L o c a lity  P r o p e r ty )  Let F  be an SLG system. Resolution  
of an answer A  against a consuming node N  occurs in an independent S C C  
of F  if  the root subgoal fo r  N  is in an independent S C C  in S D G ( F ). An SLG  
evaluation has the locality property i f  any  A n s w e r  R e s o l u t i o n  operation  
applied to a state F n occurs in an independent S C C  of F n .

In other words, in a local evaluation, answers are returned to  consum ing  
nodes outside of an SCC only after that SCC is com pletely evaluated. In
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the previous section, we argued that batched scheduling can be more tim e  
and m em ory efficient than single-stack scheduling, so that it is worthwhile to  
investigate how batched scheduling can be m odified to support the locality  
property, a strategy we call local scheduling . Figure 6 illustrates the actions 
of a local evaluation of the program and query of Exam ple 1. N ote that the  
answer generated for subgoal p(2,Y) in node 10 is only returned to  its calling 
environment (in node 5) after the tree for p(2,Y) is com pletely evaluated.

1. p(1,Y) <- p(1,Y)

2. p(1,Y) <- p(1,Z), p(Z,Y) 3. p(1,Y) <- a(1,Y)

6. p(1,Y) <- p(2,Y) 

Y
18. p(1,3) <-

19. p(1,Y) <- p(3,Y) 4. p(1,2) <-

Y
20. Fail

5. p(1,3) <-

7. p(2,Y) <- p(2,Y) 12. p(3,Y) <- p(3,Y)

8. p(2,Y) <- p(2,Z),p(Z,Y) 9. p(2,Y) <- a(2,Y) 13. p(3,Y) <-
p(3,Z), p(Z,Y)

Y
11. p(2,Y) <- p(3,Y)

Y
17. Fail

Y
10. p(2,3) <- \l

16. Fail

14. p(3,Y) <- a(3,Y)

V
15. Fail

Figure 6: SLG evaluation under local scheduling

It was shown in [Swi94] that the SLG-W AM ’s com pletion stack m aintains 
exact dependencies for local evaluations. M aintaining exact dependencies 
allows the engine to  verify whether loops through negation exist, and to  
delay literals (to break these loops [CW96]) only when it is necessary. Even  
though negation handling and scheduling strategies are orthogonal issues, 
some strategies m ay be more efficient for evaluating normal programs. The 
following exam ple shows how a local evaluation can benefit the evaluation of 
programs w ith negation.

E x a m p le  5 Let P  be the stratified program:
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:- table a /0 ,b /0 ,c /0 ,d /0 ,e /0 ,g /0 ,h /0 ,i/0 ,j/0 .

a:-b,c,d. b:-e. c:-h

g.:-b: c:-i.

d:-~h. b,:-e: g.

h:-j. j:-~e. i.

fo r  which the query ?- a is to be evaluated. I f  evaluated under either single
stack scheduling or batched scheduling, an SD G  will be produced with cascad
ing negative dependencies, as shown in Figure 7a.

A
h

V

(a) negative dependencies (b) no negative dependencies

Figure 7: Subgoal dependency graphs for the program of Example 5 under
different search strategies

Even though there is no cycle through negation, detecting the exact SDG  
can complicate the evaluation o f stratified programs. However i f  a local eval
uation is used, a simpler SD G  is created (as depicted in in Figure 7b). To 
obtain this latter SDG, each independent SC C  has to be completely evaluated 
before returning any answers to subgoals outside the SC C — m aking the search 
depth-first with respect to SCCs. In  a local evaluation, the SCCs {b, e} and 
{g} are completely evaluated before b returns any answers to a. Thus, e is 
completely evaluated when ~  e is called, and negative dependencies are not 
created. The negative link from  j to e , and that from  d to h are avoided, since 
both e and  h are completed by the tim e they are called negatively.
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Local evaluation can also improve the performance of programs th a t ben
efit from answer subsumption. Answer subsumption can be performed as a 
variation of the N ew  A nsw er  operation. While adding an answer, the en
gine may check whether th a t answer is more general than  those currently in 
the table. If it is more general, this new answer is added, and the subsumed 
answers are removed. Otherwise, the com putation path  fails. Given th a t 
a local evaluation evaluates each SCC completely before returning any an
swers out of it, we are guaranteed th a t only the most general answers will be 
returned out of th a t SCC. This process is presented in detail in Example 6.

E x a m p le  6 Consider the following HiLog [CKW 93] variation o f the same- 
generation program, which finds the sm allest distance between two people in  
the same generation: 

sg i(X,Y)(I) :-
ancestor(X.Z).
subsumes(min)(sgi(Z,Z1),I1),
ancestor(Y,Z1),
I is I1+1. 

sgi(X,X)(0).
:- subsumes(min)(sgi(joan,carl),I).

where subsumes(min)/2 is a HiLog tabled predicate that perform s answer sub
sum ption by deleting all nonm inim al answers every tim e it adds an answer to 
the table. Given the facts in Figure 8, there are a number o f ways this query 
can be evaluated. I t is well known that fo r  shortest-path-like problems, a 
breadth-first search can behave exponentially better than a depth-first search; 
nevertheless, in this example, a breadth-first search is still not optimal.

The above query seeks to determ ine how close joan and carl are. Note  
that they have three common ancestors (louis, mary, and  bob), and thus they 
are cousins o f first, second, and third degree. I f  evaluated under a breadth- 
firs t strategy (the behavior o f batched scheduling fo r  this example), all possible 
subpaths between joan and carl are considered, and i f  at some point during the 
evaluation a subpath is found  whose length is less than those so fa r  derived, it 
is im m ediately propagated, even though it m ay not be a m inim al subpath. For 
instance, batched scheduling first finds the distance between two im mediate 
ancestors o f joan and carl to be 2, and concludes the distance between joan and 
carl is 3. Then evaluation continues, a new distance between the im m ediate
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bob

anc(mary, bob). 
anc(john, bob). 
anc(louis, mary). 
anc(eve, john). 
anc(eve, mary). 
anc(joan, louis). 
anc(carl, eve). 
anc(carl, louis).

mary

A

loui

A

joan carl

Figure 8: Ancestor relation for Example 6

ancestors is found  to be 1, and a new answer (1=2) is generated fo r  the top- 
level query. Finally, the m in im al distance between joan and carl is found  to 
be 1, and the correct answer is returned.

If a local evaluation is used on the above example, only minimal subpaths 
are propagated, and the engine is able to prune a number of superfluous 
choices. This behavior might significantly improve the performance of pro
gram analyzers such as those based on Bruynooghe’s abstract interpretation 
framework [Bru91]. In this framework, after all the clauses for a predicate 
have been analyzed, the abstract substitution for the predicate is computed 
by taking the most general substitution among the clauses.

Local evaluation can also lead to a reduction in memory usage for some 
programs, as the following example illustrates.

E x a m p le  7 Given a program o f the form :

table p/1, q/1, r/1.
p(X,Y)
q(X,Y)
qi(X,Y)

- q(X,Z),r(Z,Y).
- qi(X,Y)
- q2(X,Y)

r(X,Y) : 
ri(X,Y)

ri(X,Y)
- r2(X,Y)

q„-i(X,Y) :- qn(X,Y) 
q„(1,2). q„(2,3).

rn-i(X,Y) :- rn(X,Y) 
rra(2,4). rra(2,5).

and the query p(X,Y). Under batched scheduling, completion fram es are cre
ated fo r  each call to q̂  and r̂ . The completion stack at the point when rm(X,Y)
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(m+2) rm(X,Y)

(3) r1(X,Y)

(2) r(X,Y)

(1) p(X,Y)

(b)

Figure 9: Completion stacks for Example 7 under batched scheduling (a)
and local scheduling (b)

is called is depicted in Figure 9a. Under local scheduling, since the SCCs of 
q(X,Z) and its descendents are completely evaluated before r(Z,Y) is called, 
all the space allocated fo r  the SCCs can be reclaimed before the call to r(Z,Y), 
as Figure 9b shows.

4  A l g o r i t h m s  a n d  W A M - L e v e l  I m p l e m e n t a 

t i o n

4.1 Implementation of Batched Scheduling
As mentioned in Section 2, a batched-scheduling evaluation can be thought 
of as a series of iterations where answers are returned to each of a set of 
consuming nodes until a fixpoint is reached for th a t set. We explain the im
plementation of batched scheduling by contrasting it to single-stack schedul
ing. W hen a new consuming node is created under single-stack scheduling, 
the node backtracks through answers th a t are already in the table. To do 
this, a consuming choice point is placed on the choice-point stack. Any new 
answers are later returned through answer-return choice points, as depicted in
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(n+4) r1(X,Y) 

(n+3) r(X,Y)

(n+2) qn(X,Y)

(3) q 1(X,Y) 

(2) q(X,Y) 

(1) p(X,Y)

(a)
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Figure 3. Batched scheduling makes heavy use of consuming choice points, so 
th a t it is worthwhile to consider in detail these choice points and the actions 
they support. In addition to the environment information kept in regular 
WAM choice points, a consuming choice point keeps a pointer to the previ
ous consuming node for the same subgoal. These pointers m aintain a list of 
all consuming nodes for a subgoal. The consuming choice point also keeps a 
pointer to the list of answers in the table associated with its subgoal. When 
the engine backtracks into a consuming choice point, the RetryConsuming in
struction is executed. This instruction backtracks through each answer in the 
answer list, and returns it to the corresponding consuming node. W hen there 
are no more answers left, RetryConsuming executes the failure continuation 
for the consuming choice point.

Batched scheduling does not differ from single-stack scheduling in regard 
to actions taken for answers derived before a given consuming node was 
created. However, when an answer is derived after a given consuming node, 
the answer will be returned through a later invocation of the consuming choice 
point, rather than  creating an answer-return choice point as in single-stack 
scheduling. In addition, the consuming choice point is modified to continue 
backtracking through answers for a given consuming node as long as any 
answers exist.

The changes in the SLG-WAM to implement batched scheduling are the 
following:

• The NewAnswer instruction no longer needs to lay down an answer- 
return choice point when a new answer is derived.

• The consuming choice point for each consuming node will have to keep 
track of which answers it has consumed, by means of a pointer into the 
answer list to the last answer it resolved. In addition, the table data 
structure requires a new pointer to the end of the answer list, since new 
answers are now inserted at the end of this list.

•  The RetryConsuming instruction (Algorithm 1) must fail when there 
are no more answers to resolve, so th a t either the action for the previ
ous consuming choice point (RetryConsuming) or for the generator choice 
point (TableRetry, TableTrust, or CheckComplete) is reinvoked.

• In the CheckComplete instruction (Algorithm 2):
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— An extra step is added to the CheckComplete of a subgoal S  to 
handle the return of batched answers. Note th a t the subgoal S  
has to schedule any unresolved answers to the consuming nodes of 
S  before the actual completion check for S  is issued (see Schedule 
Answers, Algorithm 3).

— If S  is the leader of its ASCC, the engine has to perform a fixpoint 
check. The instruction scans through all the subgoals in the ASCC 
for S , and checks whether the consuming nodes for these subgoals 
still have answers to resolve. If so, the instruction schedules the 
subgoals on the choice-point stack and arranges the stack so th a t 
when their evaluation is finished, another completion check is is
sued for the leader S . Otherwise, if there is nothing to schedule, a 
fixpoint has been reached, and the ASCC can be safely completed.

A lg o r ith m  1 (R etryC onsum ing(C onsum ing  N o d e  C o n s ))
Switch environments to Cons;
If Cons has new answers to resolve 

Mark current answer as used;
Return answer to Cons;
Set the forward continuation;

Else
Set the failure continuation;

Some general advantages of batched scheduling over single-stack schedul
ing are claimed in Section 2. We also note in passing th a t the RetryConsum
ing instruction requires fewer machine instructions than  the AnswerReturn 
instruction, so th a t the trade-off of substituting RetryConsumings for An- 
swerReturns is likely to be beneficial at this level as well. However, batched 
scheduling also imposes some overheads: the scheduling of answers before the 
completion check for each subgoal; and the need to perform a fixpoint check 
for each leader. Section 5 will dem onstrate th a t the advantages of batched 
scheduling outweigh its overheads.

A lg o r ith m  2 (C heckC om plete(S ubgoal S ))
If ScheduleAnswers(S)

Backtrack through each node in the schedule_chain 
to return any unresolved answers;

If S is the leader of its ASCC
24
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Fixpoint =  true;
For each subgoal S ’ in the ASCC of S 

If S ’ is not completed 
If ScheduleAnswers(S')

Fixpoint =  false;
If Fixpoint = =  false backtrack to return answers;
Mark every subgoal in the ASCC as completed, and 
deallocate stack space 

Else fail;

A lg o r ith m  3 (Schedule A nsw ers(S ubgoal S ))
Sched =  false;
While there exists an consuming node Cons whose 
selected literal is S

If Cons has unresolved answers 
Add Cons to the schedule_chain;
Sched =  true;

Return sched;

4.2 Implementation of Local Scheduling
In Section 3.3 we introduced local scheduling, a strategy th a t completes sub
goals as early as possible by evaluating one SCC completely before returning 
any answers out of it. We shall now explain how local scheduling is im
plemented on top of batched scheduling. First, we note th a t SLG-WAM 
implementations of nonlocal strategies implement what may be term ed first- 
call optim ization, which allows a root subgoal S root to share its bindings with 
the first consuming node Scalling th a t initially called it in the evaluation, 
and eliminates the need for a consuming choice-point frame for S calling. For 
instance, in Figure 4 (Section 2), nodes 6 and 7 of Figure 4 share the vari
able Y under first-call optimization. In local scheduling, the SLG-WAM is 
still able to coalesce the choice point for S calling and S root, but the genera
tor choice point for S root must be able to delay returning answers until it is 
found not to be the leader of its SCC, or until the completion of the SCC 
of S root. Accordingly, it is referred to as a generator-consuming choice point 
in local scheduling. The NewAnswer instruction also requires a modification. 
In batched scheduling, whenever a new answer is generated, the engine goes
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on to execute the continuation for the corresponding tabled subgoal to ef
fectively return  the answer in the calling environment. For local scheduling, 
however, when an answer is generated, it is simply inserted into the table, 
and the engine then backtracks (to avoid returning the answer). Also, recall 
from Algorithm 2 th a t during the batched scheduling completion check, the 
engine has to: (1) schedule answers, (2) check for fixpoint, and (3) reclaim 
space for completely evaluated subgoals. Each of these steps is performed 
in local scheduling, but in slightly different ways to accommodate the extra 
batching of answers among different SCCs.

The original Schedule Answers routine described in Algorithm 3 sim
ply scheduled any available answer to all applicable consuming nodes of a 
subgoal. In Algorithm 4, Local Schedule Answers needs to distinguish be
tween consuming and generator-consuming nodes. Local Schedule Answers 
can schedule unresolved answers except in the following case. If the subgoal 
being considered is the leader of its SCC, the engine cannot schedule the 
resolution of its answers through the generator-consuming choice point, since 
this would return  answers out of an SCC before its completion. In Local Find 
Fixpoint (Algorithm 5), the engine simply scans through the topmost SCC 
(using the completion stack), checks whether any subgoal still has consuming 
nodes with unresolved answers, and schedules any such subgoals. However, 
the engine need not schedule a subgoal if only its generator-consuming node 
has unresolved answers. If Local Find Fixpoint succeeds, the engine is guar
anteed th a t the topmost SCC is completed. At this point, all subgoals in 
the SCC can be marked as completed, and space can be reclaimed. Finally, 
if the leader of the SCC has answers in the table, these should be returned. 
The completion check for local scheduling is described in Algorithm 6.

A lg o r ith m  4 (Local Schedule A nsw ers(S ubgoal S ))
Sched =  false;
If there are consuming nodes and answers in the 
table for S

While there exists a consuming node Cons whose selected 
literal is S

If Cons has unresolved answers 
Add Cons to the schedule_chain;
Sched =  true;

If S  is not the leader of its SCC
Add the generator-consuming choice point of S to the schedule_chain;
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Sched =  true; 
Return sched;

A lg o r ith m  5 (Local Find F ixpoin t(S ubgoal S ))
Fixpoint =  true;
For each subgoal S ’ in the SCC of S 

If Local Schedule Answers(Subgoal S ’)
Fixpoint =  false;

Return fixpoint;

A lg o r ith m  6 (Local C heckC om plete(S ubgoal S ))
Local Schedule Answers(S);
If S  is the leader of its SCC 

If Local Find Fixpoint(S )
Mark all subgoals in the SCC as completed, and 
deallocate stack space;
If there are answers for S

Switch environments to the generator-consuming 
choice point for S;
Backtrack through the completed table to return answers 
to the generator-consuming choice point for S ;

Else fail and backtrack through the schedule_chain to return 
unresolved answers;

Else fail;

5  E x p e r i m e n t a l  R e s u l t s

In this section we compare both execution time and memory usage of SLG- 
WAM engines, based on the different scheduling strategies described in the 
previous sections—XSB version 1.4 uses single-stack scheduling, XSB ver
sion 1.5 uses batched scheduling, and Local uses local scheduling—these en
gines differ only in the scheduling strategy used. For execution time, we 
considered not only the running time, but also the dynamic count of SLG- 
WAM instructions and operations. Benches were run on a SPARC2 with 64 
MB RAM under SUNOS.
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Transitive Closure reach(X,Y) :- arc(X, Y)
reach(X, Y) :- reach(X, Z), arc(Z, Y)

Shortest Path sp(X, Y)(D) :- arc(X, Y, D) 
sp(X, Y)(D) :-

subsumes(min)(sp(X, Z), D1), 
arc(Z, Y, D2), D is D1 +  D2

Same Generation sgi(X, Y)(D) :- arc(X, Y) 
sgi(X, Y)(D) :-

arc(X, Z), subsumes(min)(sgi(Z, Z1), D1) 
arc(Y, Z1), D is D1 + 1

Table 2: Bench programs

The bench programs consisted of variations of transitive closure, same 
generation, and shortest path  on various graphs (the programs are given in 
Table 2). We experimented with graphs th a t have well-defined structures, 
such as linear chains and complete binary trees, as well as less-regular graphs 
(e.g., variations of K nuth’s Words2).

5.1 Performance of Batched Scheduling
Let us first examine the differences between single-stack scheduling and 
batched scheduling for left-recursive transitive closure on a linear chain con
taining 1,024 nodes, with the query reach(1,X). Under single-stack schedul
ing, first all facts are used (by backtracking through the facts for arc/2 in the 
first clause), and when the consuming node is laid down for the subgoal in the 
second clause, each answer in the table is consumed. Each time a new answer 
is derived in this process, com putation is suspended and the new answer is 
immediately returned, by freezing the stacks and pushing an answer-return 
choice point onto the choice-point stack. Under batched scheduling s tra t
egy, all answers in the table are returned before any newly derived answer is 
considered.

Table 3 shows a profile3 of SLG-WAM execution for the different engines.

2The nodes of these graphs are a subset of the 5,757 more common five-letter English 
words; there is an arc between two words if they differ in a single character [Knu93].

3Note that for both Table 3 and 4, we considered only the trailings and untrailings that 
result from environment switches.
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Instructions/Operations XSB Version 1.4 XSB Version 1.5 Local
RetryConsuming 0 1,023 1,023
RetryGenConsuming n/a n/a 1,023
AnswerReturn 1,022 n/a n/a
CheckComplete 1 1 1
SwitchEnvironments 1,026 1,027 2,050
Freeze 1,022 0 0
Trail 0 0 0
Untrail 2,047 2,047 3,070
Schedule Answers n/a 1 1
Fixpoint n/a 1 1
Subgoals 1 1 1
Consuming Nodes 1 1 1

Table 3: SLG-WAM Execution Profile for Left-Recursive Transitive Closure 
on a Linear Chain with 1,024 Nodes

Instructions/Operations XSB Version 1.4 XSB Version 1.5 Local
RetryConsuming 1 2,046 2,046
RetryGenConsuming n/a n/a 2,046
AnswerReturn 2,044 n/a n/a
CheckComplete 1 1 1
SwitchEnvironments 3,072 3,073 5,119
Freeze 2,044 0 0
Trail 1,022 0 0
Untrail 5,115 4,093 6,139
Schedule Answers n/a 1 1
Fixpoint n/a 1 1
Subgoals 1 1 1
Consuming Nodes 1 1 1

Table 4: SLG-WAM Execution Profile for Left-Recursive Transitive Closure 
on a Complete Binary Tree of Height 9
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Notice th a t the main difference between XSB versions 1.4 and 1.5 for this 
example lies in the fact th a t AnswerReturns are replaced by RetryConsumings. 
Since RetryConsuming requires about 30% fewer machine instructions than 
AnswerReturn (Section 4.1), the trade-off is beneficial. The times for the 
different engines to compute the transitive closure on trees and chains are 
given in Figure 10. The speedup of XSB version 1.5 over XSB version 1.4 for 
these examples varies between 11% and 16%.

More significantly, because batched scheduling does not require any stack 
freezing, it utilizes memory better. Figure 11a gives the to tal stack space us
age (local, global, choice point, trail, and completion stack) for the strategies 
under consideration (for left-recursive transitive closure on chains of varying 
lengths). Note th a t whereas memory consumption grows linearly with the 
number of facts for XSB version 1.4, the space remains constant for XSB ver
sion 1.5 at 2.7 KB (as it does for Local, which is built on XSB version 1.5).

(a) linear chains of varying length (b) complete binary trees of varying 
heights

Figure 10: Times for left-recursive transitive closure

Table 4 shows the SLG-WAM instruction/operation count for left- 
recursive transitive closure on complete binary trees of varying height. The 
numbers in this table are similar to those of Table 3, but the batching of an
swer resolution reduces the need for the engine to move around in the SLG 
forest; thus batched scheduling also reduces the setting/resetting of trailed 
variables. Memory savings are even bigger than  for chains, as Figure 11b
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Number of K Edges Number of K Edges

(a) Linear chains of varying length (b) Complete binary trees of varying
height

Figure 11: Total memory usage for left-recursive transitive closure

shows (note th a t for the two new strategies, the space remains constant at 
2.88KB).

Single-stack scheduling, as its name implies, uses a stack-based schedul
ing for answers; when executing transitive closure over, say, a binary tree, it 
traverses the tree in a depth-first manner. Because batched scheduling effec
tively uses a queue for returning answers, when executing transitive closure 
it will traverse the same tree in a breadth-first manner. Accordingly, opti
mization problems such as shortest path  th a t can (1) be formulated through 
left-recursive transitive closure, and (2) benefit from a breadth-first search, 
can be run more efficiently under batched scheduling.4 To dem onstrate this, 
we first consider the artificial graph described in Figure 12a. If a depth-first 
search is used to compute the shortest path  between nodes 1 and n in this 
graph, it will run in exponential time. However, the shortest path  can be 
computed in polynomial time if the graph is searched in a breadth-first m an
ner. Figure 12b shows the times XSB version 1.4, XSB version 1.5, and Local 
take to compute sp(1,n)(Dist) for different values of n. In addition to running 
slower, XSB version 1.4 ran out of memory on graphs with more than  512

4It is worth pointing out that only the underlying data structures are searched in a 
breadth-first manner. The predominantly depth-first nature of program-clause resolu
tion in the WAM is maintained through all strategies discussed in this paper. However, 
[FSW97] discusses the SLG-WAM implementation of a general breadth-first search that 
is also suitable for queries to disk-resident data.
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XSB v. 1.4 
XSB v. 1.5

Local

0 500 1000 1500 2000 2500 3000 3500 4000 4500 
Number of Edges

(a) (b)

2

4

6

n

Figure 12: The time is shown for XSB version 1.4 and XSB version 1.5 to 
find the shortest path  between the two endpoints (1 and n) of a graph of

the form depicted at left

nodes. XSB version 1.5 is also consistently faster than  XSB version 1.4 for 
graphs th a t are less regular, such as variations of Words. Figure 13 shows 
the times for the engines to compute two shortest-path queries.

In Section 4.1, we mentioned th a t batched scheduling adds some overhead 
when compared to single-stack scheduling. The CheckComplete instruction 
becomes more expensive. At CheckComplete, not only does batched schedul
ing need to schedule all unresolved answers, but for each leader subgoal it has 
to check whether all subgoals in the leader’s SCC are completely evaluated. 
Clearly, for programs th a t do not benefit from batching answers, these extra 
tasks might result in loss of efficiency. One example where XSB version 1.5 
performs worse than  XSB version 1.4 is right recursive-transitive closure on a 
linear chain. In this example, there are as many tabled subgoals as there are 
nodes in the graph, and each subgoal is the leader of its own SCC. Note tha t 
since there are no consuming nodes, answers are not batched. However, at 
CheckComplete for each subgoal, XSB version 1.5 still has to check whether 
there are unresolved answers to be scheduled and whether fixpoint has been 
reached—steps which, in this case, are superfluous.
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100 200 300 400 500 600 700 800 900 10001100 
Number of Edges

(a) sp(words,X)(Dist)—500 iterations

Number of Edges

(b) sp(there,white)(Dist)—1000 itera
tions

Figure 13: Timings for shortest-path on Words

5.2 Performance of Local Scheduling
R ather than  sharing the bindings as in batched scheduling and single-stack 
scheduling, the implementation of local scheduling incurs the cost of explic
itly returning an answer of a generator node to its calling environment. This 
overhead is reflected in Tables 3 and 4—aside from the 1,023 RetryConsumings 
th a t are done for XSB version 1.5, Local requires another 1,023 RetryGen
Consuming to explicitly return  answers to the calling environment. Note tha t 
this also incurs a higher number of environment switches: one for each an
swer returned outside of an SCC (e.g., in Table 3, notice th a t the number 
of SwitchEnvironments for Local is 2,050, which is the sum of the number of 
SwitchEnvironments for XSB version 1.5 and the number of answers). These 
extra operations add between 10% and 20%, as is evidenced in Figure 10.

As for memory consumption, local scheduling has the same constant be
havior as batched scheduling for transitive closure on trees and chains, as 
evidenced in Figure 11 (notice th a t the lines for Local and XSB version 1.5 
overlap). In Figure 10, we can see th a t Local adds a roughly constant 15% 
overhead to XSB version 1.5, and the execution times for the Local engine 
are comparable to XSB version 1.4. Local also has approximately the same 
performance as XSB version 1.5 for shortest path  (see Figures 12b and 13).

We have stated in Section 4.2 th a t for programs th a t use answer subsump
tion, local scheduling can perform arbitrarily better than  batched scheduling.
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The graph in Figure 14b substantiates this statem ent. This experiment mea
sured the times to find the shortest distance between the two deepest nodes 
(n-1 and n) on graphs of the form depicted in Figure 14a, for varying n, us
ing the same-generation program of Example 6. Not only is local scheduling 
considerably faster, but its execution times increase linearly with the size of 
the data, whereas for batched scheduling, this growth is exponential.5

n-3 . n-2

4500 |—
4000 -
3500 -
3̂000 -T3

o 2500 -
■̂ 2000 - 
eH1500 -

1000 - 
500 

0
0

XSB v. 1.5̂  
Local'

200 400 600 800 1000 1200
n-1 n

(a) (b)

Figure 14: The execution time for the query subsumes(min)(sgi(n-1,n),I) is
shown on graphs of the form depicted at left for varying n

Local scheduling is an efficient way to find all answers for a given query; 
however, it is not useful for so-called existential queries—queries th a t involve 
an existential variable, or certain forms of ground negation. In these cases, 
a single answer is required, and local scheduling is inefficient since it fully 
evaluates SCCs before passing answers back up to consuming nodes. For 
practical query evaluation, then, one would expect th a t a mixture of strate
gies may become useful: batched scheduling for existential queries, and local 
scheduling for queries th a t involve answer subsumption, while either may 
evaluate the remaining class of queries.

5In Figure 14b, the times for the Local engine vary from 0.06-15.7, whereas for XSB 
version 1.5, they range between 0.09-4007.8.

2

n
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6  D i s c u s s i o n  a n d  F u t u r e  D i r e c t i o n s

Batched scheduling bears some resemblance to two independently developed 
approaches: the ET* algorithm from [FD92] and the AMAI from [JBD95]. 
However, in [FD92], Fan and Dietrich do not consider strongly connected 
components in the fixpoint check, and their strategy is fair for answers.6 The 
extra check for fairness may result in inefficiencies for in-memory queries such 
as transitive closure over a chain. In [JBD95], Janssens, Bruynoohge, and 
Dumortier describe an abstract machine specialized for abstract interpreta
tion, and use a similar scheduling strategy for their fixpoint iterations. Even 
though they take SCCs into account, these are detected statically. In the 
SLG-WAM, dynamic detection of SCCs has been proven useful in the eval
uation of logic programs with negation (stratified or not). Local scheduling 
resembles the strategy proposed by Zukowski and Freitag in [ZF96], where 
program fragments are evaluated by different fixpoints.

The scheduling strategies proposed in this paper can improve the 
performance—memory usage and execution time—of tabled evaluations. 
Owing to its performance, batched scheduling is now the default scheduling 
strategy for XSB. The gains from this strategy are twofold: by eliminating 
the answer-return choice point and the freezing of stacks done at Answer
Return, memory usage is greatly reduced; and because of the reduction of 
trailings/untrailings, the execution time decreases.

Local scheduling can perform asymptotically better than  batched schedul
ing when combined with answer subsumption. This can be of use in many 
different areas, such as aggregate selection and program analysis. In ad
dition, local scheduling may have an im portant role to play in evaluating 
programs under the well-founded semantics [vGRS91]. Currently, in the 
default-scheduling strategy of XSB, the engine may have to construct part of 
the SDG to check for loops through negation. Since local scheduling main
tains exact SCCs, it does not require this step, as was dem onstrated by 
Example 5. Furthermore, when negative literals actually are involved in a 
loop through negation, SLG uses a D e la y  operation to attem pt to break 
the loop. This use of D e la y  may create an answer A  th a t is conditional on 
the tru th  of some unevaluated literal. However, other derivation paths may 
create an unconditional answer for A  (for example, all answers considered in 
this paper are unconditional). Clearly, conditional answers are not needed

6That is, answers are not returned in the same fixpoint iteration they are created.
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for A  if there is a corresponding unconditional answer, and the use of D e la y  
gives rise to a form of answer subsumption, leading to another advantage of 
locality. As the well-founded semantics becomes used by practical programs, 
the advantages of local scheduling may become increasingly necessary for 
their efficient evaluation.7

We have shown th a t even though local scheduling can achieve near- 
optimal performance for some applications, for others it may add overheads 
and even lead to unacceptable inefficiency. This is also true of other schedul
ing strategies devised for SLG. The ideal would be to use a strategy or set 
of strategies tha t results in the best performance for a desired application. 
Further research is needed to assess the feasibility of combining different 
scheduling strategies in the same evaluation.

A ck n o w led g m en t o f s u p p o r t:  This work was supported in part by CAPES- 
Brazil, and NSF grants CDA-9303181 and CCR-9404921.

R e f e r e n c e s

[AK91] H. Ai't-Kaci. W AM: A  Tutorial Reconstruction. Cambridge, MA, 
1991, MIT Press.

[BR91] C. Beeri and R. Ramakrishnan. On the power of Magic. Journal 
of Logic Programming, 10(3):255-299, 1991.

[Bru91] M. Bruynooghe. A practical framework for the abstract inter
pretation of logic programs. Journal o f Logic Programming , 
10(1/2/3&4):91-124, 1991.

[CDS97] M. Codish, B. Demoen, and K. Sagonas. XSB as the natural 
habitat for general purpose program analysis. In Proceedings 
of the In ternational Conference on Logic Programming (IC L P ), 
page 416, Cambridge, MA, 1997. MIT Press.

[CKW93] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for 
higher-order logic programming. Journal o f Logic Programming , 
15(3):187-230, 1993.

7Versions 1.7 and higher of XSB can evaluate the well-founded semantics using either 
batched scheduling or local scheduling.

36

T h e  J o u rn a l  o f F u n c tio n a l a n d  Logic P ro g ra m m in g 1998-3



Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

[CW96]

[DRSS96]

[DRW96]

[FD92]

[FHSW95]

[FSW96]

[FSW97]

[JBD95]

W. Chen and D. S. Warren. Tabled evaluation with delaying 
for general logic programs. Journal o f the ACM , 43(1):20-74, 
January 1996.

S. Dawson, C. R. Ramakrishnan, S. Skiena, and T. Swift. Princi
ples and practice of unification factoring. A C M  Transactions on 
Programming Languages and System s, 18(5):528-563, September 
1996.

S. Dawson, C. R. Ramakrishnan, and D. S. Warren. P racti
cal program analysis using general purpose logic programming 
systems—a case study. In Proceedings o f the A C M  Conference on 
Programming Language Design and Im plem entation, pages 117
125, New York, 1996. ACM.

C. Fan and S. Dietrich. Extension table built-ins for Prolog. 
Software— Practice and Experience, 22(7):573-597, July 1992.

J. Freire, R. Hu, T. Swift, and D. S. Warren. Exploiting par
allelism in tabled evaluations. In Proceedings o f the 7th In ter
national Sym posium , P L IL P  95, volume 982 of Lecture Notes in  
Com puter Science, pages 115-132, Berlin, 1995. Springer-Verlag.

J. Freire, T. Swift, and D. S. Warren. Beyond depth-first: Im
proving tabled logic programs through alternative scheduling 
strategies. In Proceedings o f the Eighth In ternational Sym po
sium  o f Programming Languages, Im plem entations, Logics and 
Programs, pages 243-258, Berlin, March 1996. Springer-Verlag.

J. Freire, T. Swift, and D. S. Warren. Taking I/O  seriously: 
Resolution reconsidered for disk. In Proceedings o f the In terna
tional Conference on Logic Programming (ICLP), pages 198-212, 
Cambridge, MA, 1997. MIT Press.

G. Janssens, M. Bruynooghe, and V. Dumortier. A blueprint for 
an abstract machine for abstract interpretation of (constraint) 
logic programs. In Proceedings o f the In ternational Sym posium  
on Logic Programming, pages 336-350, Cambridge, MA, 1995. 
M IT Press.

37

T h e  J o u rn a l  o f F u n c tio n a l a n d  Logic P ro g ra m m in g 1998-3



Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

[KKTG95]

[Knu93]

[LBD+88]

[RRR+97]

[RRS+95]

[SW94a]

[SW94b]

[Swi94]

[Tom95]

G. Kostler, W. Kiessling, H. Thone, and U. Guntzer. Fixpoint 
iteration with subsumption in deductive databases. Journal of 
Intelligent In form ation  System s, 4(2):123-148, March 1995.

D. E. Knuth. The Stanford GraphBase: A  Platform  fo r  Combi
natorial Computing. Reading, MA, 1993. Addison-Wesley.

E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, D. H. D. W ar
ren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carls- 
son, A. Ciepielewski, and B. Hausman. The Aurora or-parallel 
Prolog system. In Proceedings o f the In ternational Conference 
on Fifth  Generation Com puter System s, pages 819-830, 1988. 
ICOT (Institute for New Generation Computer Technology), Ed. 
OHMSHA Ltd. Tokyo and Springer-Verlag.

Y. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, 
S. Smolka, T. Swift, and D. Warren. Efficient model checking 
using tabled resolution. In Proceedings o f Com puter Aided V eri
fication, pages 143-154, Berlin, 1997. Springer-Verlag.

I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. 
Warren. Efficient table access mechanisms for logic programs. In 
Proceedings o f the In ternational Conference on Logic Program
m ing , pages 697-711, Cambridge, MA, 1995. MIT Press.

T. Swift and D. S. Warren. An abstract machine for SLG res
olution: Definite programs. In Proceedings o f the In ternational 
Sym posium  on Logic Programming , pages 633-654, Cambridge, 
MA, 1994. MIT Press.

T. Swift and D. S. Warren. Analysis of sequential SLG evalu
ation. In Proceedings o f the International Sym posium  on Logic 
Programming, pages 219-238, Cambridge, MA, 1994. MIT Press.

T. Swift. Efficient evaluation of normal logic programs. PhD 
Thesis, Departm ent of Computer Science, State University of 
New York at Stony Brook, 1994.

D. Toman. Top-down beats bottom -up for constraint extensions 
of datalog. In Proceedings o f the In ternational Logic Program-

38

T h e  J o u rn a l  o f F u n c tio n a l a n d  Logic P ro g ra m m in g 1998-3



Freire, Swift, and Warren Beyond Depth-First Strategies (Ref)

[vG93]

[vGRS91]

[War83]

[ZF96]

m ing Sym posium , pages 98-115, Cambridge, MA, 1995. MIT 
Press.

A. van Gelder. Foundations of aggregation in deductive 
databases. In Proceedings o f the In ternational Conference on 
Deductive and Object-Oriented Databases, pages 13-34, Berlin, 
1993. Springer-Verlag.

A. van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets 
and well-founded semantics for general logic programs. Journal 
of the ACM , 38(3):620-650, 1991.

D. H. D. Warren. An abstract Prolog instruction set. Technical 
Report 309, Stanford Research Institute, 1983.

U. Zukowski and B. Freitag. Adding flexibility to query evalu
ation for modularly stratified databases. In Proceedings of the 
Join t In ternational Conference and Sym posium  on Logic Pro
gramming, pages 304-318, Cambridge, MA, 1996. M IT Press.

39

T h e  J o u rn a l  o f F u n c tio n a l a n d  Logic P ro g ra m m in g 1998-3


