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We report the study of magnetic properties of a molecular-based alternating-spin chain: metalloceni
um electron-transfer salt decamethy1chromocenium tetracyanoethanide, [CrCpi] [TCNE]. We give a 
modified spin-wave theory for the Heisenberg alternating-spin chains. The low-field susceptibility and 
magnetization data agree with the theoretical results indicating that one-dimensional linear magnon ex
citations dominate the magnetic behavior above the three-dimensional ordering temperature. Strong fer
romagnetic intrachain coupling, J ""9 K, is found. Unusual critical phenomena associated with lattice 
dimensional crossover are discussed. 

change,J'. Low-dimensional magnetism continues to be of in
terest, especially with the possibility of studying phenom
ena such as mixed-spin linear-chain systems. 1 The recent 
availability of a new class of quasi-one-dimensional 
(quasi-lO) magnetic systems based on donor and accep
tor electron-transfer salts enables the preparation of new 
magnetic systems.2,3 In addition to determining the mag
netic phenomena in these systems, it is currently chal
lenging to determine the mechanism for magnetic ex
change in molecular-based systems.4,5 We present the re
sults here of high- and low-field studies of the magnetiza
tion (M) and susceptibility (X) of the metallocene 
electron-transfer salt decamethylchromocenium tetra
cyanoethanide, [CrCpmTCNE].6-8 This material differs 
from the earlier studied ferromagnetic decamethylferro
cenium TCNE,9 [FeCp~] [TCNE], in that the donor 
[CrCp~]+ has a spin of t with essentially isotropic 
g = 2. 00, while [FeCp21 + has a spin of t with an aniso
tropic gil =4 and gl = 1. 3. It also differs from a third 
member of this class, decamethylmanganocenium TCNE, 
[MnCpmTCNE], in that [MnCP21+ has spin 1. We de
velop a modified spin-wave theory for the Heisenberg fer
romagnetic mixed-spin chains. Comparing with the ex
perimental data, we found that the low-temperature mag
netization and susceptibility of this system are mainly 
determined by 10 linear magnons. A strong field depen
dence of the critical isotherm (with a very small value of 
the critical exponent 6-1. 85) is found; this indicates that 
the transition observed at Tc is indeed composed of a lat
tice dimensional crossover. Long-range order occurs for 
T:::: Tc due to the presence of a weak interchain ex-

The crystal structure6 of [CrCP21+[TCNE]- is similar 
to (but not isomorphic with) that of [FeCp21 + [TCNE] - . 
The low-field magnetic field magnetic data of the former 
compound indicates a ferromagnetic transition with 30 
mean-field-like critical exponents7 f3=O.5 and r= 1.21, 
nearly identical to the values for the latter compound.9 

The high-field magnetization and dc susceptibility of the 
powdered samples reported here were measured using a 
Faraday balance magnetometer.9 Figure 1 shows the dc 
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FIG. 1. XTvs Tand I/X vs T. Solid line is theoretical result 
with J ",,9.0 K. 
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susceptibility measured under an applied field of 5000 Oe. 
To estimate the ferromagnetic exchange constant be
tween [crCp!]+(S =f) and [TCNE]-(S =t) along the 
chain, we adopt a classical treatment for a Heis~n~err 
linear chain with alternating spins, D = -2Jl:iS~ ,S2 + , 
where SI and S2 denote the spin operators for [crCp!]+ 
and TCNE-, respectively. The expression for the sus
ceptibility may be written as lO 

= N AJL1 [ 2 1 +F(pJ) + 2 I-F(pJ) ] 
XID 3kB T g+ I-F({JJ) g I+F(pJ) 

where F(pJ)=coth(pJ)-(pJ)-I, g+ =t(ll +l2), 

g - =t(ll -g2)' ll,2 =gl,2[SI,2(SI,2 + 0]112, J=2J[SI 
(S 1+ OS2(S2 + 0]112, and gl and g2 represent the values 
of the isotropic g/actor for spin site SI and S2' respec
tively. Fitting the data for 300 K > T> 30 K, we find 
J=9.0 K, gl = 1. 95, and g2 =2.00. 11 This result is 
shown as the solid line in Fig. 1. Oue to the finite field 
effect, the expression for X ID does not fit to the high-field 
data (5000 Oe) below - 30 K. With a mean-field correc
tion for the interchain exchange coupling J' the suscepti
bility takes the form l2 X3D =X ID /[l-(2zJ'IC)XID]' Us
ing the same values of J, g I' and g 2 obtained above, we fit 
the low-field (0. 15 Oe) susceptibility data with zJ' """ O. 06 
K. 

r,II=±1 

Hp. = - l: [JLla 1 (r )al (r)+JL2a1(r +8)a2(r +8)] , 
r,II=±1 

Since the ground state is ordered, one may expect that 
low-energy properties are governed by ferromagnetic spin 
waves (magnons). An isolated chain cannot have true 
long-range order at any finite temperature, but the corre
lation length diverges as s( T) ex; T- I in the low
temperature regime.13 Spin waves are well defined for ex
citations of length scales shorter than s(T). We show 
that there indeed exists a temperature window above Tc 
where it is possible to describe the system with quantita
tive accuracy in terms of 10 self-consistent magnons. 
When 10 correlation length s( T) becomes large enough, 
small interchain coupling J' drives the chains into a 30 
ordered state at a critical temperature which should ap
proximately scalel4 as Tc ex; (J' )112. 

We rewrite the isotropic 10 Heisenberg Hamiltonian 
asH=-2J~i[StSt+1 +1/2(S/Si+1 +Si-Si~1 )]. Spins 
on even sites (sublattice 1) have magnitude SI =f, while 
those on odd sites (sublattice 2) have S2 =t: We then ap
ply Oyson-Maleev (OM) transformation l5 for spin opera
tors (r is a site label and a = 1,2 is a sublattice 
label): S: (r)=(2Sa )1I2a~(r), S; (r )=(2Sa )1/2[ 1 
-(2Sa)-1/2a~(r)aa(r)]aa(r), and S~(r)= -Sa 
+a~(r)aa(r), to obtain an equivalent boson Hamiltonian: 
H DM =H2+H4+Hp., with 

H4 =J l: [V(SI IS2 )a 1(r)a1(r+8)a2(r+8)a2(r+8)+V(S2/SI)a 1(r)a1(r+8)al(r)a l (r)] . 
r,II=±1 

Here Hz describes noninteracting magnons, while H 4 de
scribes magnon interactions. We have also introduced 
the chemical potential H p.' to control the average number 
of mag nons. 

We ignore the kinematic interactions and solve this 
Hamiltonian within the Hartree-Fock (HF) approxima
tion. 16,17 This amounts to a decoupling of the interaction 
terms and after transforming to the Fourier variables, we 
obtain a quadratic effective HF Hamiltonian in momen
tum space: 

HHF= l: aa(k)Aa{j(k)ap(k) , 
k,a,p 

with 

A II (k)=2JZS2[ I-JLI IJZS2 -N2/S2 +(SIS2)-1/2",] , 

A22(k)=2JZSI[1-JL2IJZSI -NI/SI +(SIS2)-1I2",] , 

AI2(k)=-2JZ(SISz)1/20-NI/SI +",)r(k) , 

A 21 (k)= -2J(SIS2)112(1- N 2/Sz +",)r(k) , 

r(k)= ~ l:e ikli , 
II 

(1) 

NI =(a1(r)al(r»= !l:(a1(k)al(k» 
k 

2 
= Nl:nl(k) , 

k 

Nz=(a1(r)az(r»= !l:(a1(k)az(k»= !l:nz(k) , 
k k 

",=",*=(a1(r)a2(r+8»= !l:(al(k)a2(k» , 
k 

(2) 

(3) 

(4) 

where the averages N I • N z, and", must be determined 
self-consistently. The HF Hamiltonian is diagonalized, 
by the Bogoliubov transformation: H HF = l:k,a 
bu(k)Ea(k )ba(k) where ba(k) are rotated magnon 
operators ba(k)=~p Ua{jap(k). The rotation matrices 
are U ll (k)= U2z(k)=cos(6(k» and U 12(k)= - UZI (k) 
= -sin(6(k», and the rotation angle is 
tan(26(k» = - [A 12(k) + A21 (k)]I[ A 22(k) - A 11 (k)]. 
Ea(k) are the excitation energies of the two magnon 
branches: EI.z(k)=t( A II (k)+ Azz(k)±{ [A 22 (k) 
- A 11 (k) ]2+4A 12(k)A zl (k)} 112). 
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Within the HF approximation, sublattice magnetiza
tions are given by 

2 
MI =SI- N 1:[u(k)nl(kHv(k)n2(k)] , (5) 

k 

2 
M 2=S2- N 1: [v(k)nl(kHu(k)n2(k)], (6) 

k 

where u(k)=cos2(9(k», v(k)=sin2(9(k» and na(k) 
=(e{JEa(k) -1 )-1 are magnon occupation numbers. We 
will enforce rotational symmetry above Te by tuning the 
chemical potentials so that the average sublattice magne
tizations M 1 and M 2 vanish. 13 Equations (1)-(6) then 
constitute a set of coupled integral equations, which are 
solved numerically to obtain iJ( T). 

Following Ref. 18, the uniform magnetic susceptibility 
is computed as a rotationally invariant average: 

3X(T)T _ 2 
2 - N1: 1:gaSa(r)g{JS{J(r') 

iJB a{J rr' 

_2~~ 2 2 - N ~ ~na(k )n{J(k)Ga{J(k)+gISI +g2S2 , 
k a{J 

where G l1 (k)=[gIU(kHg2v(k)f, G22 (k)=[gIV(k) 
+g2u(k)]2, G 12(k)=G21 (k)=u(k)v(k)(gl-g2)2. 

To extend the applicability of the theory to lower tem
peratures, again we treated interchain correlations in a 
mean-field-like fashion. The agreement between theory 
and experiment is quite good even close to Te' The un
known exchange couplings J and J' and g factors were 
treated as variational parameters and are adjusted to give 
the best agreement with experimental results, X and M. 
The values obtained within spin-wave theory (J ""'9.0 K, 
zJ' "'" O. 03 J) agree very well with the estimates derived 
from the classical treatment. The results for susceptibili
ty are shown in Fig. 2. The agreement between two op
posite temperature regimes confirms that the essential 
physics is captured by the Heisenberg model. The appli
cation of a uniform external magnetic field H amounts to 
a shift in the self-consistently determined chemical poten-
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FIG. 2. Low-field susceptibility data at H= 150X 10-3 Oe. 
The solid line is a result from the spin-wave theory with J "",9.0 
K and zI' ""'0.03 J. 

tials: iJa-iJa+gaiJBH. This shifted chemical potential 
is then used in (5) and (6) to compute the magnetization 
M(H)=gliJBMI +g2iJBM2' In Fig. 3(a) we compare the 
experimental results with spin-wave theory prediction. 

In a pure ID system, in addition to the thermally ac
tivated spin-diffusion processes, nonlinear excitations, 
like bound magnons,19,20 solitons,21 and large-size mobile 
clusters22 may become important at low magnetic fields. 
However, given that the measured magnetization at low 
fields is higher than that expected from spin-wave theory 
alone, and that the agreement is better further above Te , 

this is highly unlikely here. This discrepancy between ID 
theory and experiment is easily explained by a larger 
effective magnetic field and spin stiffness (which is impor
tant at low external fields), due to development of inter
chain correlations near Te , resulting in a smaller number 
of thermally excited spin waves. Figure 3(a) shows the 
isothermal magnetization data at low temperatures, but 
above Te' Even at T = 2. 5 Te = 9 K the 1 D spin-wave 
model describes well the magnetic data. It is noted, how
ever, that for [FeCp~][TCNE] with large effective spin 
stiffness due to significant Ising character, the ID model 
only fits down to 3.3Te.9 
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FIG. 3. (a) Isothermal data above Te. The solid lines are the 
calculated results from the spin-wave theory with the same 
values of the parameters (J'=O). (b) A scaling plot of M vs 
H/T2. 
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In the regime governed by 1 D correlations, the suscep
tibility is expected13 to diverge as x( T) ex: S-2 ex: T- 2• This 
suggests that for small fields, the magnetization should be 
a universal function of H /T2. In Fig. 3(b) we replot the 
isothermal data [Fig. 3(a)] in terms of M vs H /T2, and 
found that at low fields the data are scaled fairly well as a 
linear function of H /T2 except for the isotherm at 4.27 
K splaying away, which signifies crossover to the regime 
governed by the exponents of the 3D transition. Within 
the crossover regime (near Tc )' low-field isothermal mag
netization behaves7 as a universal function of H /T 3.2 in
stead of H /T2. We found that the data seem to 
fit a "quasicritical isotherm" M= A(H /T3.2)1/6, with 
6= 1. 85 and A = 1500 (emu/mole) (K 3.2/Oe)l/l.8s. For 
the usual 3D ferromagnets, the critical isotherm is de
scribed as M = CH 1/6 with a constant critical amplitude. 
Here we may introduce a concept of effective critical am
plitude, C( T), i.e., that C is slightly dependent on the 
temperature near Tc. We then have C ( T) = A / 
T 3.2I6= 1500/T1.73 emu/(mole Oe l /1.Ss). As an interest
ing result, we found that critical exponent 6 ~ 1. 85 is sub
stantially smaller than that of usual 3D ferromagnets 
(6 ~ 5) even though we obtained7 3D-like exponent 
/3 ~ 0.51 and r ~ 1. 21. Again, these contrast with the 
more usual value of 6 = 4. 4 obtained for 
[FeCPiHTCNE].9 This implies that Widom's scaling re
lation r =/3(6-1) does not hold for the [CrCpiJ[TCNE] 
system. Thus, our data may permit an interpretation in 
terms of a magnetic transition composed of a lattice di
mensional crossover (from ID to 3D ordering). Above and 
near Tc' the spins along the chains are strongly coupled. 

·Present address: Department of Chemistry, University of 
Utah, Salt Lake City, UT 84112. 
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