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ABSTRACT 

This paper presents an image compression tech­
nique that incorporates visual masking functions in 
vector quantizer systems. Visual masking functions 
provide a description of the maximum amount of noise 
that can be present in an image, while remaining un­
detected when the image is viewed by an observer. 
The basic idea employed in this work is that of a spa­
tially varying distortion measure which is defined to 
be zero where the error involved is below a threshold 
level defined by the visual masking function. A gra­
dient based algorithm is used to generate the vector 
quantizer code books. Experimental results involving 
sub band vector quantization and a perceptual mask­
ing function recently proposed by Safranek and John­
ston are presented in this paper. 

1 INTRODUCTION 

A good data compression scheme should be capa­
ble of removing statistical and psychophysical redun­
dancies present in the input waveforms. This paper 
presents a vector quantization (VQ) system that at­
tempts to remove psychophysical redundancies present 
in images by making use of spatial masking functions. 
The key idea used in the development of this system 
is that of a space invariant distortion function that 
depends on a visual masking function. Even though 
the ideas discussed in this paper are applicable to 
any masking function, our experiments employed the 
masking function recently developed by Johnston and 
Safranek [8, 9]. This function is defined for a partic­
ular subband decomposition of the image and, conse­
quently, the results presented in the paper involve sub­
band vector quantization. Intraband vector quantiza­
tion (forming the vector from within each subband) 
rather than interband vector quantization (formin~ 
the vectors using samples from different subbands) 
was used since it has been our experience that the for­
mer performs better than the latter in most situations. 
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Allocation of the available bits among the various sub­
bands was done using a systematic approach very sim­
ilar to that recently proposed by Bradley, Stockham 
and Mathews [1]. Experimental results indicate that 
the use of perceptual masking function in a vector 
quantizer system reduces the perceived distortion in 
the coded image. 

2 VQ EMPLOYING SPATIAL 
MASKING FUNCTIONS 

Visual masking occurs when one visual stimulus af­
fects the visibility of another. The response of the 
human visual system to stimuli is a function of the 
characteristics of the image in the vicinity of the stim­
uli. As a result, visual stimuli are masked ("hidden") 
by certain features in the background or in the vicinity 
of the stimuli [7, 6]. Several researchers have devel­
oped empirical functions that approximate the mask­
ing properties of the human visual system [6, 7, 8, 9]. 
Image coding systems employing such masking func­
tions have resulted in coded images with very high 
visual quality. 

Even though vector quantization is known to per­
form better than scalar quantization, no work has been 
done (at least to the authors' knowledge) that com­
bines the concepts of vector quantization and visual 
masking. Our approach to developing a vector quan­
tizer equipped with a masking function is to make use 
of a space variant distortion function which is based 
on the masking function. The distortion between an 
m-dimensional input vector x and another vector y is 
defined as, 

where 

e; = { 

D( x ,y ) = :L e; 
i=l 

;if Ix i - Y il < Mi 
;otherwise 

(1) 

x; and y; are the i-th elements of x and y , re­
spectively, M; is the value of the masking function 
corresponding to the i-th element ofx . Notice that, 
in effect, the distortion measure ignores differences be­
tween elemen ts of the two vectors that are smaller than 
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the threshold suggested by the masking function. One 
feature of such a definition of the distortion function 
is that it is a measure of how closely one vector resem­
bles another vector when viewed by a human observer. 
This, of course, assumes that the masking function is a 
good indicator of the amount of distortion that the hu­
man eye can tolerate. Since the effectiveness of image 
compression schemes are determined by assessing the 
subjective quality of the coded images, it is only log­
ical that a data compression system that attempts to 
minimize a distortion measure defined based on visual 
considerations will produce higher quality (as viewed 
by the observer) images as compared to schemes using 
distortion measures that are defined otherwise. 

W'e will now present a gradient based algorithm for 
designing code books that are appropriate for use with 
our distortion function. The algorithm operates as fol­
lows. Starting with an initial code book (denoted by 
C(O)), let C(m) be the codebook obtained after encod­
ing the m-th training vector. Also, let Ci(m) denote 
the i-th code vector in C(m). At the k-th iteration, 
find the codeword in C(k - 1) that is closest to x k, 
the k-th training vector. Let CL(k - 1) be the clos­
est codeword. Only CL(k - 1) is updated at the k-th 
iteration. C(k) is obtained by replacing CL(k 1) in 
C(k - 1) witll 

CL(k) = CL(k - 1) - ~ 'Vcdk-i) D(x k, CL(k - 1». 
(2) 

Here f1. is a positive constant in the range 0 < J.l ::; 
1 that controls the rate at which the code vector 
sequence converges to a steady state value. Also, 
'VcL(I.:-l)D(x 1.:, CL(k - 1» is the gradient of the dis­
tortion measure D(x k, CL(k - 1)) with respect to 
CL(k -1), and its i-th entry is given by 

'VCL(k-l),iD(X k,CL(k -1» = (3) 

{ 

0 ;if Ix k,' - CL,i(k -1)1::; Mk,. 
-2(jx k,'- CL,.(k - 1)1- Mk,.)X 

sign(x k i - CL .(k - 1» 
; otherwise.' , 

where x k,i and CL,.(k - 1) are the i-th entries of the 
x k and CL(k-l), respectively and Mk i is the masking 
function associated with the i-th element of x k. 

The above process is continued untill all the train­
ing vectors are exhausted or convergence is achieved 
in some sense. 

3 SUBBAND CODING USING 
VISUAL MASKING FUNCTIONS 

To demonstrate the usefulness of the ideas developed 
in the previous sections, we conducted experiments 
involving subband vector quantization and a slightly 
modified version of a perceptual threshold masking 
function recently developed by Safranek and John­
ston [8, 9]. This function is defined on a sixteen band 
subband decomposition of the image. The masking 
function associated with the (x,y)-th pixel in the n-th 

subband as defined by Safranek and Johnston is given 
by 

M(n,x,y) = Base(n) xTexEnergy(x,y)O.OM (4) 
X BrightCorr(x, y) 

In equation (4), Base(n) is the root-me an-squared 
base noise sensitivity for subband n. The base sen­
sitivity for each subband was empirically measured by 
Safranek and Johnston and can be found in 19]. Also, 
BrightCorr(x, y) is a scaling factor which IS depen­
dent on the background intensity of the image and 
TexEnergy is a measure of the nonuniform response 
of the human visual system to local activity in an im­
age. This measure is defined as 

TexEnergy(x, y) = (5) 
16 

L: MTFweight(n) x Energy(n, x, y) 
n=2 

+ MTFweight(l) 
xvar«x, V), (x + 1, V), (x, Y + 1), (x + 1, y + 1» 

Where, MTFweight(n) (Modulation Transfer Func­
tion weight) is the amplitude of the spatial frequency 
response of the human visual system at the center fre­
quency of the n-th subband [2], Energy(n, x, y) is the 
energy of the intensity of the target pixel and is defined 
as amplitude squared value of the (x,y)-th pixel in the 
n-th subband. var("'j" .), is evaluated by calculating 
the variance of the intensities over a 2 x 2-pi:ce/ square 
block in the first subband and defined by the indices 
within the parentheses. For a full description of some 
of the conditions under which the empirical measure­
ments of the parameters of the threshold model were 
made, see [8, 9]). 

The only modification to the masking function in 
(4) that was made in this work was to set the bright­
ness correction factor, BrightCorr(x, V), to one uni­
formly. The modification was primarily motivated by 
the fact that all the images in our library are stored as 
density values (logarithm of the intensity values) and 
the nonlinear transformation does attempt to account 
for the differences in the response of the human visual 
system to different background intensities. 

One of the difficulties involved in sub band vector 
quantization is that of determining the optimum bit 
rate and vector size with which each subband must 
be coded such that the overall distortion in the recon­
structed image is minimized. In our work, we have 
used a scheme recently developed in [1] for the opti­
mal allocation of bits amon~ the subbands and the 
determination of the vector Size in each subband. 

The key ideas employed in this scheme are as fol­
lows. It is assumed that the overall distortion of the 
image D(r ,k ) can be written as the sum of the dis­
tortions in the individual sub bands, i.e., 

m 

D(r ,k) = L:di(r ,k) (6) 
i=l 
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where di(r , k ) represents the distortion introduced in 
subband i as a result of vector quantization at rate r i 
and vector size k i. r is an m-dimensional vector con­
taining the rates corresponding to each subband signal 
and similarly, k is an m-dimansional vector containing 
the subband vector sizes. 

Bradley [1] demonstrated that di(r , k ) can be ap­
proximated by 

d;(r , k ) = ,si(k )e-'Y.(k )r. (7) 

for image sequences when the Euclidean distortion 
measure is employed. Here ,siCk ) and I;(k ) are pa­
rameters that must be selected empirically. We have 
verified that the above approximation is reasonably 
accurate for our distortion measure as well. 

The bit allocation problem can now be stated as 
that of selecting the bit rate r i and vector sizes k ; 
for i = 1,2, ... , m such that 

m 

D(r , k ) = L: ,6i(k )e-'Y;(k )r; (8) 
;=1 

is minimized subject to the constraints that, 

and 

m 

L: r ; = Total bit rate 
;=1 

;i=1,2, ... ,m 

and a complexity constraint 

m 

(9) 

(10) 

2.:= 21' ok; ::; Maximum codebook size. (11) 

In order to further simplify the problem, we constrain 
the vector sizes to belong to a finite set. In our work 
we chose to select k ; to be from the set 

{(I x 1),(2 x 2),(4 x 4),(8 x 8),(16 x 16)}. (12) 
The optimization process involves two sequential 
steps. 

1. Optimization of bit rates using a projected gra­
dient algorithm and the constraint set [1, 3]. 

2. Given the optimal bit rate, a pattern search al­
gorithm [1] is used to find the the optimal vector 
sizes such that D(r ) is minimized. 

Details of the optimization technique may be found 
in [1] and are not repeated here. 

In this work, the first subband was coded using 
predictive vector quantization ( including DPCM as 
a vector quantizer with vector SIze of 1 pixel). Higher 
subbands were coded using direct vector quantizers. 

4 EXPERIMENTAL RESULTS 

The usefulness of the technique presented in the paper 
was evaluated by performing several experiments with 
monochrome images which were quantized to 256 (0-
255) shades of gray. The test image was chosen to be 
the "woman" image and was not a part of the training 
sequences. The test image is shown in Figure 1. 

The test image was coded using a maximum code­
book size of 512 code vectors at 0.5 bits/pixel using 
the masking function and is displayed in Figure 2. The 
same image was also coded without using any type of 
visual criteria using the same overall bit rate and max­
imum codebook size. Enlarged portions of the coded 
images obtained with and withou t the use of the mask­
ing function is displayed in Figure 3 and Figure 4. The 
image coded using the perceptual masking function 
appears to have better visual quality than the image 
coded without the masking function. Specifically it 
lacked a grid-like distortion which was present in the 
image not coded using the masking function. 

Figure 1: The original te::>t image. 

5 CONCLUDING REMARKS 

This paper presented an image compression tech­
nique that employs spatial masking functions. The 
technique makes use of two well studied topics in 
the fields of image coding and human psychophysics, 
namely vector quantization and spatial visual mask­
ing. An empirical masking function representing the 
noise threshold in image subbands was used to define 
a bound on the visually tolerated quantization noise 
resulting from subband vector quantization. Com­
pressed images using this approach display definite 
improvements over the conventional subband vector 
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quantization algorithms which make no use of the 
properties of the human visual system. 
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Figure 2: Test image coded using the perceptual mask­
ing fuction. 

Figure 3: An enlarged portion of the test image coded 
using the masking function. 

Figure 4: An enlarged portion of the test image coded 
without using any perceptual criteria. 
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