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An Automated Film Reader for DNA Sequencing 
Based on Homomorphic Deconvolution
Jeffrey T. Ives, Raymond F. Gesteland, and Thomas G. Stockham, Jr., Fellow, IEEE

Abstract—An automated reader for electrophoresis based DNA 
sequencing methods is described that provides fast and accurate 
sequence determination. Digitized sequencing lanes are processed 
with homomorphic blind deconvolution in preparation for peak 
detection, interlane alignment, peak refinement and base calling. 
Initial reads from direct blot sequencing films have error rates 
of about 1% at the rate of 5 nucleotides/s. Typical read lengths 
are 500-600 nucleotides. The described reader is a significant 
improvement over existing readers and could be an essential 
component in the sequencing efforts of the Human Genome 
Project.

I. Introduction

T HE HUMAN genome project is an international effort 
to map and sequence the entire genetic composition of 

humans, as well as several model organisms [1]. Successful 
completion of this task should provide a large database of 
biomedical information relating to diseases, inherited traits, 
genetic expression, genome organization, and evolution. How
ever, the size of the genome and the capabilities of conven
tional methods make substantial technological improvements 
necessary to achieve this goal in the next 10-20 years. The 
human genome contains approximately 100 000 genes coded 
within approximately 3 billion deoxyribonucleic acid (DNA) 
base pairs. Under ideal, error-free conditions with existing 
technology, sequencing 3 billion base pairs would require 
over 10000 man-years and would cost approximately $1 per 
nucleotide. Although novel, potentially high speed methods to 
sequence DNA have recently been proposed [2]-[5], the most 
practical and successful approaches for the foreseeable future 
use automation, improved technology, or process multiplexing 
to increase the throughput of the standard steps in conven
tional sequencing [6]—[9]. The most common conventional 
sequencing procedure enzymatically creates complementary 
strands from a “ master”  DNA strand, often called the template 
[10]. A ll complementary strands begin at the same nucleotide 
sequence on the template strands and add nucleotides sequen
tially. Random addition of sequence-terminating nucleotides, 
that are nearly identical to the four standard nucleotides in 
every other respect, create complementary strands that are
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Fig. 1. DNA sequencing film illustrating four lanes and bands. Reading from 
the bottom to the top, the DNA sequence is GCTCACTCATTAGGCA.

fractions of the length of the complete template. Doing the 
enzymatic reaction in four different vessels with a specific ter
minating nucleotide per vessel creates complementary strands 
with all the lengths that terminate in that nucleotide. The 
resulting strand sets are separated by size with polyacrylamide 
gel electrophoresis to create fragment positions that look like 
a four rung wide ladder (Fig. 1) with all the fragments in any 
given lane terminating in the same nucleotide. Reading the 
DNA sequence is a conceptually simple ordering of size with 
reference to the corresponding lane. Beginning at any fragment 
position, often called a band, the next band in any of the 
four lanes is only one nucleotide longer or smaller depending 
on the direction. The nucleotide strand is read by stepping 
from band to band and noting the order of the lanes where 
the bands are located. The short sequence shown in Fig. 1 is 
GCTCACTCATTAGGCA.

Conventional sequence images are obtained by labelling the 
DNA fragments with radioisotopes and exposing 14" x 17" 
X-ray films with similar sized polyacrylamide gels. With 
approximately 300 nucleotides of readable sequence per lane 
set, where a lane set is the collection of A, G, C, and T 
terminating fragments from the same template, and 12-24 
lanes sets per gel, about 5000 bands can be read per film. 
The entire human genome w ill therefore require reading on 
the order of one million films. The number of films quickly 
rises with redundancy and other practical considerations. For 
an expert human reader reading a film in around two hours, two 
million man-hours becomes overwhelming. The previously 
mentioned improvements to conventional methods generally 
increase the rate of separating fragments or detecting their 
relative positions, but the separated fragments must still be 
read quickly and with high accuracy. High accuracy reads
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are critical, particularly in regions of DNA that code for 
genes where single nucleotide changes can have significant 
functional effects. The importance of individual nucleotides for 
biology and medicine is a principal motivation of sequencing 
the human genome.

Although the task of converting relative position into nu
cleotide sequence is conceptually simple, the 1-3% error rate 
of human readers indicates that reading is more complex in 
practice. Band amplitudes and positions vary due to enzyme 
behavior and other biological factors and due to instrumenta
tion and handling factors like uneven temperature distributions. 
Band positions as a function o f fragment size typically follow 
either quasilogarithmic or constant spacing rules depending on 
the instrumentation, but spatial jitter and position anomalies 
can be large enough to superimpose adjacent band fragments. 
Interlane band amplitudes vary, and intralane band amplitudes 
change both locally and along the length of the read. Across 
a given film, bands change in width, as well as appearing 
tilted or in complex shapes. Backgrounds can also vary due to 
nonspecific adsorption and scratches.

The first published report o f a complete automated sequence 
reader was by Elder, Green, and Southern [11]. They con
structed a digitizing scanner and wrote software to read the 
scanned films. Pattern recognition was performed to identify 
the bands and lanes, and the combination of band heights and 
positions determined the base calls. Development of this sys
tem continued at Bio-Rad Laboratories, Inc. [12]. Commercial 
software packages designed to scan and read sequencing films 
have been developed by Bio-Rad, Milligen/Bioimage, Intelli- 
genetics, pdi, Genomic and US Biochemicals. Pattern recogni
tion is probably the most common band identification method 
in these packages although exact details are not published. 
The reading algorithms of the automated, fluorescence-based 
sequencing instruments (ABI, Pharmacia, Milligen, Hitachi, 
and LiCor) have also not been published in depth. The 
commercial readers are comparable to or only slightly faster 
than human readers and generally require regular parameter 
tuning for long and accurate reads. The apparent lack of 
speed may be due to the complex processing required for 
pattern recognition. To improve reading accuracy and possibly 
extend the number of resolved bands, several groups have 
concentrated on better band resolution. Image reconstruction 
using the maximum entropy method has been investigated by 
Elder [13] and Xu, Tso, and Martin [14]. These methods may 
be restricted to fairly small regions of DNA because they 
require an accurate description of the point spread function. 
The blurring function usually varies along the length of a 
sequencing lane, as well as between different lanes or films. 
Sanders and coworkers analyzed the images of fluorescently 
labelled bands in a commercial automated sequencer and 
corrected distortions in band shape [15]. The resulting traces 
down the lane centers indicate bands and spacings more 
precisely. In addition to resolution improvements, heuristic 
rules for interpreting lane traces have been programmed by 
Overbeek [16] and Ehrhardt, Englisch, and Neuhoff [17], 
Both groups have emphasized that successful rule-based band 
calling is very dependent on the prior steps of lane tracking, 
distortion correction and band resolution.

In this article, we describe an automated reader based on 
homomorphic blind deconvolution [18]. Homomorphic blind 
deconvolution matches the problem of DNA sequence reading 
very well because precise knowledge of the blurring signal 
is not required, the speed of linear digital signal processing 
is utilized and interlane band amplitudes are automatically 
normalized. After deconvolution, the following steps; peak 
detection, interlane alignment, peak refinement and base call
ing, result in a called sequence. Due to the high resolution 
and signal to noise ratio of the deconvolved lane traces, 
the succeeding steps are relatively simple and provide very 
accurate sequence reads. Although the automated read of an 
example sequence is discussed, this article is intended to serve 
as a technique description establishing the fundamentals of 
our reader. A  future article w ill concentrate on the results of 
applying the automated reader to sequencing films.

II. Theory and Application of 
Homomorphic Blind Deconvolution

Signal processing is often presented in terms of linear 
systems that must therefore satisfy the property of 
superposition. Superposition requires that the transformation 
of added input functions or input functions multiplied by a 
scalar is equal to adding the transformation of the individual 
inputs or multiplying the transformed input by the same 
scalar. However, many common systems process signals that 
are more than the addition of input vectors or scalar products. 
Amplitude-modulated transmission where the input is a 
product of two signal functions is one example. Homomorphic 
signal processing applies a generalized superposition principle 
that considers operations like vector multiplication 
and convolution, as well as vector addition and scalar 
multiplication. Homomorphic systems w ill often convert 
nonlinear inputs to signals suitable for linear processing. For 
example, multiplicative homomorphic systems compute the 
logarithm of two multiplied signals, resulting in added signals 
that can be linearly filtered. The reader is referred to the 
references by Oppenheim and coworkers for more thorough 
discussions of homomorphic deconvolution [18]—[20].

The work described in this paper utilizes blind deconvo
lution in addition to homomorphic processing. In contrast to 
the more common scenario where the impulse response of 
the system is known and precisely characterized, blind decon
volution refers to the process of separating two convolved 
signals when both are unknown, at least unknown beyond 
some general description. Blind deconvolution is designed for 
systems like sequencing lanes where neither the signal, i.e., the 
band positions, or the convolver, i.e., the blurring function, are 
well characterized and consistent over time and space. Digital 
restoration of acoustic recordings is an example of successful 
blind deconvolution [21].

For the present topic of DNA sequencing bands, the image 
of sequenced DNA bands can be represented as the convolu
tion of a blurring function with varying amplitude pulses. The 
pulses occur at the central positions of the bands. The blurring 
function is caused by the emission pattern of the isotope 
labels and the diffusion width of the bands. Additive noise 
is also distributed throughout the image. A point source, or
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deconvolved signal, s"

Fig. 2. Processing steps in homomorphic deconvolution.

Lorentzian, pattern of emission was assumed for analysis and 
provides a reasonably accurate match to the actual band shapes 
(the term, blurring function rather than point spread function, 
w ill be used in this article because the spatial distribution of 
a sequencing band is not necessarily due to a point source). 
The process of deconvolution, i.e., separating the peaks from 
the system blur, is a linear process that can be performed by 
inverse linear filtering, but the spatial variance of the blurring 
function makes inverse filtering or Wiener filtering prone to 
error. Deconvolution can more practically be achieved by 
homomorphic blind deconvolution.

The processing steps are shown in Fig. 2. Each sequencing 
lane is a convolution of the peaks and the blurring function, 
so the computed spectrum of each sequencing lane is the 
product of the Fourier transforms of each individual signal 
(convolution and multiplication .are Fourier transform pairs). 
The simplest approach at inverse filtering would be applied 
at this point by dividing by the Fourier transform of the 
blurring function. Noise and uncertainties in the blurring 
function make this approach likely to fail. Homomorphic 
processing begins by computing the complex logarithm o f the 
spectrum, thereby converting the product o f Fourier transforms 
into a sum of log-spectra. As noted earlier in discussions on 
superposition, addition allows linear filtering to be applied to

remove or minimize the blur component. Again, the precise 
characteristics of the blurring function are not well known, 
but the blind deconvolution method used in this work relies 
on the general difference in shape between the log-spectra 
of the signal and the blurring process. The log-spectrum of a 
Lorentzian point spread function is a straight line with negative 
slope. Different width bands simply adjust the slope of the line, 
and most of the energy in straight lines remains contained 
in the low frequencies near zero, unlike the widely scattered 
frequency distribution of the peaks. Therefore, applying a 
generalized high-pass linear filter should significantly attenuate 
the blurring function, have only a slight affect on the widely 
distributed peak frequencies and operate successfully in spite 
of spatially variant blurring functions. The ability to apply 
the same high-pass filter regardless of the absolute band size 
makes this process blind deconvolution.

This process is relatively straightforward, although some 
nomenclature has been introduced to reduce the confusion of 
computing multiple Fourier transforms. Computing the inverse 
Fourier transform of the real part of the log-spectrum results 
in a cepstrum (the word cepstrum is a variant of spectrum to 
recognize that a second Fourier transform has been computed 
[22]). The cepstrum of the blurring function is predominant 
in the low quefrencies (variant of frequency) as discussed 
above, and the band position cepstrum is distributed over 
the full bandwidth. A high-pass lifter (variant of filter) then 
multiplies the cepstrum to reduce the low quefrencies, and the 
0 quefrency amplitude of the lifter also normalizes the energy 
across all deconvolved sequencing lanes. Reversing the Fourier 
transform-log-Fourier transform processing path creates a lane 
with sharpened bands at the band centers, but high frequency 
noise causes significant degradation. Therefore, a low pass 
filter is inserted as shown in Fig. 2.

Two additional comments about the processing shown in 
Fig. 2 are probably helpful. Subtracting the straight line com
ponent of the log-spectrum that is due to the blurring function 
is one method of deconvolution and would result in sharpened 
bands. However, accurately estimating the component to be 
subtracted was difficult and not generally useful. The second 
comment addresses the imaginary component of the log- 
spectrum that is routed around the liftering process. The 
Lorentzian model of the blurring function is real and even, as 
are most other physically reasonable profiles. Therefore, only 
the real parts of the spectrum and log-spectrum of the blur are 
nonzero, and the imaginary component of the log-spectrum is 
entirely due to the pulses representing the DNA band centers. 
Liftering this component would serve no useful purpose and 
would double the processing time for these steps.

III. Methods

The following sections expand on the series of processes 
shown in Fig. 3 for automated DNA sequence reading.

A. DNA Sequencing and Film Digitization
Sequences of M13mpl9 were prepared following standard 

protocols for dideoxynucleotide terminators, Sequenasell DNA 
polymerase and manganese buffer [23], DNA was labelled 
with 32P isotopes. A 60-cm long, 18-cm wide, 60-/xm thick,
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4% polyacrylamide gel (34:1 acrylamide:bis acrylamide ratio) 
was used for electrophoresis at approximately 88 volts/cm 
(60-62 W). A sharkstooth comb with about 3 mm spacing 
between teeth defined the lanes. DNA bands were deposited 
on a nylon membrane (Biodyne B, Pall) using a locally made 
direct blotting apparatus based on the original work of Pohl 
and Beck [24], Direct blotting refers to the transfer of DNA 
from the bottom of the electrophoresis gel to a moving mem
brane. The process is similar to collecting fractions in other 
separation methods. Electrophoresis and blotting proceeded 
for approximately five hours with a membrane speed of 3.0 
mm/min. Films were obtained by exposing X-ray film (Kodak 
XAR) to the membranes for about 12 hours.

Films were scanned using a Truvel TZ-3X, 8-bit densit
ometer (Vidar). Scanner resolution was approximately 300 
dots, or samples, per inch. Digitized files were analyzed on a 
Decstation 3100 workstation. Programs were written using the 
matrix analysis package, MATLAB (The MathWorks, Inc.). 
For the reading example in this article, a single lane set 
containing 566 bands and 5844 samples per lane was scanned 
and analyzed. The smallest and largest DNA fragments in the 
scanned lane set were 122 and 688 nucleotides long, respec
tively. Smaller fragments were not scanned due to problems 
during direct blotting not associated with the fragment size. 
Larger fragments were not included because film quality and 
reading accuracy were quickly decreasing.

B. Image Conversion and Signal Linearization
Each lane set of the sequencing film images was reduced 

to four one-dimensional vectors corresponding to the average 
of a 15 sample wide line through the center of each lane 
(Fig. 4(a)). Lane tracking and vectorization were performed 
by a MATLAB program that sampled every twentieth line 
across the four lanes (perpendicular to the direction of band 
migration), smoothed the sampled lines by a low pass filter, 
and identified minima indicating band centers. Minima were 
then organized with other minima having progressively similar 
lateral positions. A least squares fit through associated minima 
established a line through the band centers of each lane in 
the direction of electrophoretic migration. This lane tracking 
approach was very preliminary and is probably inadequate for 
routine sequencing. More advanced lane tracking and distor
tion correction [15] w ill probably be an important complement 
to accurate, general purpose reading. This project to date has 
concentrated more on the steps following lane tracking. Com
plete lane traces along an entire film are 5000-7000 samples 
long. For processing speed and local accuracy, subsequent 
processing operated on overlapping, 2048 sample subdivisions 
of the full lane traces. Future versions of the reader w ill likely 
include automated segmentation to achieve the same goals.

Two compensation steps were performed on the four vec
tors. The values read out from the scanner had been adjusted 
by the manufacturer for improved viewing on the nonlinear 
displays of standard monitors. The first compensation step 
corrected for this adjustment, and was based on the scan
ner circuitry. The compensated values are then proportional 
to the percent transmission through the film. Second, the

film

Fig. 3. Processing steps incomplete reader.

transmission values were converted to numbers proportional 
to the emission strength, or intensity, of the isotopes in the 
bands (Fig. 4(b)). Different emission strengths are linearly 
related and therefore well suited for linear systems analysis. 
Converting the transmitted values requires compensation for 
the nonlinear exposure-density relationship of film. Currently 
film exposures are assumed to be in the approximately linear 
region of the D-log (E) film curve where the film density, D, 
is linearly related to the log of the exposure, E. Exposure is 
the product of intensity and time. The slope, also called the 
film gamma, is assumed to be 2.2 (D  =  2.2 log(E)). The 
transmitted values are related to the film density by Beer’s 
Law (D =  -  log(/t / / 0) where It is the light transmitted 
and To is the light transmitted without the film. The log is 
base 10.) Combining these factors states that the emission 
strength of the isotope, I t, is inversely proportional to the 
transmitted value raised to the 1/2.2 power (It = k /( I t )1/2-2 
where k is a proportionality constant). Continuing work is 
generalizing the linearization to a larger region of the film 
curve. The linearization process may not be necessary for 
detection schemes that do not use film such as direct beta 
detection [25], [26] or optical detection using fluorescence or 
chemiluminescence [27], [28].

C. Homomorphic Blind Deconvolution and Low Pass Filter
Each lane proceeds independently through the operations 

shown in Fig. 2. Example plots after some of these steps on a
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3 0 0  350 4 0 0  4 5 0  500

sample number
(a)

55 0  6 0 0

sample number
(b)

(e)
Fig. 4. Example plots of data prior to and through homomorphic blind deconvolution. All plots are from the first 2048 sample subdivision of the entire 
scanned lane set (5844 samples). Sample numbers on the abscissa of (a), (b), and (g) refer to the same 300 sample segment within the 2048 samples. 
Also shown in (a), (b), and (g) is the automated read of the plotted data. The spikes at the approximate quefrencies of 300 and 1800 in (d) are unique 
to this sequencing lane and are probably due to an anomalous noise pattern, rather than some common periodicity in the signals, (a) scanned sequencing 
lanes, (b) linearized data, (c) log (spectrum) of A lane, (d) cepstrum (solid line) for A lane and lifter (dashed line), (e) higher resolution view of cepstrum 
and lifter near origin, (f) log (liftered spectrum) of A lane, (g) deconvolved and aligned lanes. The line patterns are: T (solid), C (dashed), G (dotted), 
and A (dash-dot). All successive figures follow the same line pattern designations.

2048 sample section of a DNA lane are shown in Fig. 4. The 
log-spectrum of a Lorentzian is a straight line with negative 
slope, and this feature w ill be evident in later figures from 
actual data. The linear envelope of the log-spectrum at low

frequencies (Fig. 4(c)) is consistent with the assumption of 
a Lorentzian blurring function. Examination of the cepstrum 
around the origin (Fig. 4(d) and shown in more detail in 
Fig. 4(e)) reveals a low quefrency curve that is primarily
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(g)
Fig. 4. (Continued)

caused by the blurring function. The noise and band position 
signal are distributed throughout the quefrency window. The 
high pass lifter simultaneously deamplifies the low quefrency 
blurring curve and, with zero amplitude at the origin, normal
izes the signal in each lane. The lifter typically follows a raised 
cosine shape (shape factor =  0.5) around the origin and has 
an amplitude of 0.5 at the fifteenth sample (Fig. 4(e), dashed 
line). After liftering, the log-spectrum (Fig. 4(f)) is essentially 
flat indicating that the blurring function has been removed to 
a large degree. Reversing the steps as shown in Fig. 2 results 
in a deconvolved signal.

The deconvolved signal generally contains too much high 
frequency noise for accurate peak detection. Consequently, a 
Gaussian low pass filter is applied to the liftered spectrum, 
S' (Fig. 2). The optimal bandwidth o f the low pass filter 
depends on the noise and the desired resolution between 
adjacent bands. For the peak detection and base calling used 
in this work, the highest accuracy reads were obtained when 
the filter bandwidth was chosen to obtain relatively broad 
sequencing peaks (Fig. 4(g)). When the four sequencing lanes 
are superimposed, filtered peaks are broad enough to present 
a near continuous envelope that moves from peak to peak and 
obscures the noisy baselines of the lanes without a local peak. 
For consistent sequencing conditions, the filter bandwidth is 
constant between films. The filter bandwidth we used was 
about 100 frequency samples (where ir is 1024 samples). 
The improved resolution after deconvolution and filtering 
is demonstrated by comparing Fig. 4(b) and (g). Methods 
to automatically adjust the filter bandwidth in response to 
varying sequence and film conditions should be incorporated 
in future improvements. Alternative approaches to converting 
deconvolved bands into DNA sequence may tune the filter 
bandwidth to emphasize other features such as narrow peak 
resolution.

D. Preliminary Peak Detection
Due to the clarity of the resolved peaks, peak detection is 

relatively simple and fast. Peaks are detected by simply identi
fying samples that have larger amplitudes than the immediate 
neighbors and larger than a varying threshold. The threshold

is based on a least squares exponential fit to the prominent 
peaks within each lane.

E. Interlane Alignment
The lanes in a given set are not necessarily in correct relative 

registry due to several factors such as lanes misaligned relative 
to the axes of the scanner, temperature variations across the 
gel and gel inhomogeneities. Scanned misalignments can be 
so severe that the bands are not in the correct order, much 
less evenly spaced. Since accurate reading is very dependent 
on the relative order of the bands, correct registry of the lanes 
is important.

The alignment process generally relies on the relative dis
tance between neighboring peaks for every lane-lane combi
nation, and then shifts the lanes by the number of samples 
necessary to produce peaks separated by equal relative dis
tances. As a simple example, i f  the A-T separation (peaks 
in the A lane immediately followed by T lane peaks) is N  
samples and the T-A separation is 3N, then advancing the T 
peaks by N  samples w ill produce a regular periodic spacing 
of 2N  samples between all A and T peaks. Expanding on 
this process, all possible lane-lane combinations of average 
interpeak distances can be organized in a 4x4  matrix with 
the rows and columns ordered as T, C, G, and A lane peaks. 
The row-column combination of every matrix element is a 
unique lane-lane pair. The difference between the measured 
interpeak distances and the ideal interpeak distance of aligned 
lanes is the alignment shift. Sufficiently accurate estimates of 
the ideal peak-peak separation can be made from the total 
number of samples divided by the number of detected peaks or 
by considering the sum of lane-lane pairs located in transposed 
elements of the matrix, i.e., A-T and T-A.

In actual practice, the alignment process follows a two 
step, coarse then fine, alignment process. To compensate for 
incorrect relative order of the peaks, the first step in the 
alignment process coarsely aligns the four lanes. The coarse 
alignment is basically an iterative version of the shifting 
process. The spacing matrix is generated, and an expected 
spacing is determined by dividing 2048 samples by the total 
number of preliminary peaks. The T lane is used as the 
reference lane, and the spacing matrix elements for T-C, T-G, 
and T-A are compared to the expected spacing. Spacing values 
that deviate significantly from the expected spacing are noted, 
and the lane with the maximum deviation is shifted relative to 
the other lanes. Significant deviation is an absolute difference 
between the actual and expected spacing that is greater than 
one-fourth of the expected spacing. Shifts begin with a delay 
of one-half the expected spacing and incrementally advance 
the shift by one-quarter of an expected spacing. For each shift 
position, a new spacing matrix is generated. Shifting stops 
for an individual lane when the spacing is acceptably close 
to the expected spacing or the absolute error is larger for 
another lane. The coarse alignment is entirely finished when 
the spacing of all lanes is sufficiently small. Larger shifts and 
finer resolution are of course possible. With carefully prepared 
sequence lanes, coarse alignment is usually unnecessary.

The second, more precise alignment step again considers the 
T lane as the reference lane and fits a straight line through the
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separation distances as a function of peak position for each 
lane pair; T-C, T-G, and T-A. The lines are biased by the 
expected spacing. The intercept is used for the alignment shift 
at one end o f the sequence, and the slope difference between 
lanes is used to add interpolated samples and compensate for a 
varying shift along the sequence. The straight line assumption 
is probably reasonable for the nearly constant band spacing of 
direct blotting, but alternative models may be more accurate, 
particularly with nondirect blot methods.

F. Peak Refinement
Generally, a small percentage of the peaks that were de

tected earlier along each lane are incorrect. Excess peaks 
that occur are primarily due to noise, anomalous background 
like scratches and oscillations caused by deconvolution. Most 
incorrect peaks are low in amplitude, particularly compared 
to the correct peak in one of the other lanes. Superimposing 
the normalized and aligned lanes and selecting only those 
peaks that are maximum in amplitude eliminates most of 
the erroneous peaks. An average interpeak spacing is then 
determined from the total number of samples divided by the 
number of maximal peaks.

The error rate based solely on the maximal peaks is usually 
too large; 2-10% depending on the sequence quality. In 
addition to excess peaks, unresolved peaks occur where bands 
are highly blurred and/or severely overlapped and appear as 
broad plateaus or shoulders even after deconvolution. These 
undetected peaks are often resolved by considering interpeak 
distances. I f  the interpeak distance is greater than 1.7 times the 
average peak separation, an intermediate peak is added. Some 
excess, but maximal, peaks are also removed by the interpeak 
distance. I f  the separation between adjacent peaks in the same 
lane is less than one-half the average distance, only the peak 
with larger amplitude is used. The scalars, 1.7 and 0.5, are 
empirical and may not be optimal.

G. Base Calling
High quality deconvolution, alignment and peak assign

ments make determining the nucleotide sequence straightfor
ward. The sequence of DNA bases is simply the correspon
dence between peak order and the lane associated with each 
peak.

IV. Results and Discussion

Fig. 5 shows a full length view of the sequencing film read 
by the automated reader. As shown in Fig. 6, the first error 
occurred after reading 393 nucleotides and, coincident with 
decreasing sequence quality, six more errors occurred before 
finishing the read at 566 nucleotides. Automated reads with 
such low error rates for sequences 500-600 nucleotides long 
have not previously been reported.

Six of the seven errors are deletions, and an example of a 
deleted C is shown on the right side of Fig. 7 near sample 
number 4960. The deletion is observed as a slight shoulder 
followed by two resolved C peaks. The separation between 
the deleted C band and the next C band is reduced relative 
to the typical band spacing. Therefore, the C band is not 
well resolved and merges with the neighboring peak creating

Fig. 5. Full length image of the sequencing film as initially presented to the 
digitizer. The film is approximately 60 cm long, and has been manipulated 
to appear as three parallel sections of about 20 cm each. The first section 
is shown on the left with the smallest fragments at the top, and successive 
sections are raised and shifted to the right. The lane sets analyzed in Fig. 4 
were obtained from the left, small fragment section.

a shoulder. The isolated C band in Fig. 7 is an extreme 
example of reduced band separation where three adjacent 
bands have been merged into a single broad and tall peak. 
The reduced band separation in regions of DNA that have 
a large percentage of G and C nucleotides is a commonly 
recognized sequencing artifact. This phenomenon is often 
called band compression. Compressions have been reported 
to be the predominant error in some large sequencing projects 
[29], and are also the major problem in the automated read 
discussed here; five of the six deletion errors are deleted C 
bands. The single insertion error, an extra A band, is due to 
the narrow second peak observed near sample number 4960
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200  3 0 0  400

nucleotide number
50 0  6 0 0

Fig. 6. Location of reading errors and cumulative error count.

sample number
(a)

sample number
Fig. 7. Deconvolved lanes around example errors. The nucleotide sequence 
determined by our reader is listed across the top of the plot. The two errors, 
C at about sample 4770 and A at about sample 4960, are identified by the 
correct base assignment(s) listed above the error. Sample numbers shown on 
the abscissa refer to the position within the entire 5844 sample scan.

(Fig. 7). Close examination indicates that a secondary peak 
is present on the film. Therefore, the error is primarily a 
sequence or film preparation error, rather than a mistake by 
the automated reader.

An increasing error rate as DNA fragment size increases 
is common for both manual and automated sequencing instru
ments [26]. The fragment-dependent change in band resolution 
and signal strength is apparent in the film image shown in 
Fig. 5. The series of processing plots shown earlier in Fig. 4 
were obtained from the relatively high resolution section 
of Fig. 5 containing DNA fragments about 200 nucleotides 
long. Fig. 8(a) plots the linearized traces from larger, ap
proximately 600 nucleotide long DNA fragments near the 
end of Fig. 5. Comparison between the linearized traces of 
smaller (Fig. 4(b)) and larger fragments (Fig. 8(a)) illustrates 
the substantial decrease in resolution with larger fragments. 
This loss of resolution is partially due to broader, i.e., spatially 
variant, band shapes along a lane set. The signal amplitudes 
in Fig. 8(a) also indicate reduced emission intensities and 
decreased signal-to-noise ratios associated with larger frag
ments. These changes are reflected in the deconvolved signals 
which are not as well resolved or as large in amplitude with

sample number
(b)

Fig. 8. Data plots from a sequence region with larger DNA fragments than 
in Fig. 4: (a) linearized traces, (b) deconvolved and aligned traces. These 
curves are comparable to Fig. 4(b) and (g).

increased fragment size (Figs. 4(f) and 8(b)). It is interesting 
to note that the cepstra for these two fragment sizes are 
very similar (Fig. 9) in spite of the substantial change in 
width of the blurring function. This feature is convenient for 
blind deconvolution with a single generalized lifter, and also 
indicates that the decreased resolution and increased error rate 
associated with reading larger fragments is caused more by the 
loss in signal-to-noise ratio, than by band broadening.

The change in band resolution with fragment size is par
ticularly significant when our reading process relies on peak 
detection. In alternative versions of our reader, we have 
considered additional parameters such as the width of each 
band or band series and peak resolution. Generally, the overall 
error rates were not improved by the additional parameters. 
While specific errors might be resolved, new errors would 
often balance out the improvements. Although our efforts with 
alternative parameters were not exhaustive, the computation 
aspect of our general approach to improved sequence accuracy 
is concentrating on more fundamental improvements in the 
processing, like peak resolution.

The automated read in this article has an error rate of 
1.06% out to almost 600 bases. For about the first 400 bases, 
no errors were made, and the high resolution of the smaller
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Fig. 9. Cepstra near the origin for smaller (solid line, refer to Fig. 4) and 
larger DNA fragments (dashed line, refer to Fig. 8).

fragments indicates that accurate reads could be pushed toward 
smaller fragments another 50-100 nucleotides. Although a 
direct comparison with the same film or DNA sequence has not 
been done, these numbers are significantly better than reports 
from fluorescence-based sequencing instruments [9], [26] or 
commercial film-based readers, particularly beyond about 300 
nucleotides. Furthermore, the error rates reported by other 
publications are usually after some errors have been eliminated 
by the 7-10 fold redundancy of standard random sequencing 
strategies and some manual editing. Even an experienced 
human reader w ill have an error rate of 1-3%. A recent 
sequencing project at the University of Utah used manual 
reading for about 10 kb (kilobases) and had an error rate of 
2-3%. About two-thirds of the errors were data entry errors 
like mistyped keys, errors that an instrument would not make, 
and reading was slower than the five bases/s of our prototype 
reader.

Perhaps the best plan for error reduction is an active 
collaboration between sequence preparation and instrument 
development. This collaboration w ill ultimately lead to a 
complete, automated and reproducible system. Rather than 
developing more complex automated readers, some improve
ments in reading w ill be more reliable and fundamentally 
sound when done at the initial level of sequence preparation 
and film exposure. In addition to band resolution and signal-to- 
noise factors, errors associated with large DNA fragments are 
often caused by distortions in band shape that become more 
prevalent around large fragments with long electrophoresis 
times. Band compressions can be reduced and band amplitudes 
made more uniform by adjusting the buffer composition, 
electrophoresis temperature and incorporating modified nu
cleotides [30], [20]. Improved repeatibility through automation 
should also improve the reader’s accuracy by providing more 
consistent spacing, shape, amplitude and film background. In 
the development stage of improved sequence conditions, our 
reader can potentially record the quantitative effects of mod
ified conditions much more easily and quickly than manual 
measurements.

Currently, our reader calls about five bases per second after 
an individual lane set in the scanned image has been reduced

to four one-dimensional vectors. The total time to read a film 
is about 3.5 min to scan the 65-cm long direct blot films used 
in this work, about 2 min to convert the digitized image into 
one-dimensional vectors averaged along the center of each 
lane and then the read time. I f  each lane set were read out to 
500 nucleotides, the total time for a direct blot film would 
be about 15 min. Correspondingly, a standard 14" x 17" 
film with 12 lane sets and 300 nucleotides per lane set is 
digitized in about 2.5 min, and would require about 30 min 
for a completed read. This time compares very favorably with
10 or more hours of electrophoresis, four to 12 hours of film 
exposure and two hours of human reading. With the relative 
speed of the reader, a single reader could support several 
sequence generation stations, and the number of supportable 
stations increases as the computing speed goes up. The speed is 
expected to increase substantially as the Matlab script files are 
converted to a compiled language like C or Fortran, programs 
are optimized and processing hardware continues to increase 
in speed.

The reader as it presently exists demonstrates the funda
mental operations and handles individual lane sets. Future 
improvements include developing a convenient user interface 
and scaling up for multiple lane sets over an entire film. At 
that point, direct comparisons should be made between our 
reader and commercial or academic alternatives. An additional 
capability should also be added to the reader. As sequencing 
methods advance, they are often extending the read length 
with longer electrophoresis times. The resulting band patterns 
generally degrade in quality and error rates increase with read 
length. Manual post-read editing and/or preselected scan limits 
could restrict the reads to accurate sequence. However, an 
automated limiter based on error estimation within the reader 
would probably be preferred, or even required, when the reader 
has the potential to exceed human performance.

The reader performance cited in this article came from 
sequencing films that were exposed to direct blot membranes. 
Direct blotting results in band deposition in approximately 
even intervals. The same regular spacing is obtained by on
line detection methods with fluorescently labelled DNA, and 
the reader could be helpful in these instruments as well. 
The general procedures discussed in this article are also 
applicable to conventional, fixed time detection where the film 
is essentially a contact print directly from the electrophoresis 
gel. The band positions along the length of the gel are 
separated in a quasilogarithmic pattern with the smaller frag
ments at one end being relatively far apart and the separation 
between bands decreasing toward larger fragments. Band 
shapes in fixed time detection are more constant over the 
length of the sequence than bands in on-line detection. The 
reduced variance of the blurring function should allow higher 
resolution deconvolution.

V. Conclusion

The lack of an adequate method to read DNA sequences 
automatically has substantially hindered sequence acquisi
tion, particularly large scale sequencing where fragments with 
300-600 bases are merged into sequences of 10 000 or more
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bases. Sequencing these large DNA pieces is important be
cause the majority of genes have such sizes. This article 
concentrates on the application of homomorphic blind decon
volution to DNA sequence ladders and the subsequent con
version of deconvolved waveforms into nucleotide sequence. 
Homomorphic blind deconvolution is a novel approach to the 
problem of reading sequencing films and provides several 
benefits in signal normalization, rapid processing and user- 
independent operation. Based on the high resolution and 
signal-to-noise ratio of the deconvolved data, subsequent pro
cessing steps can be done accurately and often more simply 
than with alternative methods. Initial results of speed and 
accuracy are very encouraging, and indicate that additional 
reductions in error rates depend more on improved sequence 
preparation than reader development. A more extensive read
ing project is in progress and w ill provide more significant 
measures of error rates and read lengths [31].
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