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Pulsed electrically detected magnetic resonance measurements are presented showing that Pb

centers at the crystalline silicon sc-Si❞ s111❞ to silicon dioxide sSiO2❞ interface can cause

recombination of strongly coupled spin pairs in singlet and triplet configurations. The implication of

these findings is that two different electron capture cross sections can exist at a single defect. This

shows that the previously observed two capture cross sections at the c-Si/SiO2 interface do not

necessarily imply the existence of additional non-Pb-like centers such as oxygen-backbonded silicon

dangling bonds. © 2005 American Institute of Physics. ❢DOI: 10.1063/1.1851593❣

Pb centers are trivalent silicon sSi❞ atoms at the crystal-

line silicon sc-Si❞ / silicon dioxide sSiO2❞ interface, which is

of great importance for semiconductor device technology.
1

Since Pb centers dominate the c-Si/SiO2 interface trapping

and recombination, their microscopic understanding has been

investigated extensively since their discovery in 1971.
2
Pb

centers are paramagnetic when uncharged
3
and therefore

suited for microscopic studies with electron-spin

resonance
4–6

sESR❞. They are localized, singly occupied an-

isotropic electronic states with much p and little s content.
7,8

Since Pb centers point into a defined direction that only de-

pends on the surface orientation, their microscopic aniso-

tropy is reflected by macroscopic ESR spectra.
9
Hyperfine

coupling studies have shown that ESR signatures of Pb cen-

ters are only due to unpaired electrons of Si atoms without

oxygen backbonds.
7,10

Parallel to the microscopic ESR studies, c-Si/SiO2 inter-

face defects have been characterized by macroscopic meth-

ods such as capacitance–voltage sCV❞ measurements which

quantify capture cross sections but do not distinguish quali-

tatively different defects. Modulated CV sMCV❞

experiments
11

showed that s111❞-oriented c-Si/SiO2 inter-

face states exhibit two clearly distinguishable capture cross

sections �n1 and �n2 over large energy ranges deep within

the band gap. This observation is remarkable since broken Si

bonds are the only defect types that can account for the ob-

served deep states. Albohn et al.
11

suggested that the previ-

ously proposed oxygen backbonds of the Si radical, the so-

called PL centers
12

are the origin of the shifted capture

behavior. However, this idea fails to explain why these cen-

ters have not been observed by ESR. Moreover, it is not clear

how the backbond-related distortion of unpaired electrons

can shift the capture cross section by almost three orders of

magnitude s�n1 /�n2❁10–103❞ and why this fraction be-

tween the two observed cross sections is almost independent

of the defect energy even though the magnitudes of the cross

sections change strongly throughout large energy ranges of

the band gap.

In the following, a pulsed electrically detected magnetic

resonance sp-EDMR❞ study of Pb recombination is pre-

sented. EDMR connects the microscopic sensitivity and se-

lectivity of ESR with the detection of electronic transport

and recombination processes. It is based on the measurement

of small photocurrent sPC❞ changes when recombination or

transport currents through paramagnetic defects are changed

by means of ESR. EDMR has traditionally been carried out

as an adiabatic field sweep experiment, the so-called cw-

EDMR. cw-EDMR is much more sensitive than ESR espe-

cially with regard to defects at two-dimensional systems

such as interfaces. Because of this, many cw-EDMR studies

have been carried out on the c-Si/SiO2 interface
1,6,13–15

in

the past which showed that the Pb anisotropy of the ESR

spectrum is also reflected by the EDMR spectrum. This was

the proof for the existence of spin-dependent recombination

through Pb centers. In a sense, the measurement of the Pb

signature in the PC is a selective observation of recombina-

tion rates through Pb centers only. Since cw-EDMR is an

adiabatic or quasiadiabatic experiment slow modulation fre-

quencies❞, it is unable to reveal quantitative information

about the dynamics of the observed processes such as recom-

bination rates. In order to overcome this drawback,

p-EDMR has been developed in recent years, which is the

transient measurement of small current changes from a

steady state due to the pulsed ESR-induced manipulation of

spin-dependent transport or recombination rates. The theoret-

ical and experimental foundations of p-EDMR are described

elsewhere.
16–18

It has to be emphasized that p-EDMR is not

a conventional, microwave-chopped, and lock-in detected

cw-EDMR; it is the transient detection of coherent, pulsed

ESR-induced spin motion by means of current measure-

ments. The motivation of the p-EDMR study presented here

is to resolve the contradictive pictures about c-Si/SiO2 inter-

face defects that arise from ESR and electronic measure-

ments.

Experimentally, a native oxide was grown between inter-

digited lateral contact grids with the following procedure:

First, a 300-nm-thick Al layer was deposited with electron-

beam evaporation on top of a s111❞-oriented surface of a

slightly n-doped s❢P❣❁4✸1013 cm−3❞ Czochralski-Si wafera✁
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that had been cleaned with a standard RCA procedure and

then subjected to a 1% HF dip for 1 min right before the

metal deposition. The Al layer was then structured with stan-

dard photolithography into the contact system. After the con-

tacts were made, the bare Si surface between the contact

grids was then exposed to dry air at room temperature for

24 h, causing the growth of a thin native oxide layer. Note

that the room-temperature growth of the oxide has the ad-

vantage that si❞ a contact system can be deposited first with-

out causing Al contamination due to diffusion during the

oxidation process and sii❞ due to the slow interface relaxation

of chemical bonds, high interface defect densities will occur

yielding high intensities of the EDMR signals that are to be

investigated. Note that we have chosen the s111❞-oriented Si

surface in order to ensure the greatest possible comparability

of the experimental systems investigated to those used by

Albohn et al.
11

For the experiments presented here, a steady-state PC

was induced by irradiation with infrared and ultraviolet-

filtered white light of a halogen lamp. A constant voltage of

U=4 V was applied. All experiments were carried out at T

=15 K in order to keep spin-lattice relaxation slow. The

pulsed ESR excitation was induced by an X-band s9.7 GHz❞

Bruker E580 spectrometer. The PC transients were recorded

as a function of the magnetic field B0, different angles be-

tween the orientations of the B0 field, and the sample surface

as well as different pulse lengths t. All data displayed in the

following are solely due to recombination at Pb centers re-

corded at g❁2.009, with a B0 field applied perpendicularly

to the s111❞ direction. The data has been corrected by under-

ground currents due to microwave smw❞-induced conductiv-

ity, with a procedure outlined in Ref. 19. The identification

of the signals discussed in the following with the Pb center

was tested by means of angular dependence measurements

between the B0 field and the sample surface snot shown here❞

which exhibited the Pb anisotropy described in the

literature.
14

Figure 1 shows the PC response caused by a short and

intensive mw pulse that ended at t=0. The transient exhibits

positive and negative contributions that show an identical

dependence on the B0 field sline shape❞. It is therefore as-

sumable that both the positive and the negative signals stem

from Pb recombination. This double decay has been pre-

dicted theoretically for the response of spin-dependent re-

combination channels with non-negligible triplet

recombination.
16,19

In accordance with the nomenclature of

Ref. 16, we assign the decay constants of a double exponen-

tial fit with r2=6.9s2❞✸104 s−1 and rT=1.9s1❞✸103 s−1 cor-

responding to the fast and slow decay of the data shown in

Fig. 1, respectively. Note that Ref. 16 also predicts the exis-

tence of a third, much faster decay constant r3 which limits

the coherence of electron-defect pairs sin the following re-

ferred to as e-Pb spin pairs❞.

In order to determine the coherence time of the e-Pb spin

pairs, the dynamics of the Pb recombination has to be mea-

sured on a nanosecond time scale. The latter can be done

with a recombination echo experiment which is the detection

of a fast dephasing Rabi oscillation by means of pulse length

dependence measurements of the PC changes. After the

dephasing of the e-Pb spin pairs, a sudden 180° microwave

phase change, introduced at a time t180, causes a short re-

combination rate spike at the time s2t180❞ which is a spin

rotary echo, reflected by the recombination rate. By measur-

ing the decay of this rotary echo, the coherence time of the

e-Pb spin pairs can be determined. Details about the theoret-

ical and experimental foundations of this experiment are out-

lined in Refs. 18 and 16.

Figure 2 shows a recombination echo transient measured

for t180=60 ns. One can recognize a brief s❁30 ns❞ PC in-

crease at 2t180. The experimental data displayed in Fig. 2

was fitted with the characteristic steplike-shaped echo func-

tion for strongly coupled electron defect spin pairs described

in Ref. 16. This fit sblack line❞ was carried out with three fit

parameters; s1❞ A vertical scaling factor which is propor-

tional to the arbitrary sample resistance; s2❞ The echo width

that reflects the inverse of the width of the Rabi frequency

distribution induced by the sample contacts which damp

away all macroscopic oscillations, and s3❞ the echo decay

constant r3. The gray line is a calculation for a PC transient

when incoherence is negligible. The difference in the two

echo intensities is due to incoherence induced by recombina-

tion. Under the given experimental conditions we find r3
=1.6s2❞✸106 s−1. This result was confirmed by additional

echo decay measurements snot shown here❞ carried out with

FIG. 1. The PC transient after a short coherent mw pulse �✁=64 ns, P

=24 W✂ under application of a B0 field which was perpendicular to the �111✂

direction. The mw frequency was in paramagnetic resonance with the

Landé-factor g✄2.009 that corresponds to the Pb center for the given

magnetic-field orientation. The PC transient consists of negative and posi-

tive contributions which could be fitted with a biexponential decay function

�solid line✂. The dashed lines represent the single exponential components of

the fit function.

FIG. 2. PC response of the Pb center as a function of the pulse length ✁
during a recombination echo experiment. At ✁=✁180, a sudden 180° change

of the mw radiation is introduced. The mw power is P=64 W. The black

line is a fit of the data with a theoretical function predicted for strongly

coupled spin pairs, as given in Ref. 16. The gray line represents the same

transient function plotted with the fit parameters obtained from the black

function but under negligence of the coherence decay.
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larger phase change times t180 that caused smaller echoes at

rephasing times 2t180.

The experimental data are discussed in the following ac-

cording to the model presented in Ref. 16. Both the slow

relaxation of the PC after the pulsed ESR excitation as well

as the echo effect recorded are in agreement with the theo-

retical predictions. Note that the functions used to fit the data

are valid only for spin pairs that si❞ are strongly coupled,

which means the exchange coupling within an e-Pb pair ex-

ceeds the Larmor separation ❉✈ sthis corresponds to the dif-

ference of the Landé factors❞, that sii❞ have small Larmor

separation,
20

and siii❞ have non-negligible triplet recombina-

tion. Hence, due to the agreement between theory and ex-

periment, we conclude that properties si❞–siii❞ apply for

e-Pb recombination. The theoretically predicted three decay

constants rT, r2, and r3 could be determined. The process

behind rT is recombination out of pure triplet states ✉T+ ❧ and

✉T−❧. The other two constants r2 and r3 can be associated

with recombination from spin eigenstates with mixed sym-

metry: ✉2❧ and ✉3❧ correspond to ✉T0❧ and ✉S❧ states with

B0-field-induced small singlet and triplet mixture, respec-

tively. Figure 3 is a sketch of the Pb recombination model

that we propose from these insights. This picture corresponds

to the description of spin-dependent Shockley-Read recom-

bination developed by Rong et al.:
21

Therein, the capture of

delocalized electrons into deep level states takes place by a

two-step process where electrons first localize in intermedi-

ate charged excited states Pb
−* before they undergo spin-

dependent transitions into the charged ground-state Pb
−. The

exact nature of the Pb
−* is not discussed further in the follow-

ing; however, we note that with a procedure described

elsewhere,
22

the dissociation probability d that the electron

leaves the Pb
−* state without recombination can be estimated

to be d✱8✸102 s−1 at T=15 K. Assuming a simple thermal

escape model with an attempt frequency of ♥0=10
12 s−1, the

Pb
−* is estimated to lie more than 30 meV below the c-Si

conduction band.

For the recombination mechanism described above, the

electron capture cross section � correlates linearly to the

fraction �⑦ri /d of the readjustment probability and the dis-

sociation probability d.
21

When the intermediate state can

exist in four spin eigenstates ✉i❧ and the readjustment transi-

tion ri is different for three different i ssee Fig. 3❞, then in the

presence of an external magnetic field, three different capture

cross sections �i exist at one Pb defect. Note that this re-

quires that triplet recombination is non-negligible, which is

the case as shown above ❢see property siii❞✁. The �i that

applies when an electron passes the defect is random and

only depends on the mutual spin orientation of both the elec-

tron and the defect, before the encounter. In the absence of

magnetic fields, the eigenbase of the four spin eigenstates of

the intermediate spin pairs tilts back to a pure singlet/triplet

base and the three cross sections collapse into only two cross

sections, �S⑦rS=r3 and �T⑦ rT=r2.

The picture described above is able to reconcile the hy-

perfine studies made by Brower et al.
7
as well as by Stes-

mans and Vanheusden,
10

which did not indicate a significant

number of oxygen-backbonded Si radicals and the findings

of Albohn et al.
11
drawn from MCV. The observation of two

different capture cross sections �n1 and �n2, as reported by

Albohn et al., has a natural explanation in our model without

the need of two microscopically different defects. Since the

data presented by Albohn et al. were recorded in the absence

of magnetic fields, the two different capture cross sections

�n1=�S and �n2=�T exist at a single, nonoxygen-

backbonded Pb center.
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FIG. 3. Model of the microscopic Pb recombination mechanism. When an

electron is captured into a charged Pb
− state, it is localized first in an ener-

getically high Pb
−* state ✂a✄. From there, a spin-dependent readjustment tran-

sition may take place either into the ground state with probability ri, as

indicated in the inset ✂b✄, or a reemission of one electron into the conduction

band with probability d ✂c✄. Recombination is concluded by hole capture

into the Pb
− ground state ✂d✄.
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