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Abstract

In this paper, we present a novel two-step, variational and

feature preserving smoothing method for terrain data. The

first step computes the field of 3D normal vectors from

the height map and smoothes them by minimizing a robust

penalty function of curvature. This penalty function favors

piecewise planar surfaces; therefore, it is better suited for

processing terrain data then previous methods which operate

on intensity images. We formulate the total curvature of a

height map as a function of its normals. Then, the gradient

descent minimization is implemented with a second-order

partial differential equation (PDE) on the field of normals.

For the second step, we define another penalty function that

measures the mismatch between the the 3D normals of a

height map model and the field of smoothed normals from

the first step. Then, starting with the original height map as

the initialization, we fit a non-parametric terrain model to the

smoothed normals minimizing this penalty function. This

gradient descent minimization is also implemented with a

second-order PDE. We demonstrate the effectiveness of our

approach with a ridge/gully detection application.

1 Introduction

Terrain data contains information that is pertinent to a variety

of applications. For instance, scientists estimate slope gradi-

ent and aspect for analysis of hydrological flow over terrain.

These estimates are later used in flood path predictions for

safety planning. Another application could be the analysis of

the terrain of other planets to plan a route that will be taken

by an unmanned, exploration vehicle. However, the level au-

tomation in this analysis is currently low and therefore, these

are mostly time consuming, manual tasks. Standard image

processing techniques are not optimal when applied to ter-

rain data. Therefore, the first step in a push towards more

automated analysis should be the development of processing

techniques specific to terrain data.

Terrains are often represented as a collection of height

measurements, i.e. a digital elevation model (DEM). Ele-

vation values can be represented as points, contour lines or

triangulated irregular networks. In this paper, we are inter-

ested in terrain data that is represented on a 2D regular, rec-

tilinear grid, i.e. a height image. Such DEMs are usually

created by stereo photogrammetry from aerial photographs,

field surveys, or most commonly by manually digitizing con-

tour maps.

DEMs are available in many different forms that vary in

accuracy, and horizontal and vertical resolution. The highest

resolution DEMs distributed by the United States Geological

Survey (USGS) correspond to 7.5 minute quadrangle maps

(1:24000 scale) with horizontal resolution of 10 or 30 me-

ters [20]. Vertical accuracy of these DEMs varies with the

desired mean error of 7 meters, but it is not unusual to have

errors of up to 15 meters. The 7.5-Minute DEMs are cre-

ated by optically scanning contour maps and then fitting an

approximating surface. Errors can be produced when ele-

vations are interpolated from digitized contours. There are

many potential sources of errors that effect accuracy and un-

certainty of terrain feature analysis using DEM data [21].

Some of the necessary tools for analysis of terrain data

are ridge detection, segmentation and compression. All of

these tools require that we are able to extract features of

the terrain such as ridges and gullies in the presence of

noise. In image processing, Perona & Malik (P&M) in-

troduced an anisotropic diffusion process that can preserve

edges between distinct regions while smoothing the noise

within the regions [12]. Unfortunately, a direct application

of this method to height maps yields unsatisfactory results,

see Section 3. In this paper, we formulate a correct gener-

alization of this method to height maps by posing it as an

energy minimization problem on curvature. The variational

method we propose is also geometric, i.e. it is independent

of the parameterization.

The rest of this paper is organized as follows. Section 2

presents a brief overview of related work in the literature.

Section 3 discusses edge preserving smoothing methods in

image processing. Section 4 formulates a robust curvature

energy for
�✂✁✄ D height surfaces. Section 5 introduces our

splitting strategy that gives an efficient and stable minimiza-

tion procedure for this energy. Section 6 illustrates results of

the proposed approach and demonstrates its advantages with

in the context of a ridge/gully detection application. Sec-

tion 7 summarizes the contributions of this paper.
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2 Related Work

Perona & Malik introduced the anisotropic diffusion PDE

for intensity images in their pioneering work [12]. Nord-

strom [11] and Black et al. [1] have shown that P&M’s

diffusion is the gradient descent process for a robust energy

function. Other researchers have proposed different energy

metrics, such as total variation, which yield variations of the

anisotropic diffusion PDE [14]. These approaches are all

second-order PDEs. Tumblin and Turk propose a fourth-

order PDE as a detail preserving contrast reduction method

for depicting high contrast images on low contrast display

devices [19]. Their LCIS (low curvature image simplifier) al-

gorithm is related to the robust curvature minimization strat-

egy proposed in this paper. However, their approach is for

2D images, whereas, we take into account the geometry of�✂✁✄ D height surfaces. Furthermore, we provide a variational

generalization of anisotropic diffusion to such surfaces.

A problem related to ours is the smoothing of 3D surfaces.

In the context of level set representations, mean curvature

flow (MCF), a geometric PDE that minimizes surface area

has been a popular choice for enforcing smoothness of the

model [9, 24]. MCF is not a feature preserving process.

Furthermore, it suffers from several problems including vol-

ume shrinkage, pinching of thin structures. In the computer

graphics literature, smoothing surface meshes has been ap-

proached as an energy minimization problem [10, 8, 22] and

as a filtering problem [17, 4, 7]. More recently, anisotropic

diffusion processes have been proposed for surface meshes

and level sets [3, 13, 16]. None of these methods make use

of the specific properties of
�✂✁✄ D height surfaces.

Depth reconstruction has been a major focus in earlier

computer vision research [6, 18, 2]. More recently, in the

context of height maps, a
�☎✁✄✝✆ version of MCF has been

derived [23]. Desbrun et al. propose a feature preserving

denoising process for height maps [5]. Their approach is to

use a second-order flow that is a modification of MCF that

does not take into account the geometry of height maps.

3 Edge preserving smoothing for in-

tensity images

An established solution to the smoothing problem is to pose

it as the gradient descent of an energy function, and to imple-

ment the gradient descent as a non-linear partial differential

equation (PDE). The choice of the energy function depends

on the application, and it determines what part of the input

signal is preserved and what part is eliminated as a result of

the gradient descent PDE. In image processing , it is typical

to use an energy that favors smoothness. For instance, the

heat equation implements the gradient descent for the mini-

mization of the integral of a quadratic penalty on the image

gradient magnitude✞✠✟☛✡☞ ✌✎✍✑✏✓✒✕✔✖✏ ✄✘✗✚✙✛✗✝✜✠✢✤✣ ✗ ✔✗✚✥ ✢ ✒✧✦★✒✩✔✫✪
(1)
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Figure 1: Comparison of quadratic and robust penalty func-

tions.

where ✬ is the domain of the image. Processing an image

with the heat equation is mathematically equivalent to con-

volving it with a Gaussian smoothing kernel. It is a well

known fact that such smoothing blurs boundaries in the im-

age, and will go to a constant intensity level in the limit. This

result is also expected from the variational point of view, be-

cause the quadratic penalty function, see Figure 1(a), does

not permit the presence of high gradient magnitude outliers

(edges). Figure 2(a) illustrates a surface described by a part

of the Mt.Hood DEM. Figure 2(b) illustrates the results of

treating this data as an intensity image and smoothing it

with a Gaussian kernel. The ridges in the original data are

rounded and distorted.

In their seminal work, Perona & Malik (P&M) introduced

a non-linear, anisotropic diffusion PDE that can preserve

edges while smoothing noise [12]. This method has gained

popularity as a successful edge detection method in image

processing. Nordstrom [11] and Black et al. [1] show that

P&M anisotropic diffusion PDE is the gradient descent for a

robust energy function:✞✠✟☛✡☞ ✌ ✍✮✭✰✯✲✱✚✳✵✴✷✶✹✸✺✴✼✻✽ ✻ ✗✚✙✠✗✝✜✠✢✤✣ ✗ ✔✗✚✥ ✢ ✒✧✦✂✾ ✱✝✳✵✴✷✶✫✸✺✴✼✻✽ ✻ ✒✩✔✚✿❁❀
(2)

This robust penalty function, see Figure 1(b), is bounded

for high values of its argument; therefore, it allows the

presence of a limited number of outliers. Indeed, the

P&M anisotropic diffusion has been shown to converge to

a piecewise-constant solution, i.e. a solution that has zero

gradient at most locations and a limited number of locations

with high gradient magnitude. Shock formation at edges and

smoothing of details at other locations is the mechanism by

which the solution is achieved. The parameter ❂ controls

the degree of edge preservation; however, it is not a sim-

ple threshold. Points with gradient magnitudes less than ❂
may form shocks and be incorporated into edges in the pres-

ence of many points with strong gradients nearby. On the

other hand, isolated points with large gradient magnitudes

will be smoothed. Motivated by this successful method, one

approach to smoothing a height map is to treat it as an in-

tensity image and apply P&M anisotropic diffusion directly.



Figure 2(c) illustrates the problems with this approach; P&M

anisotropic diffusion causes a “staircasing” effect. This ef-

fect has been documented in [25, 19] and is caused by shocks

forming at seemingly random locations in regions of high,

uniform gradient magnitude, e.g. the slopes of a mountain in

terrain data.

4 Feature preserving smoothing for

height maps

The original P&M anisotropic diffusion fails when applied

to terrain data as shown in Figure 2(c), because it was de-

signed to preserve and create ❃✵❄ discontinuities in intensity

images to detect edges. However, ❃✵❄ discontinuities are very
rare in terrain data, they occur only on vertical cliffs. In ter-

rain data, one is instead interested in ridges which are ❃ ✁
discontinuities. We would like to find a process that respects❃ ✁ continuous regions such as the slopes of a mountain and

preserves and creates ❃ ✁ discontinuities.
Let us consider the parametric surface ❅ defined by the

height map ❅❇❆ ✙ ✪ ✜✎❈❉✢ ❆ ✙ ✪ ✜ ✪❋❊ ❆ ✙ ✪ ✜✎❈●❈ ❀ (3)

The area of this surface over the domain ✬ is computed as❍ ❆ ❊ ❈■✢ ✌ ✍✖❏ ✭▲❑ ✏✓✒✠❊ ❆ ✙ ✪ ✜✎❈ ✏ ✄ ✗✚✙✠✗✝✜ ❀ (4)

The gradient descent PDE on the first variation of this area

is
✗ ❊◆▼ ✗✝✥✩✢ ✒❖✦ ❆ ✒✩❊◆▼ ❏ ✭▲❑ ✏✓✒✩❊P✏ ✄ ❈ , which was used for

smoothing
� ✁✄ D surfaces [23]. This PDE is the MCF for

height maps. It has the appearance of being anisotropic due

to the division by

❏ ✭▲❑ ✏✰✒✠❊◗✏ ✄
before the divergence op-

eration. However, this is not a feature preserving anisotropic

process. The rescaling is the projection of the 3D motion

onto the image plane which is a result of representing the 3D

surface as a 2D graph.

Explicitly preserving ❃ ✁ discontinuities requires a penalty
term on the second-order structure of surfaces, i.e. curvature.

We propose a family of energies that are surface integrals

of penalty functions on total curvature, ❘ ✄❙ ❆ ✙ ✪ ✜✎❈ , which is

the sum of the squares of the two principal curvatures. Let❚❱❯✎❲❨❳❩❲
be an arbitrary penalty function, then we define

the following family of energy functions❬ ❆ ❊ ❈❉✢ ✌ ✍ ❚ ❆❭❘ ❙ ❆ ✙ ✪ ✜✎❈●❈ ❏ ✭❪❑ ✏✓✒✠❊ ❆ ✙ ✪ ✜✎❈ ✏ ✄ ✗✚✙✛✗✝✜ ❀ (5)

Notice that if
❚ ❆❭❘ ❙ ❈✕✢ ✭

, this energy reduces to the area

of ❅ . We can penalize the integral of total curvature by

choosing
❚ ❆❭❘ ❙ ❈❫✢ ❘ ✄❙ . However, similar to heat flow in

image processing, this energy does not preserve discontinu-

ities because the quadratic penalty function does not permit

any outliers. Instead, we use the penalty function that gives

rise to P&M diffusion in (1), but replace the image gradient

magnitude with total curvature:❚ ❆❭❘ ❙ ❈❉✢ ✭✰✯✲✱ ✳✓❴ ✻❵✽ ✻ ❀ (6)

The parameter ❂ determines the range of curvatures that are

preserved. Figure 2(d) illustrates the results of smoothing

the Mt. Hood dataset using this energy definition.

5 A splitting strategy

A direct minimization of the energy defined in (5) requires

solving a fourth-order PDE. This is a computationally ex-

pensive and unstable task. In this section, we introduce a

strategy that splits the solution into a pair of coupled second-

order PDEs that can be solved efficiently.

Step 1a: Total curvature from normal vector variations

The first step in our splitting strategy is to express total cur-

vature ❘ ✄❙ in terms of the normal vectors to the parametric

surface ❅ . The normal vector to ❅ can be found as❛ ✢ ✭❜ ✭✘❑ ❊ ✄❝ ❑ ❊ ✄❞❢❡❣ ❊ ❝❊ ❞✯❤✭❥✐❦ ✪ (7)

where

❊ ❝
and

❊ ❞
denote the x and y partial derivatives of the

height map

❊
. Lets define the ❧❫♠ � matrix of the gradient of

the normal vectors in the image plane✒ ❛ ✢❖♥ ❛ ❝ ✪ ❛ ❞♣♦ ❀
(8)

Also define the
� ♠✠❧ matrix that projects

✒ ❛
into 3D spaceq ✢ ✭♥ ✭✘❑ ❊ ✄❝ ❑ ❊ ✄❞ ♦sr✺t ✄ ✾ ✭✘❑ ❊ ✄❞ ✯ ❊ ❝ ❊ ❞ ❊ ❝✯ ❊ ❝ ❊ ❞ ✭✘❑ ❊ ✄❝ ❊ ❞ ✿ ❀ (9)

The variation of the normal vectors intrinsic to the height

map surface is

✒✠✉ ❛ ✢ ✒ ❛✈q
. Then total curvature can be

found as ❘ ✄❙ ✢ ✏✓✒ ✉ ❛ ✏ ✄ ✪
(10)

where the norm denotes the Frobenius norm of the ❧✇♠①❧
matrix, which is the square root of the sum of the squares of

all of the matrix elements.

Step 1b: Decoupling the normals from the height map

The second step in our strategy is to decouple the normal

vectors from the surface defined by the height map. Substi-

tuting (10) in (5) gives❬ ❆ ❛ ❈■✢ ✌✎✍ ❚ ❆ ✏✰✒ ✉ ❛ ✏ ❈③② ❆ ✙ ✪ ✜✎❈④✗✝✙✛✗✚✜ ✪ (11)

where
② ❆ ✙ ✪ ✜✎❈■✢ ❏ ✭▲❑ ✏✰✒✩❊ ❆ ✙ ✪ ✜✎❈ ✏ ✄ . We initialize the nor-

mal vectors according to (7). Then we fix

❊
and process the

normal vectors to minimize the energy (11). Since normal

vectors have to remain unit length, this is a constrained min-

imization problem, which is accomplished by the following

second-order PDE on the normal vectors:⑤ ❛⑤ ✥ ✢ ✯ ❆✷⑥ ✯ ❛⑧⑦①❛ ❈ ✒⑨✦ ❆ ② ❆ ✙ ✪ ✜✎❈ ❚❤⑩ ❆ ✏✰✒✩✉ ❛ ✏ ❈ ✒✠✉ ❛ ❈ ✪
(12)

where
⑦
denotes the tensor product, and

❚ ⑩
is the derivative

of
❚
. The operator ⑥ ✯ ❛❶⑦✲❛ projects the change vector to



(a) (b) (c) (d)

Figure 2: (a) A portion of the
� ✁✄ D surface defined by the Mt. Hood DEM, (b) Gaussian smoothing of the height image, (c)

P&M diffusion on the height image, and (d) our generalization of P&M diffusion to
� ✁✄ D surfaces.

(a)

(b)

Figure 3: (a) An image of noisy unit vectors, and (b) the

result of minimizing the robust curvature energy.❛
onto the plane perpendicular to

❛
, thus enforcing that the

normal vectors remain unit length.

This PDE is the generalization of P&M anisotropic dif-

fusion for a field of unit vectors defined on a
� ✁✄ surface.

Figure 3(a) illustrates an artificial image of noisy unit length

vectors. The vectors were chosen to have a different mean

each quadrant of the image. Figure 3(b) illustrates the re-

sults of smoothing this vector image with the PDE (12) and

with
❚

as defined in (6). The discontinuities in the normals

between the quadrants are preserved while the noise within

the quadrants is smoothed.

Step 2: Refitting the height map to the normal vectors

Since our goal is to denoise the height map, we have to relate

the processing of the normal vectors back to the surface. We

do this with a refitting step that minimizes an energy that

reflects the discrepancy between the height map surface and

Noisy�height�

map

Compute�N 

from�h
Process�N Process�h

Done?
No

Smoothed�height�

map

Figure 4: Flow chart.

the processed normal vectors. This energy is✆ ❆ ❊ ❈✘✢ ✌✎✍ ❛ ✉ ✦ ❛ ✉❤✯ ❛ ✉ ✦ ❛✮❷ ✗✚✙✛✗✝✜ ✪ (13)

where
❛ ✉

and
❛✮❷

denote the normal vectors computed from❊
according to (7) and the processed normal vectors ob-

tained from iterating the PDE (12), respectively. Let
❛ ❷ ✢♥❹❸ ✁ ❸ ✄ ❸ r ♦★❺ , then✆ ❆ ❊ ❈■✢ ✌✎✍ ❏ ✭❪❑ ✏✓✒✠❊P✏ ✄ ✯ ✒✠❊✠✦☎✾ ❸ ✁❸ ✄ ✿ ❑ ❸ r ✗✝✙✛✗✚✜ ❀
(14)

The gradient descent for the first variation of this energy with

respect to

❊
is✗ ❊✗✝✥ ✢ ✯ ✒❻✦☎❼ ✒✠❊❏ ✭▲❑ ✏✰✒✠❊◗✏ ✄ ✯⑧✾ ❸ ✁❸ ✄ ✿❾❽ ❀ (15)

5.1 The algorithm

The flow chart for the algorithm is shown in Figure 4. The

normals processing stage of the algorithm computes the gra-

dient descent for the normals (12) for a fixed number of it-

erations (25 for the experiments in this paper). Hence, we

avoid evolving evolving the normals too far away from their

initialization from

❊
. The height map fitting to the processed

normal vectors is given as a gradient descent PDE in (15).

This stage of the algorithm is run until the discrepancy mea-

sure (13) between the new normals and the normals of the



height map ceases to decrease, which signals the need for

another round of processing the normal vectors. The overall

algorithm repeats these two steps to denoise the input height

map. This algorithm consists of solving two second-order

PDEs in series instead of a direct fourth-order PDE, which

makes it computationally tractable.

5.2 The parameters

There are two free parameters in our algorithm: ❂ and the

number of iterations of the main loop in Figure 4. The con-

ductance parameter ❂ determines the range of curvatures that

is smoothed and the range that is preserved. As in P&M im-

age diffusion, it is not a simple threshold. In was fixed at ❿ ❀ ✭
for all of the results shown in this paper. Unlike, in P&M

image diffusion, this parameter does not need to be changed

for different surface models. In the context of P&M image

diffusion, the units of ❂ are in gray levels; consequently, the

optimal choice of ❂ is image dependent. However, for sur-

faces, the units are in curvature, which is data independent.

This makes it possible to choose a ❂ value that gives consis-

tent results over a broad range of surfaces.

The number of times we repeat the main loop (process-

ing the normal vectors followed by refitting) determines the

amount of smoothing applied to the data. This is the second

free parameter in the system. In Section 6, we present exper-

imental results that illustrate various amounts of smoothing.

This parameter could be exchanged for a data term weight by

posing the smoothing problem as a reconstruction problem.

In a reconstruction problem the energy will be a weighted

sum of a smoothness term and a data term. A PDE that

minimizes this type of energy is run until convergence, and

the free parameter is the relative weighting between the two

terms.

6 Experiments

In this section, we present experiments with two different

DEM datasets. We demonstrate the effectiveness of our ap-

proach as a pre-processing step for ridge/gully detection.

There are multiple definitions of a ridge. For terrain data,

we consider a ridge to be points of local maximum curvature

on the isocurves of the height function

❊ ❆ ✙ ✪ ✜✎❈ . The curva-

ture of the isocurves of

❊ ❆ ✙ ✪ ✜✎❈ can be found as❘ ✢ ❊ ✄❞ ❊ ❝➀❝ ✯ � ❊ ❝ ❊ ❞ ❊ ❝★❞ ❑ ❊ ✄❝ ❊ ❞❥❞♥ ❊ ✄❝ ❑ ❊ ✄❞ ♦sr✺t ✄ ❀
(16)

Let ➁ be the tangent vector to the isocurves of

❊ ❆ ✙ ✪ ✜✎❈ . Then
point of maximal curvature of the isocurves are found as the

zero crossings of the following directional derivative:✗ ❘✗ ➁ ✢ ❿ ❀ (17)

Among points that satisfy this equation, those with ❘➃➂❖❿
are ridges and those with ❘✑➄➅❿ are gullies.

The main point of this discussion is not the ridge detec-

tion itself, but the role of our smoothing algorithm as a pre-

processing step. Equation (17) involves third derivatives of❊ ❆ ✙ ✪ ✜✎❈ ; therefore, it is hard to compute stably. Typically,

these third derivatives of Gaussian kernels are used for this

computation. However, the Gaussian kernels eliminates and

dislocates ridge lines. We propose that like P&M diffusion is

a better choice than Gaussian smoothing for edge detection

in intensity images, our anisotropic smoothing algorithm is

a better approach for smoothing the data for purposes of

ridge/gully detection.

Figure 5(a) illustrates the surface defined by the original✭ ❿ �♣➆ ♠ ✭ ❿ �❪➆ Mt. Hood height data. Figure 5(b) and (c) il-

lustrate the results of smoothing with the proposed approach

after 2 and 10 iterations of our algorithm, respectively. One

iteration takes approximately 20 minutes for this data set on

a Intel 1.7 Ghz processor. For denoising purposes a cou-

ple of iterations are sufficient. More iterations start forcing

the surface towards being piecewise planar. The prominent

structure of the mountain is preserved as the smaller scale

detail and noise is eliminated. This can be performed as pre-

processing for ridge detection or compression.

Figure 6 illustrates the ridge/gully detection experiment.

The blue and the red curves on the surface depict ridges and

gullies, respectively. For the results shown in the top row,

we used a Gaussian smoothing kernel with a low and a high

standard deviation. The low standard deviation did not de-

noise the data enough; hence, there are a lot of false positives

in the detection results. On the other hand, the high standard

deviation Gaussian resulted in too many false negatives, i.e.

missed ridges. Figures 6(c) and (d) illustrate detection re-

sults obtained by using the proposed anisotropic diffusion as

the smoothing step (after 10 and 20 iterations, respectively).

The results are much better than with Gaussian smoothing.

For instance, the prominent ridge running down the center

right side of the mountain was missed in both low and high

standard deviation Gaussian smoothing results. In contrast,

this ridge was able to self-organize and strengthen during

anisotropic diffusion and was successfully detected. In sum-

mary, the detection results with anisotropic diffusion have

fewer false positives and fewer false negatives.

Figure 7 illustrates a different type of terrain: the tran-

sition from a flat valley to rolling hills. Two shallow river

beds can be observed as depressions in the valley. Fig-

ure 7 (a) shows the original height surface, while (b) and

(c) show the surface after 1 and 10 iterations of our algo-

rithm. Figures 7(d)-(f) illustrate the corresponding detec-

tion results. Although, only a minimal amount of smoothing

can be observed in Figure 7(b), the corresponding detection

result shown in Figure 7(e) is much better than the detec-

tion from the original data in Figure 7(d). Notice that both

of the shallow river beds were detected as gullies. Further

anisotropic smoothing results in a cleaner detection, but also

losses the weaker river bed. The processing times for this

smaller data set was approximately 3 minutes per iteration

on a Intel 1.7 Ghz processor.



(a) (b) (c)

Figure 5: (a) Mt. Hood, (b) after 2 iterations, and (c) 10 iterations of the main processing loop.

(a) (b)

(c) (d)

Figure 6: Ridge and gullies are depicted by blue and red curves, respectively. Results using Gaussian kernels with standard

deviation (a) 1 pixel and (b) 3 pixels. Results using our anisotropic smoothing with (c) 10 iterations, and (d) 20 iterations.



(a) (b) (c)

(d) (e) (f)

Figure 7: (a) Original data, (b) after 1 iterations, and (c) 10 iterations of our algorithm. Ridges (blue) and gullies (red)

detected from the respective data sets on the first row.

7 Conclusions

We derive a variational generalization of P&M anisotropic

diffusion for feature preserving smoothing of terrain data.

The proposed method is derived from the geometry of
� ✁✄ D

surfaces. It preserves and enhances discontinuities in the sur-

face normal vectors; hence, forcing surfaces towards piece-

wise smoothness. This type of processing is better suited

to terrain data than direct applications of image processing

techniques and their heuristic modifications.

Measures on surface normal variations require solving

fourth-order PDEs on level sets. However, by processing

the normals separately from the surface, we can solve a pair

of second-order equations instead of a fourth-order equa-

tion. This method is numerically more stable and compu-

tationally less expensive than solving the fourth-order PDE

directly. The shortcoming of this method is the computa-

tion time; however, the process lends itself to parallelism,

and therefore, the use of multi-threading. Also, recent de-

velopments in solving nonlinear image PDE on commodity

graphics hardware promise significant speed-ups for our al-

gorithm [15].
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