
GEOPHYSICS,VOL. 72, NO. 2 (MARCH-APRIL 2007); P. WA73-WA84,18 FIGS.
10.1190/1.2435712

S p e c i a l  S e c t i o n  —  M a r i n e  C o n t r o l l e d - S o u r c e  E l e c t r o m a g n e t i c  M e t h o d s  

R i g o r o u s  3 D  i n v e r s i o n  o f  m a r i n e  C S E M  d a t a  
b a s e d  o n  t h e  i n t e g r a l  e q u a t i o n  m e t h o d

A le x a n d e r  G r ib e n k o 1 a n d  M ich ae l Z h d a n o v 1

ABSTRACT

Marine controlled-source electromagnetic (MCSEM) sur­
veys have become an important part of offshore petroleum 
exploration. However, due to enormous computational diffi­
culties with full 3D inversion, practical interpretation of MC­
SEM data is still a very challenging problem. We present a 
new approach to 3D inversion of MCSEM data based on rig­
orous integral-equation IE forward modeling and a new IE 
representation of the sensitivity (Frechet derivative matrix) 
of observed data to variations in sea-bottom conductivity. 
We develop a new form of the quasi-analytical approxima­
tion for models with variable background conductivity 
(QAVB) and apply this form for more efficient Frechet deriv­
ative calculations. This approach requires just one forward 
modeling on every iteration of the regularized gradient-type 
inversion algorithm, which speeds up the computations sig­
nificantly. We also use a regularized focusing inversion 
method, which provides a sharp boundary image of the petro­
leum reservoir. The methodology is tested on a 3D inversion 
of the synthetic EM data representing a typical MCSEM sur­
vey conducted for offshore petroleum exploration.

INTRODUCTION

During recent years, marine controlled-source electromagnetic 
(MCSEM surveys have become intensively used for offshore petro­
leum exploration (Eidesmo et al., 2002; Ellingsrud et al., 2002; 
Tompkins, 2004; Carazzone et al., 2005; Hesthammer and Boulaen- 
ko, 2005; Srnka et al., 2005). The success of the EM method’s 
application for the search of oil and gas reservoirs is based on the 
fundamental fact that oil- and gas-containing structures are charac­
terized by very high resistivity, while the surrounding sea-bottom

formations filled with salt water are very conductive. Therefore, a 
petroleum reservoir represents a clear target for EM methods. How­
ever, the interpretation of MCSEM data is still a very challenging 
problem, especially if one would like to take into account a real 3D 
structure of a sea-bottom geologic formation. The inversion of MC­
SEM data is complicated by the fact that the EM response of a petro­
leum reservoir is very weak in comparison with a background EM 
field generated by an electric dipole transmitter in layered geoelec­
trical structures formed by a conductive seawater layer and bottom 
sediments.

There were several publications recently reporting significant 
progress in 3D inversion of MCSEM data based on the finite-differ- 
ence FD method Newman and Boggs, 2004; Hoversten et al., 
2004, 2005 . In this paper, we present a different approach to 3D in­
version of MCSEM data, which uses a rigorous integral-equation- 
IE based forward modeling and regularized focusing inversion al­

gorithm. There are several advantages in using the IE method in the 
MCSEM data inversion in comparison with the more traditional FD 
approach. First, IE forward modeling requires the calculation of the 
Green’s tensors for the background conductivity model. These ten­
sors can be precomputed only once and saved for multiple use on ev­
ery iteration of inversion, which speeds up the computation of the 
predicted data on each iteration significantly. Second, the same pre­
computed Green’s tensors can be readily used for Frechet derivative 
calculations, which is another important element of inversion. Final­
ly, IE forward modeling and inversion requires the discretization of 
the domain of inversion only, while in the framework of the FD 
method, one has to discretize the entire modeling domain, which in­
cludes not only the area of investigation but an additional domain 
surrounding this area including the areas in the air . As a result, the 
IE inversion method requires just one forward modeling on every it­
eration step, which speeds up the computations and results in a rela­
tively fast but rigorous inversion method. To obtain a stable solution 
of a 3D inverse problem, we apply a regularization method based on 
a focusing stabilizing functional (Zhdanov, 2002). This stabilizer
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helps generate a sharp and focused image of ous conductivity distri­
bution, which is important in petroleum exploration with the goal of 
delineating the boundaries of a prospective reservoir.

We present the results of the application of the rigorous inversion 
method to the interpretation of synthetic MCSEM data.

INTEGRAL EQUATION METHOD IN 
3D INVERSION OF MCSEM DATA

We consider first, the typical MCSEM survey consisting of a set 
of sea-bottom electrical and magnetic receivers and a horizontal 
electric dipole transmitter towing at some elevation above the sea 
bottom. This type of survey is often referred to as sea bed logging, 
SBL (Eidesmo et al., 2002)- The transmitter generates a frequency- 
domain EM field. The operating frequencies are usually selected to 
be low enough (in a range of 0.1-5 Hz) to propagate through the 
conductive seawater and sea-bottom layers of the sediments and to 
illuminate the sea-bottom geologic structures. The field recorded by 
the receivers can be represented as a sum of the normal EM field, 
|  En°rm Hnolm}, generated in a horizontally layered background model 
formed by seawater and sediment layers, and an anomalous part, 
{E“, Ha}, related to the horizontal conductivity inhomogeneities 
present in the sea bottom:

E = En + Ea, H = Hn + Ha

The anomalous electromagnetic field is related to the electric current 
induced in the inhomogeneity j = AcrE, according to the following 
integral formulas:

E a( r ''-/JLGe(r,-|r) • [Ao-(r)E(r)]du = GE[AoE],

(D

Ht r , , - / / L GH(ry|r) du = GH[AoE],

(2)

where GE(r^|r) and (JH{r |̂r) are the electric and magnetic Green’s 
tensors defined for an unbounded conductive medium with the nor­
mal (horizontally layered conductivity <jnolm; GE and GH are corre­
sponding Green’s linear operators; and domain D represents a vol­
ume with the anomalous conductivity distribution r = norm 
+ Acr(r), r e  D.

We use integral equations 1 and 2 to formulate both the forward 
and inverse problems of the SBL method. Indeed, in short form these 
equations can be written as

d = A(Aar), (3)

where A is a forward modeling operator, d stands for the observed 
EM data in the sea-bottom receivers, and is a vector formed by 
the anomalous conductivities within the targeted domain. The inver­
sion is based on minimization of the Tikhonov parametric functional 
Pa(Acr), with the corresponding stabilizer s(Acr) (Tikhonov and 
Arsenin, 1977):

P “(A or) = |!W,(A(A<r) -  d l  IL + « s(Ao-), (4)

where Wd is the data-weighting matrix, and a  is a regularization pa­
rameter.

There are several possible choices for the stabilizer (Zhdanov, 
2002). In this paper, we use two of them:

1

2

The minimum norm stabilizer (sMN), which is equal to the 
square L2 norm of the difference between the current model Act 
and an appropriate a priori model A trapr:

SMd&v) = llWm(Ao- -  AtTapr)\||2>

where Wm is the weighting matrix of the model parameters.
The minimum support stabilizer (sMS), which is proportional to 
the volume (support of the nonzero values of the difference be­
tween the current model Acr and the a priori model A<Tapr:

sms(A<x) -/JL
(A a  - A dapr)2 

(Acr -  Adapr)2 + e
d v , (5)

where e is the focusing parameter.

It was shown by Portniaguine and Zhdanov (1999) that the mini­
mum support functional minimizes the volume of nonzero parame­
ter distribution (minimizes the support of the inverse model), if e 
tends to zero: e 0. The principles of the optimal focusing parame­
ter selection are discussed in Zhdanov and Tolstaya 2004 .

The most common approach to minimization of the parametric 
functional P(Acr) is based on using gradient-type methods. For ex­
ample, the regularized conjugate gradient (RCG) algorithm of the 
parametric functional minimization in the case of the minimum 
norm stabilizer can be summarized as follows (Zhdanov, 2002):

r K = A(Aar„) -  d, l„ = l(A<rj = R e F ^ W d ^

+ a W*mWm(A(rn -  Ao-apr), (6a)

Pn = ISlnlS /||ln-D! , ln = ln + /^nln-1» l0 = l0,

kn = (In,lj/{|WdFnlJi2 |WmU|2},

Aar,n+1 n k lnn

(6b)

(6c)

(6d)

where rn is a residual at the iteration step n, In is the gradient direc­
tion, Fn is a Frechet derivative matrix, Wd is a data weighting matrix, 
a  is a regularization parameter, Wm is a model weighting matrix, ln is 
the conjugate direction, kn is a length of the iteration step, || || denotes 
vector or matrix norm, and * sign represents adjoint matrix.

The appropriate selection of the data and model parameters 
weighting matrices is very important for the success of the inversion. 
We determine the data weights as a diagonal matrix formed by the 
inverse absolute values of the normal field. Computation of the mod­
el weighting matrix is based on sensitivity analysis. In this research, 
we select as the square root of the sensitivity matrix in the initial 
model:

Wm = v d ia^F * F ) 1/2 (7)

As a result, we obtain a uniform sensitivity of the data to different 
model parameters Zhdanov, 2002 .

In the case of the minimum support stabilizer we use the reweight­
ed regularized conjugate gradient RRCG method introduced in 
Zhdanov 2002, pp. 161-166 . This algorithm is similar to the RCG 
algorithm represented by equation 6. However, the inversion is con­
ducted in the space of the weighted model parameters m", which are 
related to the original parameters by the formula:
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mw = W W mT T m T T

where the reweighting matrix Wen is equal to

Wen = {diag[(mn + e2)1/2]}-1

(8)

(9)

We refer the interested readers to a book on inversion theory by Zh­
danov 2002 for in-depth explanation of the RRCG technique, 
which is widely used in different geophysical applications.

In expressions 8 and 9 we use the logarithmic model parameters, 
vector m, with the scalar components m,, given by the formula:

_  /A c t, 
m, = In I

A (X;

A a? -  A cr; /
(10)

This log parameterization has a property that the scalar components 
of the original conductivity vector Atr always remain within the giv­
en lower and upper bounds, A <r-  and A of, respectively:

Act ^  A A o f, i = 1,2,... . L . 11

We apply the adaptive regularization method. The regularization 
parameter is updated in the process of the iterative inversion as 
follows:

a n = a 1q" n = 1,2,3 ... 0 <  q <  1.
12

In order to avoid divergence, we begin an iteration from a value of 
1, which can be obtained as a ratio of the misfit functional and the 

stabilizer for an initial model, then reduce n according to formula 
12 on each subsequent iteration and continuously iterate until the 
misfit condition is reached:

rn0 = r n0 = HW ^A(m ^) -  d ) |M l W ,^  8, (13)

where rw0 is the normalized weighted residual, and S is the relative 
level of noise in the weighted observed data.

Parameter q controls the rate of decrease of the regularization pa­
rameter n in the process of inversion. This parameter is usually se­
lected within an interval [0.5; 0.9].

Note that in practical applications of the regularized iterative in­
version, we begin the inverse process with the minimum norm 
smooth inversion to produce an initial image of the target. After a 

few minimum norm iterations we switch the iterative process to the 
minimum support inversion by introducing a reweighting matrix 
Wen (equation 9) and continue with the focusing inversion until the 
misfit functional reaches the required misfit level. In other words, the 
developed algorithm has the flexibility to run the minimum norm in­
version to produce a smooth image of the target, or to run a combina­
tion of the smooth and focusing inversions to generate a more 
focused image. Examples of practical applications of this approach 
will be given below in a section on synthetic MCSEM data 
inversion.

Formula 6 demonstrates that every iteration step requires at least 
one forward modeling solution to find the predicted data A(A<f„)■ 
Additional computations are needed to find the Frechet derivative 
Fn, and the optimal length of the iteration step kn.

Thus, the critical element of the inversion is computing the 
Frechet derivative of the forward modeling operator. Direct compu­
tation of the Frechet derivative is very time consuming even when 
the reciprocity principle is utilized. It was demonstrated by Golubev

and Zhdanov 2005 for MT data inversion, that the number of for­
ward modelings can be reduced to one on every iteration step if we 
compute the Frechet derivative using the modified form of the quasi- 
analytical (QA) approximation (Zhdanov et al., 2000). In the current 
paper, we develop a new form of the QA approximation for models 
with variable background conductivity QAVB and apply this form 
for more efficient Frechet derivative calculations. We use this ap­
proach for developing a fast and rigorous method of the MCSEM 
data inversion. This method uses IE-based forward modeling solvers 
on every iteration of the RRCG inversion to calculate the predicted 
data. That is why it delivers a rigorous inversion. At the same time, to 
speed up the computations, the method uses the QAVB approxima­
tion for the Frechet derivative calculation. We will discuss the prin­
ciples of the new method of Frechet derivative calculation using 
QAVB approximation in the next section.

Another important element of the IE-based inversion is the selec­
tion of the appropriate background conductivity model. This prob­
lem is a typical one in many methods of exploration geophysics. 
There exist several different techniques for solving this problem. 
The simplest approach is based on 1D inversion of the observed data 
set using the same regularized conjugate gradient method, described 
above. One can use the corresponding 1D inverse model as a back­
ground model for the subsequent 3D inversion. We can also find the 
1D background conductivity by 1D inversion of the data in the re­
ceivers located outside of the area with the target. We will present an 
example of such an approach in our numerical study below.

FRECHET DERIVATIVE CALCULATION USING 
QUASI-ANALYTICAL APPROXIMATION 

FOR A VARIABLE BACKGROUND (QAVB)

We assume now that the conductivity within a 3D geoelectrical 
model can be represented by the normal horizontally layered con­
ductivity crnorm, background conductivity <rb = <rnorm + A<jb, and an 
arbitrarily varying conductivity cr = <rb + A<ra, within a domain D .

In this model, the electromagnetic field can be presented as a sum 
of the background field, Eb, Hb, and the anomalous field, EA,J«, HA,J«:

E = Eb + E H = H b + HlAoa

where the background field is a field generated by the given sources 
in the model with a background distribution of conductivity b, and 
the anomalous field is produced by the anomalous conductivity dis­
tribution A ua.

In Appendix A, we introduce a new form of quasi-analytical ap­
proximation of the anomalous EM field for a variable background 
QAVB :

T?ae QAVB rjrj ■III Ge(r j r
Aoa( r)

1 -  g Q(r)
E*(r)

and

h Qav̂  rj)

where:

I H d,
G h( r j  r)

A o-J r)

_ 1 -  g Q{r)
e V )

d v ,

(14)

d v ,

(15)

w
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(r) =
E e (r) ■ E**(r) 
E*(r) ■ E**(r) ’

(16)

and EQ is the quasi-Born approximation of the anomalous electric 
field:

E q -  G£[A<TaE*].

The main difference between the QAVB and the original QA ap­
proximation can be explained as follows. It is very well known that 
the accuracy of any approximation of the anomalous EM field de­
pends on the value of the anomalous conductivity. The smaller the 
anomalous conductivity is, the more accurate the approximate solu­
tions are (Zhdanov, 2002). In the case of the original QA approxima­
tion, the anomalous field is caused by an anomalous conductivity, 
which is the difference between the total conductivity of the model 
and some known layered-earth background model. In the case of the 
QAVB approximation, the anomalous field is caused by an anoma­
lous conductivity, which is calculated as a difference between the to­
tal conductivity and some arbitrary inhomogeneous background 
conductivity: A<ja — cr -  cr*. In principle, this background conduc­
tivity * can be selected very close to the total conductivity, which 
results in a very small value of the anomalous conductivity and a 
high accuracy of the QAVB approximation.

Another advantage of using expressions 14 and 15, as mentioned 
in Zhdanov and Hursan (2000), is the ability to generate a simple for­
mula for the Frechet derivative operator which can be used in inver­
sion algorithms. For example, by introducing a perturbation of the 
anomalous conductivity a r  , we can calculate the correspond­
ing perturbation of the electric field <5E(rj) on the basis of equation 
14. After some straightforward algebra, we arrive at the following 
integral representations for the Frechet derivative of the electric and 
magnetic fields:

oE(r,-) 
dAo-a( r) Ao 1 <?A<ra(r)

= Ffl( r,| r ) ,

(17)

where the vector functions FE and FH are the kernels of the integral 
Frechet derivative operators:

FE,Hr j \r ) -
1

U -  gQ{ r  E ,H j
G£,tf(r,-|r) + K(r-|r) E*( r ) ,

(18)

and

K (rj r) ■///.
Aoa( r ')

d (1 -  g V ) )  

E**( r ')

T-2Ge(r,-|r') ■ E*(r')

|_E*(r')  ■ E (r ')77 • G£(r '|r ) d v ' . (19)

Function gQ is determined by expression 16.
We can use expressions 17-19 for computing the Frechet deriva­

tives required by the RCG algorithm 6. Indeed, we can treat the elec­
tric field E(n found on iteration number n as a background field E* 
for a subsequent iteration (n + 1), E* -  E n). In this case, the Frechet 
derivative at iteration number n can be found by direct integration

from expressions 17-19 involving the electric field E n computed on 
the current iteration:

f e,H rjlr )
1

_ 1 -  g Q(r)
GEM(rj\r) + K(ry|r) E  n)( r ) ,

(20)

and

X
E n)(r ')  ■ E n *(r ')

-  • G£(r '|r )  d v ’ . (21)

Note that the electric field E n is computed, as a rule, using the rigor­
ous IE forward-modeling method. However, to speed up the compu­
tations, different numerical techniques can be used, as will be dis­
cussed below in the section on numerical examples. We use system­
atically the QAVB approximation for computing the Frechet deriva­
tives, based on formulas 20 and 21. As we can see, in the inversion 
algorithm, the background field required by the QAVB approxima­
tion is equal to the predicted electric field found on the previous iter­
ation. Therefore, no extra computation is required to find the back­
ground field for the Frechet derivative calculation. The correspond­
ing numerical method of the Frechet derivative computations is 
based on the discrete form of the explicit integral expressions 20 and 
21, which simplifies all calculations dramatically. However, similar 
to conventional inversion techniques, we do not need to keep the en­
tire Frechet derivative matrix in the computer memory. We save the 
results of the application of the adjoint Frechet matrix to the weight­
ed residual field, FnWdWdrn, only. The major difference between 
the conventional approach and our approach is that in the first case, 
one has to solve the full 3D EM forward problem on every iteration 
of the inversion in order to find the term FnWdWdrn. In our method, 
we do not need to solve any forward problem to find the Frechet de­
rivative, because we compute this term by direct algebraic expres­
sion arising from our new integral representation of the Frechet ma­
trix. The same algebraic expression is used to find the optimal length 
of the iteration step according to expression 6c. As a result, our new 
inversion technique, based on the IE method, requires just one for­
ward modeling on every iteration step without any extra memory us­
age, while the conventional inversion schemes require, as a rule, at 
least three forward modeling solutions per inversion iteration (one to 
compute the predicted data, another one to compute the gradient di­
rection, and the last one for optimal calculation of the iteration step. 
This approach results in a very efficient inversion method.

SYNTHETIC MCSEM DATA INVERSION

We have investigated several models of marine CSEM surveys. 
First, we have considered a 2D CSEM survey, which is currently the 
most widely used in offshore exploration. The typical 2D survey 
consists of a set of receivers located along a line at the sea bottom and 
of an electric bipole transmitter towed parallel to and above the re­
ceivers.

Model 1
In the first set of numerical experiments, we assume that a synthet­

ic CSEM survey is conducted in relatively shallow water with a sea
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depth of 300 m (Figure 1). The survey consists of seventeen sea-bot­
tom receivers and an electric dipole transmitter moving along a line 
passing directly above the receivers at an elevation of 50 m above 
the sea bottom. The separation between the receivers is 1000 m. The 
transmitter generates a frequency-domain EM field with two fre­
quencies of 0.25 and 0.75 Hz from points every 200 m along the 
transmitter line. The maximum transmitter-receiver offset is 10 km. 
The background geoelectrical model consists of a seawater layer 
with a thickness of 300 m and a resistivity of 0.25 ohm-m, a sea-bot­
tom gas-hydrate layer with a thickness of 100 m and a resistivity of 
5 ohm-m, conductive sea-bottom sediments with 
a thickness of 1400 m and a resistivity of 1 ohm 
-m, and a more resistive basement with a resistiv­
ity of3.33 ohm-m (Figure 1). We assume that we 
have two petroleum reservoirs with the same 
thickness of 100 m and a resistivity of 
50 ohm-m, but located at depths of 1300 and 
1000 m, respectively, below sea level (Figure 1).
The horizontal dimensions of the reservoirs are 2 
and 1 km in the x-direction and 1.8 km in the 
y-direction, respectively.

The synthetic CSEM data were computed for 
this model using the rigorous IE method. We use 
as input data for the inversion the total electric 
field Ex, normalized by the absolute value of the 
normal electric field Exnorm, generated in the horizontally layered 
background model described above.

First, we applied the rigorous inversion algorithm to the inversion 
of the noise-free synthetic CSEM data computed for this model. The 
area of inversion is extended from -4,000 to 4,000 m in the 
x-direction, from -900 to 900 m in the y-direction, and from 
800 to 1,600 m at a depth with cell sizes equal to 500,600, and 50 m 
in the x-, y-, and z-directions, respectively.

We ran 30 iterations of the minimum norm smooth inversion 
and 53 iterations of the focusing inversion. No a priori model was 
used in the inversion. The convergence plot is shown in Figure 2 
shows the normalized residual versus the iteration number, Figure 
2b presents the normalized parametric functional behavior. The nor­
malized residual is computed by the formula:

rwn = ||W d(A(m«J -  d)| Ml W d 4 , (22)

where the data-weighting matrix is a diagonal matrix formed by the 
inverse absolute values of the background electric field.

Note that the first iteration of the RRCG method is computed with 
the regularization parameter a  = 0. After about 50 iterations of the 
rigorous inversion, the normalized residual reaches 3%. Figure 3 
shows a vertical section of the inversion result. As 
one can see, the depth and the horizontal extent of 
both reservoirs are recovered well in the inverse 
image.

In the next numerical experiment, we contami­
nated the synthetic observed data with random 
Gaussian noise. The noise level increases linearly 
from 1% at zero offset up to 7% at 10,000 m off­
set to simulate a typical noise behavior in the field 
data.

The normalized inline electric field data re­
corded in receiver 10 x = 1000 m for two fre­
quencies are shown in Figures 4 and 5. We plot 
here the real and imaginary parts of the total elec­

tric field Ex, normalized by the absolute values of the normal electric 
field Exnorm, generated in the horizontally layered background model 
formed by the seawater, the sea-bottom gas-hydrate layer, the con­
ductive sea-bottom sediments, and a relatively resistive basement. 
One can see rather complex anomalous behavior of the observed 
field. We have applied our inversion algorithm to the noisy data. We 
should note that we use 3D forward modeling and inversion to pro­
cess the data observed by this 2D synthetic survey. In order to speed 
up the computations in this example, we have used the multigrid 
quasi-linear (MGQL) forward modeling code to compute the pre-

a)

Iteration

Figure 2. The convergence plots of the iterative inversion for Model 
1. (a) The normalized residual versus the iteration number, (b) the 
normalized parametric functional behavior.

Predicted model, total resistivity 0hm-m

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
X (m)

Figure 3. The vertical section of the result of the inversion of the noise-free data for Mod­
el 1 with the true layered-earth background conductivity model. The area shown with 
grids defines the extent of the anomalous domain in the inversions.

True model, total resistivity ohm-i

500

1500

2000
-4000 -3000 -2000 -1000 1000 2000 3000 4000

50
23
11
4.9
2.2
1
0.47
0.22
0.1

X (m)

Figure 1. Model 1 formed by two resistive reservoirs located at different depths. The area 
shown with grids defines the extent of the anomalous domain in the inversions.

0

0
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dicted data at every step of the iterative inversion. The numerical 
study shows that, for the simple geoelectrical models considered in 
our paper, the MGQL method produces a very accurate result, com­
parable to the rigorous IE solution (Ueda and Zhdanov, 2005). At the 
same time, for validating of the new algorithm it is always useful to 
try the inversion code on the data produced by a different forward

X (m)

b) Total field normalized by normal amplitude, imaginary parts

1
2

-10,000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000
X (m)

Figure 4. a The plots of the real and b imaginary parts of the nor­
malized observed and predicted inline electric fields Ex at a frequen­
cy of 0.25 Hz for receiver 10 (x = -1000 m) in model 1. The dots 
show the noisy observed data, whereas the predicted data for a model 
obtained by the inversion are plotted by lines. The solid line corre­
sponds to the predicted data predicted 1 obtained by inversion with 
the true 1D background model, whereas the dashed line shows the 
predicted data predicted 2 computed for 3D inversion result ob­
tained with the background model found by 1D inversion.

a) Total field normalized by normal amplitude, real parts 
-1.0

W
1  -0.5

!  - ° . °  a5
§ -0.5 o z

-1.0
-10,000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000

X (m)

b) Total field normalized by normal amplitude, imaginary parts 
-0 .4

I  - 0 .8n3

-1 .2
-10,000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000

X (m)

Figure 5. a The plots of the real and b imaginary parts of the nor­
malized observed and predicted inline electric fields Ex at a frequen­
cy of 0.75 Hz for receiver 3 (x = -1000 m, y = 0 m) in model 1. 
The dots show the noisy observed data, whereas the predicted data 
for a model obtained by the inversion are plotted by lines. The solid 
line corresponds to the predicted data predicted 1 obtained by in­
version with the true 1D background model, whereas the dashed line 
shows the predicted data (predicted 2) computed for 3D inversion re­
sult obtained with the background model found by 1D inversion.

modeling method. In this case, the synthetic observed data were 
computed using the rigorous IE forward-modeling calculations, 
while in the inversion algorithm we used a MGQL approximation as 
the forward-modeling solver. We ran practically the same number of 
RRCG iterations for this data as for the noise-free data example con­
sidered above. No a priori model was used in this inversion as well. 
The vertical section of the resulting inverse model is shown in Figure 
6. As one can see, the inversion result is still very close to the one ob­
tained for the noise-free data with the inversion algorithm based on 
rigorous forward modeling. This example illustrates the stability of 
the method with respect to the noise in the data and modeling noise 
related to the different forward-modeling solvers used for synthetic 
observed data calculation and in the inversion algorithm.

In the previous examples, we assumed that the true 1D back­
ground conductivity model was known. We now investigate a more 
realistic situation where this background model is unknown. In this 
case, we can apply the 1D inversion to the data recorded by receivers 
1 and 9, located outside of the area with two resistivity reservoirs. As 
a result of 1D inversion, we found the following parameters of the 
new 1D background model: thicknesses of the layers: 300,100, and 
1400 m and resistivities of the layers: 0.25, 5.44, 0.97, and 
4.29 ohm-m

We applied the IE-based inversion algorithm to the same noisy 
data, as in the previous case. However, we use a new 1D background 
model found by 1D inversion. We ran practically the same number 
of RRCG iterations for this case as for the examples considered 
above. Figure 7 presents the vertical section of the resulting inverse 
model. The dashed lines in Figures 4 and 5 show the predicted data 
computed for the 3D inversion result obtained with the background 
model found by 1D inversion. One can see in these figures that the 
predicted data still fit the observed noisy data within the level of the 
noise, and the inverse model shown in Figure 7 represents a reason­
able image of the targets.

This example shows that the interpretation of the practical MC- 
SEM data should consist of two stages. In the first stage, we found 
the horizontally layered background geoelectrical model by 1D in­
version of the observed data. In the second stage, we ran full 3D in­
version using the corresponding 1D inverse model as a background.

Model 2
In the next numerical experiment, we consider a CSEM survey 

over a truly 3D target: a petroleum reservoir in the presence of a salt 
dome structure. Figures 8 and 9 show a plan view and a vertical cross 
section of the model. The sea-bottom reservoir is approximated by a 
thin resistive body located at a depth of 900 m below sea level, with 
a thickness of 100 m, and a horizontal size of 800 X 800 m. The re­
sistivity of the reservoir is 50 ohm-m. There is located, also, an ir­
regular-shaped salt dome structure close to the reservoir at a depth of 
700 m below the sea bottom. The resistivity of the salt dome is 
30 ohm-m. The depth of the sea bottom is 500 m from the surface, 
and the seawater resistivity is assumed to be equal to 0.25 ohm-m. 
The salt dome and the reservoir are surrounded by conductive sea- 
bottom sediments with a resistivity of 1 ohm-m. A 3D image of the 
true model is shown in Figure 10.

A synthetic CSEM survey consists of fourteen sea-bottom receiv­
ers and an electric dipole transmitter moving along two mutually or­
thogonal lines at an elevation of 50 m above the sea bottom. The po­
sitions of the receivers are shown by red dots in Figure 8. The separa­
tion between the receivers is 250 m. The locations of the transmit­
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ters are shown by green diamonds in the same figure. The transmitter 
sends a frequency-domain EM signal with two frequencies of 0.25 
and0.75 Hz from points located every 100 m along the transmitter’s 
line. The receivers measure the inline components of the electric 
field only. The observed data are computed with the rigorous IE for­
ward-modeling code and are contaminated by random Gaussian 
noise, with the noise level increasing linearly 
from5%atzero offset up to 10%at3000 moffset 
to simulate the typical noise behavior in the field 
data. The area of inversion is extended from 
-600 to 600 m in the x-direction, from -600 
to 600 m in the y-direction direction, and from 
700 to 1200 m at depth. We discretize the inver­
sion domain into 1320 Prismatic cells with the 
cell sizes equal to 100,100, and 50 m in the x-, y-, 
and z-directions, respectively.

We have conducted two numerical experi­
ments. In the first experiment, we have used an 
approach based on inhomogeneous background 
conductivity (Zhdanov and Wilson, 2004). We 
have assumed that the position of the salt dome is 
known, and we have included a salt dome in the 
inhomogeneous background. This approach 
seems to be quite realistic. There are practical 
cases of offshore geophysical exploration where 
the salt dome structure is known from seismic 
data, but the location of the petroleum reservoir is 
unknown. Our new inversion method makes it 
possible to include this known information in the 
background geoelectrical model. We ran the rig­
orous IE-based inversion and after 45 iterations 
we obtained a normalized weighted residual be­
tween the observed noisy data and predicted data 
equal to 5%. Figures 11 and 12 present the plots 
of the real a and imaginary b parts of the nor­
malized observed and predicted inline electric 
fields Ex at a frequency of 0.25 and 0.75 Hz, re­
spectively, at receiver 3 (x = -250 m, y = 0 m).
The dots show the noisy observed data, while the predicted data for a 
model obtained by the inversion are plotted by lines. The solid line 
corresponds to the predicted data (predicted 1) obtained by inversion 
with the true salt dome background model. We can see that the pre­
dicted data fit the observed data very well. The corresponding in­
verse model is shown in Figures 13 and 14. One can see that the 
depth and the horizontal extent of the reservoir and its resistivity are 
recovered well in the inverse image. However, we can see some arti­
ficial resistive structures in the corners of the 3D inversion domain. 
The presence of these noisy elements in the inverse image is easily 
explained by the effect of the noise in the data, and by the fact that 
these corners of the inversion domain are located far away from the 
observational lines.

In the second experiment, we have assumed that we know the in­
correct shape of the salt dome structure and the incorrect resistivity 
of 25 ohm-m. A new distorted background model of a salt dome is 
shown in Figure 15. We have applied the IE-based inversion to the 
same noisy data we used in the previous experiment. However, we 
used the distorted salt dome background conductivity model in the 
inversion. We ran the rigorous IE-based inversion with 10 smooth it­
erations and 30 focusing iterations. The convergence plot of the in­
version process is shown in Figure 16. Note that the first iteration of

the RRCG method is computed with the regularization parameter a 
= 0. There is a jump in both plots at iteration 2, because at this itera­
tion we calculate the optimal starting value of the regularization pa­
rameter and introduce it in the inverse process. After iteration 2, the 
normalized residual and the parametric functional steadily decrease. 
After 40 iterations of the rigorous inversion, the normalized residual 
reaches almost5%.

-1000 -800 -600 -400 -200 0 200 400 600 
X (m)

Figure 8. Model 2. A petroleum reservoir in the presence of a salt 
dome structure (plan view). The positions of the receivers are shown 
by red dots, whereas the green diamonds show the transmitters loca­
tions.

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
X (m)

Figure 6. The vertical section of the result of the inversion of the data contaminated by 
random noise for model 1. The noise level increases linearly from 1% at zero offset up to 
7% at 10,000 m offset. The true layered-earth background conductivity model is used in 
the inversion. The area shown with grids defines the extent of the anomalous domain in 
the inversions.

Predicted model, total resistivity

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
X (m)

Figure 7. The vertical section of the result of the inversion of the data contaminated by 
random noise for model 1. The noise level increases linearly from 1% at zero offset up to 
7% at 10,000 m offset. The 3D inversion result is obtained with the background model 
found by 1D inversion. The area shown with grids defines the extent of the anomalous do­
main in the inversions.
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True model, total resistivity ohm-m

2000 • • 0.1 -1000 -800 -600 -400 -200 0 200 400 600
X (m)

Figure 9. Model 2. A petroleum reservoir in the presence of a salt 
dome structure vertical section . The area shown with grids defines 
the extent of the anomalous domain in the inversions.

X (m)

X (m)

Figure 11. The plots of the (a) real and (b) imaginary parts of the nor­
malized observed and predicted inline electric fields Ex at a frequen­
cy of 0.25 Hz for receiver 3 (x = -  250 m, y = 0 m) in model 2. The 
dots show the noisy observed data, whereas the predicted data for a 
model obtained by the inversion are plotted by blue lines. The solid 
line corresponds to the predicted data predicted 1 obtained by in­
version with the true salt dome background model, whereas the 
dashed line shows the predicted data predicted 2 computed for 3D 
inversion result obtained with the distorted background model of a 
salt dome.

Figure 10. A 3D image of true Model 2.

X (m)

X (m)

Figure 12. The plots of the (a) real and (b) imaginary parts of the nor­
malized observed and predicted inline electric fields Ex at a frequen­
cy of 0.75 Hz for receiver 3 (x = -250 m, y = 0 m) in model 2. The 
dots show the noisy observed data, whereas the predicted data for a 
model obtained by the inversion are plotted by lines. The solid line 
corresponds to the predicted data (predicted 1) obtained by inversion 
with the true salt dome background model, whereas the dashed line 
shows the predicted data (predicted 2) computed for 3D inversion re­
sult obtained with the distorted background model of a salt dome.
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Figure 17 shows the vertical section of the result of the inversion, 
while Figure 18 presents the corresponding 3D image of the inverse 
model. We still can clearly see the resistive reservoir in these figures. 
However, the images are slightly distorted due to incorrect selection

of the background model. This result demonstrates that even in the 
case of the inaccurate information about the background model, the 
inversion is still able to recover the meaningful image of the resistive 
reservoir.
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Figure 13. The vertical section of the result of the inversion of the 
data contaminated by random noise for model 2. The noise level in­
creases linearly from 5% at zero offset up to 10% at 3000 m offset. 
The true salt dome background conductivity model is used in the in­
version. The area shown with grids defines the extent of the anoma­
lous domain in the inversions.
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Figure 15. A vertical section of the distorted background model of a 
salt dome. The area shown with grids defines the extent of the anom­
alous domain in the inversions.
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a)

Figure 14. A 3D image of the result of the inversion of the data con­
taminated by random noise for model 2. The true salt dome back­
ground conductivity model is used in the inversion.

b)
Iteration

10 15 20 25 
Iteration

30 35 40

Figure 16. The convergence plots of the iterative inversion for Mod­
el 2 with the data contaminated by random noise. The noise level in­
creases linearly from 5% at zero offset up to 10% at 3000 m offset. 
a The normalized residual versus the iteration number, b the nor­

malized parametric functional behavior. The distorted salt dome 
background conductivity model is used in the inversion.
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Figure 17. The vertical section of the result of the inversion of the 
data contaminated by random noise for model 2. The noise level in­
creases linearly from 5% at zero offset up to 10% at 3000 m offset. 
The distorted salt dome background conductivity model is used in 
the inversion.
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Figure 18. A 3D image of the result of the inversion of the data con­
taminated by random noise. The distorted salt dome background 
conductivity model is used in the inversion.

CONCLUSIONS

We developed a rigorous method for 3D inversion of MCSEM 
data based on the integral equation formulation. The paper presents a 
theoretical background of this new method and a numerical proof of 
concept. We tested this method on a relatively simple synthetic 2D 
CSEM survey, simulating the typical transmitter-receiver layout 
which is currently used by EM-acquisition companies. The results of 
these tests demonstrate that the inverse images generated by this 
method provide a reasonable reconstruction of the true location and 
the resistivity of the target. We show also that this method has the po­
tential to be used for full 3D inversion of the MCSEM data collected

by 3D surveys. We have illustrated the theory and the corresponding 
numerical methods by simple, but meaningful numerical examples, 
because practical experience shows that the most effective way to 
test the new method and computer code is by analyzing relatively 
simple models. At the same time, our models may serve as a good 
testing ground for a comparison of different inversion codes in the 
future.

We should note that the IE method does not necessarily require a 
small inversion domain. The inversion area can be as large as neces­
sary. However, if there is any a priori information available about the 
known geologic structures, this information may be included in the 
background model. The only difference between say, the FD solu­
tion and the IE-based solution is that in the first case one should use 
the corresponding boundary conditions and include in the modeling 
grid, the cells located very far away from the true area of potential 
target location. In the framework of the IE approach, we assume that 
the background model is known inside and/or outside of the inver­
sion area, and we focus our inversion on the potential target. The last 
property of the IE technique is beneficial because it allows more in­
version cells to be used to describe the fine structure of the area of in­
vestigation, while in the FD approach many inversion cells are locat­
ed at a large distance from the target area, including the air and the 
water layers.

A serial version of the code can be run on a single PC. The typical 
inversion on a grid of up to a few thousand inversion cells requires 
just less than half an hour of computational time on an AMD 4400 
+ (2.2 GHz) 3.25 GB of RAM Windows PC.

We should conclude that there is still a lot of work ahead to make 
this method a practical tool for MCSEM data interpretation for off­
shore petroleum exploration. For example, we are working now on a 
parallel version of the code based on our new parallel IE-modeling 
software PIE3D. The parallel version will allow us to consider large- 
scale inverse problems and use large inversion domains with the in- 
homogeneous background to represent the true complexity of sea- 
bottom geoelectrical structures. Future research will be directed to 
the analysis of more complex geoelectrical models and to applica­
tion of the developed method for interpretation of field MCSEM 
data.
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APPENDIX A

QUASI-ANALYTICAL APPROXIMATION FOR 
A VARIABLE BACKGROUND (QAVB)

Zhdanov and Wilson 2004 introduced a new formulation of the 
QA approximation which can be used for models with a 3D arbi­
trary, or inhomogeneous, background conductivity distribution. 
This approximation was used by Golubev and Zhdanov 2005 to de­
velop a modified QA expression for both the forward modeling and 
for the Frechet derivative computation in magnetotelluric MT in­
verse problem solution. In the current paper, we introduce a new im­
proved formulation of the QA approximation for models with vari­
able backgrounds, which results in more accurate integral represen­
tation for the Frechet derivative as well.

Following Zhdanov et al. (2006), we assume now that the conduc­
tivity within a 3D geoelectrical model can be represented by the nor­
mal horizontally layered conductivity norm, background conduc­
tivity b = norm + b, and an arbitrarily varying conductivity 
= <rb + A <ra, within a domain D.

In this model, the electromagnetic field can be presented as a sum 
of the background field, Eb, Hb, and the anomalous field, EA'J«, HA"«:

E = E b + E H = Hb + HrAoa (A-1)

where the background field is a field generated by the given sources 
in the model with a background distribution of conductivity b, and 
the anomalous field is produced by the anomalous conductivity dis­
tribution a:

E H r ,) = E r d -  E n(r ;) -  E "b(r ;) = G ^ ^ E ,

A-2

A-3

Note that formulas A-2 and A-3 can be rewritten in the form:

HA °a( r  .■) = GH(Ao-a( Eb + E  aa)).b a

A-4

A-5

Following the main ideas of the QL approximation, we assume 
that inside the local inhomogeneity D, the anomalous field E a is 
linearly proportional to the background electric field Eb:

Ea = EA<ra = Aa • E b. (A-6)

Substituting A-6 into A-4 and A-5, we arrive at the QL approxima­
tion of the anomalous electromagnetic field for a model with a vari­
able background conductivity QLVB approximation :

E a E QlVb = G ^ A aa(I + AJ • E b], (A-7)

H ffa «  h QlVb = GH[Acra(I + A J • E b] . (A-8)

Therefore, we have the following equation for Aa:

Aa • E b = G ^ A aa(I + AJ • E b] . A-9

In the framework of the quasi-linear approach, the electrical re­
flectivity tensor can be selected to be a scalar: ka = ka. In this case, 
integral formula A-9 can be cast in the form:

Aa( rj) Eb( rj) = Ge[ AaaAaEb] + E Q( r , , (A-10)

where EQ is the quasi-Born approximation of the anomalous field. 
We call this term a quasi-Born approximation, because in the case of 
the conventional Born approximation, one should use the normal 
electric field inside the Green’s operator:

E Q = G ^ A aaEb] .

Following the ideas of the original QA approximation, we use the 
fact that the Green’s tensor GE(rjr) exhibits either singularity or a 
peak at the point where r j = r. Therefore, one can expect that the 
dominant contribution to the integral GE[AtraAEb] in equation A-10 
is from some vicinity of the point r, = r. Assuming also that Aa( r) is 
slowly varying within domain D, one can write

Aa( r jE b( r j  »  Aa( r j G ^ A a ^ ]  + E Q( r j

Aa( r,) E Q( r ,) + E Q( r , ) . (A-11)

Note that expression A-11 represents a vector equation, while we 
have just one scalar unknown function, a r j . Taking into account 
that we are looking for a scalar reflectivity tensor, it is useful to intro­
duce a scalar equation based on the vector equation A-11. We can 
obtain a scalar equation by taking the scalar product of both sides of 
equation A-11 with the complex conjugate background electric 
field:

Aa( r jE b( r j  • E b*(r,) = Aa( r jE Q( r j  • E b*(rj

+ E Q( r j  • E b* ( r j . (A-12)

Dividing equation A-12 by the square of the normal field and assum­
ing that

we obtain

where:

E b(ij) • E b*(ry) *  0,

K (  r  j) = A a( r /)gQ( r  j) + g Q( !•),

A-13

(A-14)

E Q(rj) • E b*(r;.) 
g Q r j  = E ‘( r j  - E “ ( r j  . 

Solving equation A-14, we find

w r  ̂ = g ^ rj) 
r j  = 1 -  gQ( r j '

A-15

Note that at the points where the background field vanishes, we 
can select Aa equal to ( -1 :

Aa(rj) = -  1, if E b( r j  • E b*(rj = 0.

Substituting equation A-15 into A-1, we find

1
E(r) «  [Aa(r) + 1]Eb(r) =

1 -  g Q(r)
Eb r  .

(A-16)

Therefore, from equations A-2 and A-3, we finally determine
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E

and

^ a  . . , QAVB̂  jr
■ > -IIL G e(rjr)  ■

A ^ (  r)

_ 1 -  gQ(r)
E*(r)

H aQAVB rj / / ! G h( r  j  r )
Aga( r )

I -  g Q(r) e V )

d ,

(A-17)

d .

(A-18)

Equations A-17 and A-18 give quasi-analytical solutions with the 
variable background QAVB for 3D electromagnetic fields. We 
should note that formulas A-17 and A-18 provide more accurate ap­
proximations of the anomalous field than the original QA approxi­
mations developed by Zhdanov et al. (2000), because they are based 
on the linear relationship between the anomalous and the back­
ground fields, while the original approximations used a similar rela­
tionship between the anomalous and the normal fields. In the case of 
the high conductivity contrast between the inhomogeneity and the 
horizontally layered background, the accuracy of the original QL 
and QA approximations may decrease, while using the appropriate 
variable background model can make this approximation as close to 
the true data as required.
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