
IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO, 10, OCTOBER 2003 1243

A  D y n a m i c a l l y  T u n a b l e  M e m o r y  H i e r a r c h y
Rajeev Balasubramonian, David H. Albonesi, S e n io r  M em ber, IEEE, 

Alper Buyuktosunoglu, S tu d e n t M em ber, IEEE, and Sandhya Dwarkadas, M em ber, IE E E

Abstract—The widespread use of repeaters in long wires creates the possibility of dynamically sizing regular on-chip structures. We 
present a tunable cache and translation lookaside buffer (TLB) hierarchy that leverages repeater insertion to dynamically trade off size 
for speed and power consumption on a per-application phase basis using a novel configuration management algorithm. In comparison 
to a conventional design that is fixed at a single design point targeted to the average application, the dynamically tunable cache and 
TLB hierarchy can be tailored to the needs of each application phase. The configuration algorithm dynamically detects phase changes 
and selects a configuration based on the application’s ability to tolerate different hit and miss latencies in order to improve the memory 
energy-delay product. We evaluate the performance and energy consumption of our approach and project the effects of technology 
scaling trends on our design.

Index Terms— High performance microprocessors, memory hierarchy, reconfigurable architectures, energy and performance of 
on-chip caches.

1 Introduction

M o d e r n  microarchitectures continue to push the per­
formance envelope by using architectural techniques 
to exploit improvements in technology. In the last 15 years, 

performance has improved at a rate of roughly 1 . 6  times per 
year, with about half of this gain attributed to techniques for 
exploiting instruction-level parallelism and memory locality 
[19]. Correspondingly, however, the gap between processor 
speed and memory bandwidth and latency is continuing to 
increase. In addition, power dissipation levels have increased 
to the point where future designs may be fundamentally 
limited by this constraint in terms of the functionality that can 
be included in future microprocessors. The sheer number of 
transistors dedicated to the on-chip memory hierarchy in 
future processors (for example, roughly 92 percent of the 
transistors on the Alpha 21364 are dedicated to caches [8 ]) 
requires that these structures be effectively used so as not to 
needlessly waste chip power. Thus, new approaches are 
needed in order to prevent the memory system from 
fundamentally limiting future performance gains or exceed­
ing power constraints. In this paper, we present a dynami­
cally configurable cache and translation lookaside buffer 
(TLB) organization that exploits trends in technology to 
provide low-cost configurability in order to trade size for 
speed in the memory hierarchy.

The most common conventional memory system today is 
the multilevel memory hierarchy. The rationale behind this 
approach, which is used primarily in caches but also in 
some TLBs (e.g., in the MIPS R10000 [36]), is that a 
combination of a small, low-latency LI memory backed by 
a higher capacity, yet slower, L2 memory and, finally, by
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main memory provides the best trade off between optimiz­
ing hit time and miss time. The fundamental issue with 
these designs is that they are targeted to the average 
application—no single memory hierarchy organization 
proves to be the best for all applications. When running a 
diverse range of applications, there will inevitably be 
significant periods of execution during which performance 
degrades and energy is needlessly expended due to a 
mismatch between the memory system requirements of the 
application and the memory hierarchy implementation. As 
an example, programs whose working sets exceed the 
LI capacity may expend considerable time and energy 
transferring data between the various levels of the 
hierarchy. If the miss tolerance of the application is lower 
than the effective LI miss penalty, then performance may 
degrade significantly due to instructions waiting for 
operands to arrive. For such applications, a large, single­
level cache (as used in the HP PA-8X00 series of micro­
processors [18], [23], [24]) may perform better and be more 
energy-efficient than a two-level hierarchy for the same 
total amount of memory.

In this paper, we present a configurable cache and TLB 
orchestrated by a configuration algorithm that tailors the 
memory hierarchy to each individual application phase in 
order to improve the performance and energy-efficiency of 
the memory hierarchy. Key to our approach is the 
exploitation of the properties of conventional caches and 
future technology trends in order to provide cache and TLB 
configurability in a low-intrusive and low-latency manner. 
Our cache and TLB are logically designed and laid out as a 
virtual two-level, physical one-level noninclusive hierarchy, 
where the partition between the two levels is dynamic. The 
noninclusive nature of the hierarchy minimizes the over­
heads at the time of repartitioning. Our approach monitors 
cache and TLB usage by detecting phase changes, and 
improves performance by resizing (using an exploration 
phase) the cache and TLB to properly balance hit latency 
intolerance with miss latency intolerance dynamically
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during application execution (using CPI as the ultimate 
performance metric). We evaluate the use of miss rates and 
branch frequencies to detect phase changes and limit the 
exploration space, as well as the use of more complex 
metrics that attempt to measure application hit and miss 
intolerance more accurately. Furthermore, instead of chan­
ging the clock rate as proposed in [2 ], we implement a cache 
and TLB with a variable latency so that changes in the 
organization of these structures only impact memory 
instruction latency and throughput. We also evaluate 
energy-aware modifications to the configuration algorithm 
that trade off a modest amount of performance for 
significant energy savings.

Our previous approaches to this problem ([2], [3]) have 
exploited the partitioning of hardware resources to enable/ 
disable parts of the cache under software control, but in a 
limited manner. The issues of how to practically implement 
such a design were not addressed in detail, the analysis 
only looked at changing configurations on an application- 
by-application basis (and not dynamically during the 
execution of a single application), and the simplifying 
assumption was made that the best configuration was 
known for each application. Furthermore, the organization 
and performance of the TLB was not addressed and the 
reduction of the processor clock frequency with increases in 
cache size limited the performance improvement that could 
be realized.

We also expand on our more recent work ([6 ], [7]) in 
many ways. First, we examine how the results for our 
configurable memory hierarchy scale for additional pro­
cessor frequencies beyond the base 1GHz frequency used 
exclusively in our earlier papers and discuss how higher 
frequencies may simplify the timing of our design. Second, 
we evaluate the benefits of using more complex latency 
tolerance metrics for our phase detection and for limiting 
our search heuristics and compare it with the simpler 
approach of using miss rates and branch frequencies. 
Finally, we quantify the energy-delay product benefits for 
our two energy-aware configurations in relation to the 
baseline conventional and configurable approaches.

The rest of this paper is organized as follows: The cache 
and TLB architectures are described in Section 2, including 
the modifications necessary to enable dynamic reconfigura­
tion. In Section 3, we discuss the dynamic selection 
mechanisms, including the counter hardware required 
and the configuration m anagement algorithms. In 
Sections 4 and 5, we describe our simulation methodology 
and present a performance and energy dissipation compar­
ison with conventional multilevel cache and TLB hierar­
chies for two technology design points and several clock 
frequencies. Finally, we discuss related work in Section 6  

and we conclude in Section 7.

2 C ache and  TLB C ircuit S tru ctu res

We present the design of a cache and TLB that can be 
dynamically partitioned in order to change size and speed. 
Our cache and TLB are logically designed as virtual two- 
level, physical one-level noninclusive hierarchies, where the 
partition between the two levels is dynamic. The non­
inclusive nature of the hierarchy minimizes the overheads
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Fig. 1. Wordline wire delay as a function of the number of array columns 
for various numbers of wire sections.

at the time of repartitioning. In the following, we describe 
the circuit structures of the conventional caches and TLBs, 
and the modifications made to the conventional layout in 
order to accommodate the repartitioning with minimal 
impact on performance and area.

2.1 C on figu rab le  C ache O rgan ization
The cache and TLB layouts (both conventional and 
configurable) that we model follow that described by 
McFarland in his thesis [25], McFarland developed a 
detailed timing model for both the cache and TLB that 
balances both performance and energy considerations in 
subarray partitioning and which includes the effects of 
technology scaling.

We took into account several considerations in choosing 
the cache layout as well as parameters such as size and 
associativity for our configurable cache and the L2 cache in 
a conventional processor. First, we determined that the 
cache should be at least 1MB in size. We based this on the 
size of on-chip L2 caches slated to be implemented in next 
generation processors (such as the Alpha 21364 [8 ] which 
will have 1.5MB of on-chip cache). Based on performance 
simulation results with our benchmark suite, we picked 
2MB as the target size for our configurable cache as well as 
for the L2 (or combined LI and L2) of the conventional 
baseline memory hierarchies.

To further define the number of subarrays and associativ­
ity, we calculated (following Bakoglu and Meindl [5]) the 
SRAM array wordline delay as a function of the number of 
array columns and the number of wire sections (separated by 
repeater switches) using the 0.1 ^m parameters of McFarland 
and Flynn [26], The results are shown in Fig. 1 for an 
unbuffered wire (no repeater switches), a wire broken into 
two sections by a single repeater switch, and so on. Note that 
repeater switches provide no delay benefit for arrays of 1,024 
columns or less. For the longer wordlines in arrays of 2,048 
columns or more, the "linearization" of the delay provided by 
repeater switches (as opposed to the quadratic delay increase 
of the unbuffered wire) results in a decrease in delay. The best 
delay is achieved with four repeater switches for 2,048 
columns and eight for 4,096 columns.
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Fig. 2. The overall organization of the cache data arrays.

Based on the above constraints, on delay calculations 
using various numbers of subarrays and layouts, and on the 
need to make the cache banked to obtain sufficient 
bandwidth, we arrived at the organization shown in Fig. 2. 
The cache is structured as two 1MB interleaved banks. 1 In 
order to reduce access time and energy consumption, each 
1MB bank is further divided into two 512KB SRAM 
structures (with data being block interleaved among the 
structures), one of which is selected on each bank access. 
We make a number of modifications to this basic structure 
to provide configurability with little impact on access time, 
energy dissipation, and functional density.

The data array section of the configurable structure is 
shown in Fig. 3a in which only the details of one subarray 
are shown for simplicity. (The other subarrays are identi­
cally organized.) There are four subarrays, each of which 
contains four ways. Each of these subarrays has 512 rows 
and 2,048 columns. In both the conventional and configur­
able cache, two address bits (Subarray Select) are used to 
select only one of the four subarrays on each access in order 
to reduce energy dissipation. The other three subarrays 
have their local wordlines disabled and their precharge, 
sense amp, and output driver circuits are not activated. The 
TLB virtual to real page number translation and tag check 
proceed in parallel and only the output drivers for the way 
in which the hit occurred are turned on. Parallel TLB and 
tag access can be accomplished if the operating system can 
ensure that index_bits-page_offset_bits bits of the virtual and 
physical addresses are identical, as is the case for the four­
way set associative 1MB dual-banked LI data cache in the 
HP PA-8500 [17].

In order to provide configurability while retaining fast 
access times, we implement several modifications to 
McFarland's baseline design, as shown in Fig. 3a:

•  McFarland drives the global wordlines to the center 
of each subarray and then the local wordlines across 
half of the subarray in each direction in order to 
minimize the worst-case delay. In the configurable 
cache, because we are more concerned with achiev­
ing comparable delay with a conventional design for 
our smallest cache configurations, we distribute the 
global wordlines to the nearest end of each subarray 
and drive the local wordlines across the entire 
subarray.

1. The banks are word-interleaved when used as an L1/L2 cache 
hierarchy and block interleaved when used as L2/L3.

•  McFarland organizes the data bits in each subarray 
by bit number. That is, data bit 0 from each way are 
grouped together, then data bit 1, etc. In the 
configurable cache, we organize the bits according 
to ways as shown in Fig. 3a in order to increase the 
number of configuration options.

•  Repeater switches are used in the global wordlines 
to electrically isolate each subarray. That is, sub­
arrays 0  and 1 do not suffer additional global 
wordline delay due to the presence of subarrays 2  

and 3. Providing switches as opposed to simple 
repeaters also prevents wordline switching in 
disabled subarrays thereby saving dynamic power.

•  Repeater switches are also used in the local 
wordlines to electrically isolate each way in a 
subarray. The result is that the presence of addi­
tional ways does not impact the delay of the fastest 
ways. Dynamic power dissipation is also reduced by 
disabling the wordline drivers of disabled ways.

•  Configuration Control signals from the Configuration 
Register provide the ability to disable entire sub­
arrays or ways within an enabled subarray. Local 
wordline and data output drivers and precharge and 
sense amp circuits are not activated for a disabled 
subarray or way.

Using McFarland's area model, the additional area from 
adding repeater switches to electrically isolate wordlines is 
7 percent. In addition, based on our column length (2,048), 
the use of repeater switches to isolate each way achieves a 
faster propagation delay than with unbuffered lines (Fig. 1). 
Moreover, because local wordline drivers are required in a 
conventional cache, these extra buffers do not impact the 
spacing of the wordlines and, thus, bitline length is 
unaffected. In terms of energy, the addition of repeater 
switches increases the total memory hierarchy energy 
dissipation by 2-3 percent (using the model described in 
Section 4) in comparison with a cache with no repeaters for 
the simulated benchmarks.

2.2  C on figu rab le  C ache O peration
With these modifications, the sizes, associativities, and 
latencies of the resulting virtual two-level, physical one- 
level noninclusive cache hierarchy are dynamic. That is, a 
single large cache organization serves as a configurable 
two-level noninclusive cache hierarchy, where the ways 
within each subarray that are initially enabled for an 
LI access are varied to match application characteristics. 
The latency of access is changed on half-cycle increments 
according to the timing of each configuration. Half cycle 
increments are required to provide the granularity to 
distinguish the different configurations in terms of their 
organization and speed. Such an approach can be imple­
mented by capturing cache data using both phases of the 
clock, similar to the double-pumped Alpha 21264 data 
cache [2 2 ], and enabling the appropriate latch according to 
the configuration. The advantage of this approach is that the 
timing of the cache can change with its configuration while 
the main processor clock remains unaffected and that no 
clock synchronization is necessary between the pipeline and 
cache/TLB.
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(a) (b)

Fig. 3. (a) The organization of the data array section of one of the 512KB cache structures, (b) The organization of the configurable TLB.

However, because a constant two-stage cache pipeline is 
maintained regardless of the cache configuration, cache 
bandwidth degrades for the larger, slower configurations. 
Furthermore, the implementation of a cache whose latency 
can vary on half-cycle increments requires two pipeline 
modifications. First, the dynamic scheduling hardware 
must be able to speculatively issue (assuming a data cache 
hit) load-dependent instructions at different times depend­
ing on the currently enabled cache configuration. Second, 
for some configurations, running the cache on half-cycle 
increments requires an extra half-cycle for accesses to be 
caught by the processor clock phase.

The possible configurations for a 2MB L1/L2 on-chip 
cache hierarchy at 0.1 /.tm technology are shown in Fig. 4. 
Although multiple subarrays may be enabled as LI in an 
organization, as in a conventional cache, only one is selected

each access according to the Snbarray Select field of the 
address. When a miss in the LI section is detected, all tag 
subarrays and ways are read. This permits hit detection to 
data in the remaining portion of the cache (designated as L2 
in Fig. 4). When such a hit occurs, the data in the LI section 
(which has already been read out and placed into a buffer) 
is swapped with the data in the L2 section. In the case of a 
miss to both sections, the displaced block from the 
LI section is placed into the L2 section. This prevents 
thrashing in the case of low-associative LI organizations.

The direct-mapped 512KB and two-way set associative 
1MB cache organizations are lower energy, and lower 
performance, alternatives to the 512KB two-way and 1MB 
four-way organizations, respectively. These options activate 
half the number of ways on each access for the same 
capacity as their counterparts. For execution periods in
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256KB 1 way 2.0 L2 L2 L2 L2 L2 L2 L2 LI L I L2 L2 L2 L2 L2 L2 L2

512KB 2 way 2.5 L2 L2 L2 L2 L2 L2 L I LI 1.1 L I L2 L2 L2 L2 L2 L2

768KB 3 way 2.5 L2 L2 L2 L2 L2 L I L I LI L I 1.1 1.1 L2 L2 L2 L2 L2

1024KB 4 way 3.0 L2 L2 L2 L2 LI L I L I 1.1 L I 1.1 1.1 1.1 L2 L2 L2 L2

512KB 1 way 3.0 L2 L2 L2 L I L2 L2 L2 l . l L I L2 L2 L2 l . l L2 L2 L2

1024KB 2 way 3.5 L2 L2 L I L I L2 L2 1.1 l.l L I L I L2 L2 L I L I L2 L2
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Fig. 4. Possible L1/L2 cache organizations that can be configured shown by the ways that are allocated to L1 and L2. Only one of the four 512KB 
SRAM structures is shown. Abbreviations for each organization are listed to the left of the size and associativity of the L1 section, while L1 access 
times in cycles are given on the right. Note that the TLB access may dominate the overall delay of some configurations. The numbers listed here 
simply indicate the relative order of the access times for all configurations and, thus, the size/access time trade offs allowable.
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which there are few cache conflicts and hit latency tolerance 
is high, the low energy alternatives may result in compar­
able performance yet potentially save considerable energy. 
These configurations are used in an energy-aware mode of 
operation as described in Section 3.

Note that, because some of the configurations span only 
two subarrays, while others span four, the number of sets is 
not always the same. Hence, it is possible that a given 
address might map into a certain cache line at one time and 
into another at another time (called a mismap). However, the 
noninclusive nature of our cache helps prevent aliasing and 
guarantees correctness. In cases where subarrays two and 
three are disabled, the high-order Subarray Select signal is 
replaced by an extra tag bit. This extra tag bit is used to 
detect mismaps. In order to minimize the performance 
impact of mismapped data, an L2 look-up examines twice 
as many tags as the conventional L2 in order to examine all 
subarrays where mismapped data may reside. Mismapped 
data is handled the same way as an LI miss and L2 hit, i.e., 
it results in a swap. Our simulations indicate that such 
events are infrequent.

In conventional two-level hierarchies, the L2 implements 
additional hardware to ensure cache coherence with the L2s 
of other chips. This involves replication of its tags and a 
snooping protocol on the system bus. The use of a 
noninclusive L1-L2 does not affect this in any way. The 
tags for the entire 2MB of on-chip cache are replicated (just 
as for the 2MB L2 in the conventional hierarchy) and the 
snooping protocol ensures that data in the LI and L2 are 
coherent with other caches. There is potential for added 
interference with the processor to LI datapath when 
compared to a conventional design in the presence of 
inactive shared data that would only be present in the L2 in 
the case of a conventional design.

2.3 C on figu rab le  L2-L3 C ache
In sub-0.1/im technologies, the long access latencies of a 
large on-chip L2 cache [1] may be prohibitive for those 
applications that make use of only a small fraction of the 
L2 cache. Thus, for performance reasons, a three-level 
hierarchy with a moderate size (e.g., 512KB) L2 cache will 
become an attractive alternative to two-level hierarchies at 
these feature sizes. However, the cost may be a significant 
increase in energy dissipation due to transfers involving the 
additional cache level. We demonstrate in Section 5 that the 
use of the aforementioned configurable cache structure as a 
replacement for conventional L2 and L3 caches can 
significantly reduce energy dissipation without any com­
promise in performance as feature sizes scale below 0 .1 /im.

2.4 C on figu rab le  TLB  O rgan ization
Our 512-entry, fully associative TLB can be similarly 
configured as shown in Fig. 3b. There are eight TLB 
increments, each of which contains a CAM of 64 virtual 
page numbers and an associated RAM of 64 physical page 
numbers. Switches are inserted on the input and output 
buses to electrically isolate successive increments. Thus, the 
ability to configure a larger TLB does not degrade the access 
time of the minimal size (64 entry) TLB. Similarly to the 
cache design, the TLB behaves as a two-level noninclusive

hierarchy and misses result in a second access, but to the 
backup portion of the TLB.

3 Dynamic S election  Mechanism s

Our configurable cache and TLB permits picking appropriate 
configurations and sizes based on application requirements. 
The different configurations spend different amounts of time 
and energy accessing the LI and the lower levels of the 
memory hierarchy. Our heuristics improve the efficiency of 
the memory hierarchy by trying to minimize idle time due to 
memory hierarchy access. The goal is to determine the right 
balance between hit latency and miss rate for each application 
phase based on the tolerance of the phase for the hit and miss 
latencies. Our approach is to design the selection mechanisms 
to improve performance and then to introduce modifications 
to the heuristics that opportunistically trade off a small 
amount of performance for significant energy savings. These 
heuristics require appropriate metrics for assessing the 
cache/TLB performance of a given configuration during 
each application phase.

The two key aspects in designing a mechanism that 
dynamically selects one of many configurations is, first, to 
identify when the application moves to a different phase 
and, second, to pick the correct configuration for that phase. 
A combination of profiling and compiler analysis can do an 
effective job identifying when the program moves in and 
out of a new phase, for example, a long subroutine or a 
loop. To minimize programmer intervention, we use 
hardware mechanisms to approximate the detection of 
phase changes—that is, we use certain hardware events to 
signal a phase change instead of using special instructions 
inserted by the compiler. We found that such a solution not 
only worked well, it also required very modest amounts of 
additional hardware. To determine the correct cache and 
TLB organization for a given phase, we need to estimate the 
effect of each organization on performance (assuming that 
we are trying to maximize performance). One way to do 
this is to simply explore the configuration space by 
measuring performance when executing using each config­
uration. While this is the simplest and most accurate way to 
pick the appropriate configuration, it could cause serious 
overhead (and result in potential inaccuracies) if this initial 
monitoring process lasts for a significant fraction of the 
duration of the phase. An alternative is to use metrics that 
predict the performance for each configuration so that the 
best configuration can be chosen without exploration [14] 
This would trade some accuracy for lower overheads. As 
our results show later, these overheads are small enough 
and the phases are long enough for our range of bench­
marks to make exploration the method of choice.

3.1 Phase D etection
A change in program phase potentially occurs when the 
program enters or exits loops or subroutines. Such a change 
can be detected by certain hardware events—a mispre­
dicted branch, a jump to a subroutine, I-cache misses, 
change in the instruction composition, etc. Since we are 
using an interval-based selection mechanism, we use the 
last metric to detect a phase change. We found that different 
phases usually have different branch frequencies—loops
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with differently sized loop bodies, subroutines with 
different average basic block sizes, etc. Since different 
phases could have the same branch frequency, but different 
cache behaviors, we also use the number of cache misses as 
an additional significant metric that indicates a phase 
change. Hence, a phase change is indicated by changes in 
either the branch frequency or the number of cache misses.

3.2 S earch  H euristics
We first describe a simple interval-based scheme that uses 
history to pick a size for the future. Large LI caches have a 
high hit rate, but also have higher access times. One of the 
many different LI sizes afforded by the reconfigurable cache 
has the best trade off point between the cache hit and miss 
times. At regular intervals (100K cycles in our simulations), 
the hardware counters described in Section 3.1 are inspected 
to detect a phase change and determine if a change in cache 
organization is required. When a change in phase is detected, 
each cache configuration is tried for an interval of 100K cycles. 
After this exploratory process, the organization that has the 
lowest CPI is used until the next phase change.

Our initial scheme is tuned to improve performance and 
thus explores the following five cache configurations: 
256KB 1-way LI, 768KB 3-way LI, 1MB 4-way LI, 1.5MB
3-way LI, and 2MB 4-way LI. The 512KB 2-way LI 
configuration provides no performance advantage over 
the 768KB 3-way LI configuration (due to their identical 
access times in cycles) and, thus, this configuration is not 
used. For similar reasons, the two low-energy configura­
tions (direct-mapped 512KB LI and two-way set associative 
1MB LI) are only used with modifications to the heuristics 
that reduce energy (described shortly).

At the end of each interval of execution (100K cycles), we 
examine a set of hardware counters. These hardware 
counters tell us the miss rate, the CPI, and the branch 
frequency experienced by the application in that last 
interval. Based on this information, the selection mechan­
ism (which could be implemented in software or hardware) 
picks one of two states—stable or unstable. The former 
suggests that behavior in this interval is not very different 
from the last and we do not need to change the cache 
configuration, while the latter suggests that there has 
recently been a phase change in the program and we need 
to explore (or continue to explore) to determine the 
appropriate cache configuration.

The initial state is unstable and the initial LI cache is 
chosen to be the smallest (256KB in this paper). At the end 
of an interval, we enter the CPI experienced for that cache 
size into a table. If the miss rate exceeds a certain threshold 
(1  percent in our experiments) during that interval, we 
switch to the next largest LI cache configuration for the next 
interval of operation in an attempt to contain the working 
set. This exploration continues until the maximum LI size is 
reached or until the miss rate is sufficiently small. At this 
point, the table is examined, the cache configuration with 
the lowest CPI is picked, the table is cleared, and we switch 
to the stable state. We continue to remain in the stable state 
while the number of misses and branches do not signifi­
cantly differ from that experienced for that particular cache 
size during the exploration phase. When there is a change, 
we switch to the unstable state, return to the smallest LI

cache configuration, and start exploring again. The pseu­
docode for the mechanism is listed below.

Initializations and definitions:
base_br_noise = 4500; base_miss_rate_noise = 450;
br_incr = 1000; br_decr = 50;
miss rate incr = 100; miss_rate_decr = 5;
miss_rate_noise = base_miss_rate_noise;
br_noise = base_br_noise;
state = UNSTABLE;

Repeat the following every 100K cycles:
(inputs: num_miss, num_br, CPI) 
if (state == STABLE)

if ((I num_miss-last_num_miss I) < miss_rate_noise && 
( I num_br-last_num_br I) < br_noise) 
miss_rate_noise = max(miss_rate_noise-miss_rate_ 

deer, base_miss_rate_noise); 
br_noise = max(br_noise - br_decr, base_br_noise); 

else
last_cache_size = cache_size;
cache size = SMALLEST; state = UNSTABLE;

else if (state == UNSTABLE)
record CPI, num_miss, num_br; 
if ((num_miss > THRESHOLD) && (cache_size != MAX)) 

Increase cache_size; 
else

cache_size = that with best CPI; state = STABLE; 
last_num_miss = num_miss recorded for selected size; 
last_num_br = num_br recorded for selected size; 
if (cache_size == last_cache_size) 

miss rate noise= miss rate noise + miss rate incr; 
br_noise = br_noise + br_incr;

Different applications see different variations in the 
number of misses and branches as they move across 
application phases. Hence, instead of using a single fixed 
number as the threshold to detect phase changes, we vary it 
dynamically. If an exploration results in picking the same 
cache size as before, the noise thresholds are increased to 
discourage such needless explorations. Likewise, every 
interval spent in the stable state causes a slight decrement 
in the noise thresholds in case they had been set too high.

The miss rate threshold ensures that we explore larger 
cache sizes only if required. Note that a high miss rate need 
not necessarily have a large impact on performance because 
of the ability of dynamic superscalar processors to hide L2 
latencies.

Clearly, such an interval-based mechanism is best suited to 
programs that can sustain uniform behavior for a number of 
intervals. While switching to an unstable state, we also move 
to the smallest LI cache configuration as a form of "damage 
control" for programs that have irregular behavior. This 
choice ensures that, for these programs, more time is spent at 
the smaller cache sizes and, hence, performance is similar to 
that using a conventional cache hierarchy. We also keep track 
of how many intervals are spent in stable and unstable states. 
For every interval in stable state, a saturating counter is 
incremented by one and is decremented by four for every



BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1249

interval in unstable state. If the counter value goes below a 
threshold (-25 in our simulations), we conclude that we are 
spending too much time exploring, i.e., the program behavior 
is not suited to an interval-based scheme and we remain fixed 
at the smallest sized cache.

Mismaps, as described in Section 2.2, occur when the 
cache uses four subarrays soon after having used two 
subarrays (or vice versa). This usually happens only once 
during each exploration phase. Given the infrequent 
occurrence of explorations for most programs, we found 
that the number of mismaps are usually few and do not 
impact performance by much. Among our benchmarks, 
health has the highest number of mismaps, encountering 
one per 1,000 committed instructions. The average increase 
in memory energy consumption due to the need to examine 
twice as many tags on an L2 look-up is 0.7 percent.

We envision that the selection algorithm would be 
implemented in software. Every 100K cycles, a low-over­
head software handler is invoked that examines the 
hardware counters and updates the state as necessary. This 
imposes minimal hardware overhead and allows flexibility 
in terms of modifying the selection algorithm. We estimate 
the code size of the handler to be about 1 2 0  static assembly 
instructions, only a fraction of which is executed during 
each invocation, resulting in a net overhead of less than 
0.1 percent. In terms of hardware cost, we need 20-bit 
counters for the number of misses, loads, cycles, instruc­
tions, and branches, in addition to a state register. This 
amounts to less than 8 , 0 0 0  transistors.

3.3 P erfo rm ance M etrics
Cache miss rates provide a first order approximation of the 
cache requirements of an application, but they do not 
directly reflect the effects of various cache sizes on memory 
stall cycles. We present and evaluate a metric that quantifies 
this effect in order to better identify the appropriate cache 
configuration.

The actual number of memory stall cycles is a function of 
the time taken to satisfy each cache access and the ability of 
the out-of-order execution window to overlap other useful 
work while these accesses are made. Load latency tolerance 
has been characterized in [33], and [16] introduces two 
hardware mechanisms for estimating the criticality of a load. 
One of these monitors the issue rate while a load is 
outstanding and the other keeps track of the number of 
instructions dependent on that load. While these schemes are 
easy to implement, they are not very accurate in capturing the 
number of stall cycles resulting from an outstanding load. We 
propose an approach that more accurately characterizes load 
stall time and further breaks this down as stalls due to cache 
hits and misses. The goal is to provide insight to the selection 
algorithm as to whether it is necessary to move to a larger or 
smaller LI cache configuration (or not to move at all) for each 
application phase.

To every entry in the register map table, we add one bit 
that indicates whether the given (logical) register is to be 
written by a load instruction. In addition, for every entry in 
the Register Update Unit (RUU)2, we add one bit per

2. The RUU [31] is a unified queue and reorder buffer that holds all 
instructions that have dispatched and not committed.

operand that specifies if the operand is produced by a load 
(which can be deduced from the additional register map 
table bits) and another specifying if the load was a hit (the 
initial value upon insertion into the RUU) or a miss. Each 
cycle, every instruction in the RUU that directly depends on 
a load increments one of two global intolerance counters if 
1 ) all operands except for the operand produced by a load 
are ready, 2) a functional unit is available, and 3) there are 
free issue slots in that cycle. For every cycle in which these 
conditions are met up to the point that the load-dependent 
instruction issues, the hit intolerance counter is incremented 
unless a cache miss is detected for the load that it is 
dependent on; if such a miss occurs, the hit/miss bit is 
switched and the miss intolerance counter is incremented 
each cycle in which the above three conditions are met until 
the point at which the instruction issues. If more than one 
operand of an instruction is produced by a load, a heuristic 
is used to choose the hit/miss bit of one of the operands. In 
our simulations, we choose the operand corresponding to 
the load that issued first. This scheme requires only very 
minor changes to existing processor structures and two 
additional performance counters, while providing a fairly 
accurate assessment of the relative impact of the hit time 
and the miss time of the current cache configuration on 
actual execution time of a given program phase.

3.4 R econfiguration  on a P er-S u brou tin e  B asis
As previously mentioned, the interval-based scheme will 
work well only if the program can sustain its execution 
phase for a number of intervals. This limitation may be 
overcome by collecting statistics and making subsequent 
configuration changes on a per-subroutine basis. The finite 
state machine that was used for the interval-based scheme 
is now employed for each subroutine—i.e., the event used 
to determine the phase change is not the instruction 
composition, but the use of a "jump subroutine" or a 
"return" instruction. This requires maintaining a table with 
CPI values at different cache sizes and the next size to be 
picked for a limited number of subroutines ( 1 0 0  in this 
paper). To focus on the important routines, we only monitor 
those subroutines whose invocations exceed a certain 
threshold of dynamic instructions (1 , 0 0 0  in this paper). 
When a subroutine is invoked, its table is looked up and a 
change in cache configuration is effected depending on the 
table entry for that subroutine. When a subroutine exits, it 
updates the table based on the statistics collected during 
that invocation. A stack is used to checkpoint counters on 
every subroutine call so that statistics are maintained for 
each subroutine invocation.

We investigated two subroutine-based schemes. In the 
nonnested approach, statistics are collected for a subroutine 
and its callees. Cache size decisions for a subroutine are 
based on these statistics collected for the call-graph rooted 
at this subroutine. Once the cache configuration is changed 
for a subroutine, none of its callees can change the 
configuration unless the outer subroutine returns. Thus, 
the callees inherit the size of their callers because their 
statistics play a role in determining the configuration of the 
caller. In the nested scheme, each subroutine collects 
statistics for the period when it is the top of the subroutine
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call stack. Thus, every subroutine invocation is looked upon 
as a possible change in phase.

These schemes work well only if successive invocations of 
a particular subroutine are consistent in their behavior. A 
common case where this is not true is that of a recursive 
program. We handle this situation by not letting a subroutine 
update the table if there is an outer invocation of the same 
subroutine, i.e., we assume that only the outermost invoca­
tion is representative of the subroutine and that successive 
outermost invocations will be consistent in their behavior.

If the stack used to checkpoint statistics overflows, we 
assume that future invocations will inherit the size of their 
caller for the nonnested case and will use the minimum 
sized cache for the nested case. While the stack is in a state 
of overflow, subroutines will be unable to update the table. 
If a table entry is not found while entering a subroutine, the 
default smallest sized cache is used for that subroutine for 
the nested case. Since the simpler nonnested approach 
generally outperformed the nested scheme, we only report 
results for the former in Section 5.

3.5 T LB  R econfiguration
In addition to cache reconfiguration, we also progressively 
change the TLB configuration on an interval-by-interval 
basis. A counter tracks TLB miss handler cycles and the 
LI TLB size is increased if this counter exceeds a threshold 
(3 percent in this paper) of the total execution time counter 
for an interval. A single bit is added to each TLB entry that 
is set to indicate if it has been used in an interval (and is 
flash cleared in hardware at the start of an interval). At the 
end of each interval, the number of TLB entries that have 
their bit set is counted. This can be done in hardware with 
fairly simple and energy-efficient logic. Similar logic that 
aggregates usage information within the issue queue has 
been proposed by Buyuktosunoglu et al. [11]. The LI TLB 
size is decreased if the TLB usage is less than half.

For the cache reconfiguration, we chose an interval size 
of 1 0 0 K cycles so as to react quickly to changes without 
letting the selection mechanism pose a high cycle overhead. 
For the TLB reconfiguration, we used a one million cycle 
interval so that an accurate estimate of TLB usage could be 
obtained. A smaller interval size could result in a high TLB 
miss rate and a low TLB usage over the same interval.

3.6 E nergy-A w are  M o d ifica tions
There are two energy-aware modifications to the selection 
mechanisms that we consider. The first takes advantage of 
the inherently low-energy configurations (those with direct- 
mapped 512KB and two-way set associative 1MB LI caches). 
With this approach, the selection mechanism simply uses 
these configurations in place of the 768KB 3-way LI and 
1MB 4-way LI configurations.

A second approach is to serially access the tag and data 
arrays of the LI data cache. Conventional LI caches always 
perform parallel tag and data look-up to reduce hit time, 
thereby reading data out of multiple cache ways and 
ultimately discarding data from all but one way. By 
performing tag and data look-up in series, only the data 
way associated with the matching tag can be accessed, 
thereby reducing energy consumption. Hence, our second 
low-energy mode operates just like the interval-based

TABLE 1 
Architectural Parameters

Branch predictor comb, of bimodal & 2-level gshare; 
Combining pred. entries - 1024;

bimodal - 2048 entries 
Gshare - levell/2 - 1024/4096 

RAS entries - 32; BTB - 2048 sets
Branch misprcd. latency 8 cycles

Fetch, decode, issue width 4
RIJIJ and LSQ entries 64 and 32

LI I-cache 2-way; 64KB (0.1/im), 
32KB (0.035/tm)

Memory latency 80 cycles (0 .1/tm), 
114 cycles (0.035//m)

Integer ALUs/mult-div 4/2
FP ALUs/mult-div 2 /1

scheme as before, but accesses the set-associative cache 
configurations by serially reading the tag and data arrays.

3.7 L2/L3 R econfiguration
The selection mechanism for the L2/L3 reconfiguration is 
similar to the simple interval-based mechanism for the 
L1/L2. In addition, because we assume that the L2 and L3 
caches (both conventional and configurable) already use 
serial tag/data access to reduce energy dissipation, the 
energy-aware modifications would provide no additional 
benefit for L2/L3 reconfiguration. (Recall that performing 
the tag look-up first makes it possible to turn on only the 
required data way within a subarray, as a result of which, 
all configurations consume the same amount of energy for 
the data array access.) Finally, we did not simultaneously 
examine TLB reconfiguration so as not to vary the access 
time of the fixed LI data cache. The motivation for these 
simplifications was due to our expectation that dynamic 
L2/L3 cache configuration would yield mostly energy 
saving benefits due to the fact that we were not altering 
the LI cache configuration (the organization of which has 
the largest memory performance impact for most applica­
tions). To further improve our energy savings at minimal 
performance penalty, we also modified the search mechan­
ism to pick a larger sized cache if it performed almost 
(within 95 percent) as well as the best performing cache 
during the exploration, thus reducing the number of 
transfers between the L2 and L3.

4 Evaluation Methodology

4.1 S im u lation  M etho d o lo gy
We used Simplescalar-3.0 [10] for the Alpha AXP ISA to 
simulate an aggressive 4-way superscalar out-of-order 
processor. The architectural parameters used in the simula­
tion are summarized in Table 1.

The data memory hierarchy is modeled in great detail. 
For example, contention for all caches and buses in the 
memory hierarchy as well as for writeback buffers is
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TABLE 2 
Benchmarks

Benchmark Suite Datasets Simulation window (instrs) 64KB-2way LI 
miss rate

% of instrs 
that arc loads

em3d Olden 2 0 ,0 0 0  nodes, arity 20 1000M-1100M 2 0 % 36%
health Olden 4 levels, 1000 iters 80M-140M 16% 54%
mst Olden 256 nodes entire program 14M 8 % 18%

compress SPEC95INT ref 1900M-2100M 13% 2 2 %
hydro2 d SPEC95 FP ref 2000M-2135M 4% 28%

apsi SPEC95 FP ref 2200M-2400M 6 % 23%
swim SPEC2000 FP ref 2500M-2782M 1 0 % 25%
art SPEC2000 FP ref 300M-1300M 16% 32%

modeled. The line size of 128 bytes was chosen because it 
yielded a much lower miss rate for our benchmark set than 
smaller line sizes.

For both configurable and conventional TLB hierarchies, 
a TLB miss at the first level results in a look-up in the 
second level. A miss in the second level results in a call to a 
TLB handler that is assumed to complete in 30 cycles. The 
page size is 8 KB.

4.2 B enchm arks
We used a mix of programs from SPEC95, SPEC2000, and 
the Olden suite [29], These programs were chosen because 
they have high miss rates for the LI caches we considered. 
For programs with low miss rates for the smallest cache 
size, the dynamic scheme affords no advantage and 
behaves like a conventional cache. The benchmarks were 
compiled with the Compaq cc, f77, and f90 compilers at an 
optimization level of 03. Warmup times were determined 
for each benchmark and the simulation was fast-forwarded 
through these phases. A further million instructions were 
simulated in detail to prime all structures before starting the 
performance measurements. The window size was chosen 
to be large enough to accommodate at least one outermost 
iteration of the program, where applicable. Table 2 
summarizes the benchmarks and their memory reference 
properties (the LI miss rate and load frequency).

4.3 T im in g  and E nergy  E stim ation
We investigated two future technology feature sizes: 0.1 
and 0.035/im. For the 0.035/im design point, we use the 
cache latency values of Agarwal et al. [1], whose model 
parameters are based on projections from the Semiconduc­
tor Industry Association Technology Roadmap [4]. For the 
0.1/im design point, we use the cache and TLB timing 
model developed by McFarland [25] to estimate timings for 
both the configurable and conventional caches and TLBs. 
McFarland's model contains several optimizations, includ­
ing the automatic sizing of gates according to loading 
characteristics, and the careful consideration of the effects of 
technology scaling down to 0.1 /an technology [26], The 
model integrates a fully associative TLB with the cache to 
account for cases in which the TLB dominates the LI cache 
access path. This occurs, for example, for all of the 
conventional caches that were modeled as well as for the

minimum size LI cache (direct mapped 256KB) in the 
configurable organization.

For the global wordline, local wordline, and output 
driver select wires, we recalculate cache and TLB wire 
delays using RC delay equations for repeater insertion [13]. 
Repeaters are used in the configurable cache, as well as in 
the conventional LI cache, whenever they reduce wire 
propagation delay.

We estimate cache and TLB energy dissipation using a 
modified version of the analytical model of Kamble and 
Ghose [21]. This model calculates cache energy dissipation 
using similar technology and layout parameters as those 
used by the timing model (including voltages and all 
electrical parameters appropriately scaled for 0 .1 /im tech­
nology). The TLB energy model was derived from this 
model and included CAM match line precharging and 
discharging, CAM wordline and bitline energy dissipation, 
as well as the energy of the RAM portion of the TLB. For 
main memory, we include only the energy dissipated due to 
driving the off-chip capacitive buses.

For all L2 and L3 caches (both configurable and 
conventional), we assume serial tag and data access and 
selection of only one of 16 data banks at each access, similar 
to the energy-saving approach used in the Alpha 21164 L2 
cache [9], The conventional LI caches were divided into two 
subarrays, only one of which is selected at each access. 
Thus, the conventional cache hierarchy against which we 
compared our reconfigurable hierarchy was highly opti­
mized for fast access time and low energy dissipation.

Detailed event counts were captured during the simula­
tions of each benchmark. These event counts include all 
cache and TLB operations and are used to obtain final 
energy estimations.

4.4 S im u la ted  C on figu ra tio n s
Table 3 shows the conventional and dynamic L1/L2 
schemes that were simulated. We compare our dynamic 
schemes with three conventional configurations that are 
identical in all respects, except the data cache hierarchy. The 
first uses a two-level noninclusive cache, with a direct 
mapped 256KB LI cache backed by a 14-way 1.75MB L2 
cache (configuration A). The L2 associativity results from 
the fact that 14 ways remain in each 512KB structure after 
two of the ways are allocated to the 256KB LI (only one of



1252 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

TABLE 3 
Simulated L1/L2 Configurations

A Base excl. cache: 256KB 1-way LI & 1.75MB 14-way L2
B Base incl. cache: 256KB 1-way LI fe 2MB 16-way L2
C Base incl. cache; 64KB 2-way LI & 2MB 16-way L2
D Interval-based dynamic scheme
E Subroutine-based non-nested scheme
F Interval-based with energy-aware configurations
G Interval-based with serial tag and data access

which is selected on each access). Comparison of this 
scheme with the configurable approach demonstrates the 
advantage of resizing the first level. We also compare with a 
two-level inclusive cache that consists of a 256KB direct 
mapped LI backed by a 16-way 2MB L2 (configuration B). 
This configuration serves to measure the impact of the 
noninclusive policy of the first base case on performance (a 
noninclusive cache performs worse because every miss 
results in a swap or writeback, which causes greater bus 
and memory port contention). We also compare with a 
64KB 2-way inclusive LI and 2MB of 16-way L2 (config­
uration C), which represents a typical configuration in a 
modern processor and ensures that the performance gains 
for our dynamically sized cache are not obtained simply by 
moving from a direct mapped to a set associative cache. For 
both the conventional and configurable L2 caches, the 
access time is 15 cycles due to serial tag and data access and 
bus transfer time, but is pipelined with a new request 
beginning every four cycles. The conventional TLB is a two- 
level inclusive TLB with 64 entries in the first level and 
448 entries in the second level with a six cycle look-up time.

For L2/L3 reconfiguration, we compare our interval- 
based configurable cache with a conventional three-level 
on-chip hierarchy. In both, the LI data and instruction 
caches are 32KB two-way set associative with a three cycle 
latency, reflecting the smaller LI caches and increased 
latency likely required at 0.035/im geometries [1]. For the 
conventional hierarchy, the L2 cache is 512KB two-way set 
associative with a 21 cycle latency and the L3 cache is 2MB 
16-way set associative with a 60 cycle latency. Serial tag and 
data access is used for both L2 and L3 caches to reduce 
energy dissipation (the 2 1  and 60 cycle latencies take this 
serialization into account).

5 R esults

5.1 L1/L2 P erfo rm ance R esults
The performance afforded by a given cache organization is 
determined greatly by the LI miss rate and, to a lesser 
extent, by the LI access time. A number of programs have 
working sets that do not fit in today's LI caches. For our 
chosen memory-intensive benchmark set, half of the total 
execution time can be attributed to memory hierarchy 
accesses (as shown by later graphs). Increasing the size of 
the LI and thereby reducing the miss rate has a big impact 
on CPI for such programs. At the same time, the increased 
access time for the LI results in poorer performance for

other non-memory-intensive programs. For example, we 
observed that, for most SPEC95 integer programs, each 
additional cycle in the LI access time resulted in a
4-5 percent performance loss.

The reconfigurable L1/L2 cache provides a number of 
attractive design points for both memory-intensive and 
non-memory-intensive applications. Programs that do not 
have large working sets and do not suffer from many 
conflict misses can use the smaller and faster 256KB direct- 
mapped LI. Programs with large working set sizes, whose 
execution times are dominated by accesses to the L2 and 
beyond, can use large LI sizes so that most accesses are 
satisfied by a single cache look-up. While each access now 
takes longer, its performance effect is usually smaller than 
the cost of a higher miss rate. Moving to a larger cache size 
not only handles many of the capacity misses, it also takes 
care of a number of conflict misses as the associativity is 
increased in tandem. In our experiments, the combined 
L1-L2 hierarchy has a 2MB capacity. If the working set of 
the program is close to 2MB, the entire cache can be used as 
the LI. This not only reduces the miss rate, it also eliminates 
the L2 look-up altogether, reducing the effective memory 
access time. Our benchmark set represents programs with 
various working set sizes and associativity needs (even for 
different phases of the same program) and the dynamic 
selection mechanisms adapt the underlying L1-L2 cache 
hierarchy to these needs. A couple of the programs also 
have frequently changing needs that cannot be handled by 
our simple interval-based scheme.

Fig. 5 shows the memory CPI and total CPI achieved by 
the conventional and configurable interval and subroutine- 
based schemes for the various benchmarks. The memory 
CPI is calculated by subtracting the CPI achieved with a 
simulated system with a perfect cache (all hits and one cycle 
latency) from the CPI with the realistic memory hierarchy. 
In comparing the arithmetic mean (AM) of the memory CPI 
performance, the interval-based configurable scheme out­
performs the best-performing conventional scheme (B) 
(measured in terms of a percentage reduction in memory 
CPI) by 27 percent, with roughly equal cache and TLB 
contributions, as is shown in Table 4. For each application, 
this table also presents the number of cache and TLB 
explorations that resulted in the selection of different sizes. 
In terms of overall performance, the interval-based scheme 
achieves a 15 percent reduction in CPI. The benchmarks 
with the biggest memory CPI reductions are health 
(52 percent), compress (50 percent), apsi (31 percent), and 
mst (30 percent).

The dramatic improvements with health and compress are 
due to the fact that particular phases of these applications 
perform best with a large LI cache even with the resulting 
higher hit latencies (for which there is reasonably high 
tolerance within these applications). For health, the config­
urable scheme settles at the 1.5MB cache size for most of the 
simulated execution period, while the 768KB configuration 
is chosen for much of compress's execution period. Note that 
TLB reconfiguration also plays a major role in the 
performance improvements achieved. These two programs 
best illustrate the mismatch that often occurs between the 
memory hierarchy requirements of particular application
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Fig. 5. Performance for conventional (A, B, and C), interval-based (D), and subroutine-based (E) configurable schemes. Memory CPI is shown in (a) 
and CPI in (b).

phases and the organization of a conventional memory 
hierarchy and how an intelligently managed configurable 
hierarchy can better match on-chip cache and TLB resources 
to these execution phases. Note that, while some applica­
tions stay with a single cache and TLB configuration for 
most of their execution window, others demonstrate the 
need to adapt to the requirements of different phases in 
each program (see Table 4). Regardless, the dynamic 
schemes are able to determine the best cache and TLB 
configurations which span the entire range of possibilities, 
for each application during execution.

For two of the programs, em3d and swim, the heuristics 
choose the entire 2MB cache space as the LI for most of 
their execution time. These are examples of programs that 
have working sets larger than 2MB. Performance improve­
ments are seen not just because of the lower miss rate 
afforded by a large LI, but also by eliminating the 15-cycle 
L2 look-up altogether.

The results for art and hydroZd demonstrate how the 
dynamic reconfiguration may in some cases degrade 
performance. These applications are very unstable in their 
behavior and do not remain in any one phase for more than

TABLE 4
Contribution to the Cache and the TLB to Speed Up or Slow 

Down in the Dynamic Scheme and the Number of Explorations

Cache

contribution

TLB

contribution

Cache

expl

TLB

changes

em3d 73% 27% 10 2

health 33% 67% 27 2

mst 100% 0% 5 3

compress 64% 36% 54 2

hydro2d 100% 0% 19 0

apsi 100% 0% 63 27

swim 49% 51% 5 6

art 100% 0% 11 5

a few intervals. Art also does not fit in 2MB, so there is no 
size that causes a sufficiently large drop in CPI to merit the 
cost of exploration. However, the dynamic scheme identi­
fies that the application is spending more time exploring 
than in stable state and turns exploration off altogether. 
Since this happens early enough in the case of art (the 
simulation window is also much larger), art shows no 
overall performance degradation, while hydroZd has a
3 percent slowdown. This result illustrates that compiler 
analysis to identify such "unstable" applications and 
override the dynamic selection mechanism with a statically 
chosen cache configuration may be beneficial.

In terms of the effect of TLB reconfiguration, health, swim, 
and compress benefit the most from using a larger TLB. 
Health and compress perform best with 256 and 128 entries, 
respectively, and the dynamic scheme settles at these sizes. 
Swim shows phase change behavior with respect to TLB 
usage, resulting in five stable phases requiring either 256 or 
512 TLB entries.

5.1.1 Reconfiguration on a Per-Subroutine B asis
Fig. 5 also allows us to compare the interval and subroutine- 
based schemes. As the results show, the simpler interval- 
based scheme usually outperforms the subroutine-based 
approach. If the application phase behavior is data or time- 
dependent rather than code location dependent, the 
subroutine-based scheme will be slower to adapt to the 
change. In addition, there is potential for instability across 
subroutine invocations, especially if the same procedure is 
called from multiple locations or phases in the program. 
The exception in our benchmark suite is apsi, for which the 
subroutine-based scheme improves performance relative to 
the interval-based approach as each subroutine exhibits 
consistent behavior across subroutine invocations. With the 
interval-based scheme, apsi shows inconsistent behavior 
across intervals (indicated by the large number of explora­
tions in Table 4), causing it to thrash between a 256KB LI 
and a 768KB LI. However, the interval-based scheme is 
better able to capture application behavior on average than 
the subroutine-based scheme, in addition to being more
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TABLE 5
Latencies (in Cycles) for the Various Cache Organizations 

at the Three Different Processor Frequency Points 
(TLB Size Is 64 in Each Case)

Cache organization Latency 

at 1GHz

Latency 

at 1.5GHz

Latency 

at 2GHz

256KB 1-way 2.0 3.0 4.0

512KB 2-way 2.5 4.0 5.0

768KB 3-way 2.5 4.0 5.0

1MB 4-way 3.0 4.0 6.0

1.5MB 3-way 4.0 6.0 8.0

2MB 4-way 4.5 7.0 9.0

practical since it requires simpler hardware. Hence, we use 
the interval-based scheme as the basis for the rest of our 
analysis.

5 .1 .2  Limiting the Exploration P rocess
The exploration process that is invoked for a few intervals on 
every phase change accounts for a small portion of the total 
runtime. We limited the exploration process by not evaluat­
ing larger cache configurations if the LI miss rate was less 
than 1 percent. By removing this constraint and causing all 
cache configurations to be evaluated on every phase change, 
we saw only a 1 percent overall slowdown in CPI.

An LI miss rate of less than 1 percent indicates that the 
program is not limited by L2 accesses. However, a program 
may have a higher LI miss rate and yet not be limited by the 
L2 accesses if the program has the ability to tolerate these 
longer load latencies. Hence, to evaluate if more accurate 
metrics could help limit the exploration process further, we 
used miss intolerance to quantify the effect of LI misses on 
the program. Miss intolerance indicates the number of 
cycles that a program's completion is delayed because of 
accesses to the L2 and beyond and is described in 
Section 3.3. Larger cache configurations were explored only 
if the LI miss intolerance exceeded a certain threshold. Only 
apsi showed a 2 percent CPI improvement, with no overall 
CPI improvement being registered.

Overall, limiting the exploration process by using LI 
miss rates as the metric improves performance by 1 
percent and using more complicated metrics does not 
improve this performance by much more, indicating that 
the exploration process is not a large overhead for an 
interval size of 100,000 cycles.

5 .1 .3  Sensitivity to P rocessor Clock S p e e d
The above results demonstrate potential performance 
improvement for one technology point and microarchitec­
ture. In order to determine the sensitivity of our qualitative 
results to different technology points and microarchitectur- 
al trade offs, we varied the processor pipeline speed relative 
to the memory latencies (keeping the memory hierarchy 
delays in ns fixed). Apart from the 1GHz processor clock 
that has been used for 0.1/.t technology throughout this 
paper, we also evaluated the effect of 1.5GHz and 2GHz
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Fig. 6. Normalized CPIs with the dynamic interval-based scheme 
assuming processor clock speeds of 1, 1.5, and 2GHz. The CPIs have 
each been normalized to their respective base cases.

processor clocks. Table 5 summarizes the delays of the 
various cache organizations at each frequency. For 1.5GHz 
and 2GHz processors, the half-cycle latencies are elimi­
nated, thereby simplifying the design. Fig. 6 shows the 
normalized CPIs because of the dynamic interval-based 
scheme for each frequency point (the CPIs have been 
normalized to their respective base cases, so a CPI of 0.9 
indicates a 10 percent improvement). The overall improve­
ments for the three cases are 15 percent, 14 percent, and 
17 percent, demonstrating that our results are valid for 
various processor-memory speed ratios.

5.2  E nergy-A w are  C on figu ra tio n  R esults
In this section, we focus on the energy consumption of the 
on-chip memory hierarchy. The memory energy per 
instruction (memory EPI, with each energy unit measured 
in nanojoules) results of Fig. 7a illustrate how, as is usually 
the case with performance optimizations, the cost of the 
performance improvement due to the configurable scheme 
is a significant increase in energy dissipation. This is caused 
by the fact that energy consumption is proportional to the 
associativity of the cache and our configurable LI uses 
larger set-associative caches. For this reason, we explore 
how the energy-aware improvements may be used to 
provide a more modest performance improvement, yet 
with a significant reduction in memory EPI relative to a 
pure performance approach.

From Fig. 7a, we observe that merely selecting the 
energy-aware cache configurations (scheme F) has only a 
nominal impact on energy. In contrast, operating the LI 
cache in a serial tag and data access mode (G) reduces 
memory EPI by 38 percent relative to the baseline interval- 
based scheme (D), bringing it in line with the best overall­
performing conventional approach (B). For compress and 
swim, this approach even achieves roughly the same energy, 
with significantly better performance (see Fig. 7b) than 
conventional configuration C, whose 64KB two-way LI data 
cache activates half the amount of cache every cycle than 
the smallest LI configuration (256KB) of the configurable 
schemes. In addition, because the selection scheme auto­
matically adjusts for the higher hit latency of serial access,
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Fig. 7. Results for conventional (A, B, and C), interval-based (D), and energy-aware (F and G) configurable schemes. Memory EPI (in nanoJoules) is 
shown in (a) and memory-CPI in (b).

this energy-aware configurable approach reduces memory 
CPI by 13 percent relative to the best-performing conven­
tional scheme (B). Fig. 8 shows memory energy-delay 
product for the various configurable schemes. In compar­
ison to the conventional schemes A and B with the same 
total amount of cache and TLB, our serial tag-data approach 
(G) results in a 25 percent and 8 percent improvement in the 
memory energy-delay product, respectively. The energy- 
delay product of the interval-based scheme (D) is compar­
able to that of base case A. Thus, the energy-aware 
approach may be used to provide more balanced improve­
ments in both performance and energy in portable applica­
tions where design constraints such as battery life are of 
utmost importance. Furthermore, as with the dynamic 
voltage and frequency scaling approaches used today, this 
mode may be switched on under particular environmental 
conditions (e.g., when remaining battery life drops below a 
given threshold), thereby providing on-demand energy- 
efficient operation.

Fig. 8. Memory energy-delay product for conventional (A, B, and C), 
interval-based (D), and energy-aware (F and G) configurable schemes.

5.3  L2/L3 P erfo rm ance and Energy R esults
While LI reconfiguration improves performance, it may 
consume more energy than conventional approaches if 
higher LI associative configurations are enabled. To reduce 
energy, mechanisms such as serial tag and data access (as 
described in the previous section) have to be used. Since L2 
and L3 caches are often already designed for serial tag and 
data access to save energy, reconfiguration at these lower 
levels of the hierarchy would not increase the energy 
consumed. Instead, they stand to decrease it by reducing 
the number of data transfers that need to be done between 
the various levels, i.e., by improving the efficiency of the 
memory hierarchy.

Thus, we investigate the energy benefits of providing a 
configurable L2/L3 cache hierarchy with a fixed LI cache as 
on-chip cache delays significantly increase with sub-0, lpm 
geometries. Due to the prohibitively long latencies of large 
caches at these geometries, a three-level cache hierarchy 
becomes an attractive design option from a performance 
perspective. We use the parameters from Agarwal et al. [1 ] 
for 0.035pm technology to illustrate how dynamic L2/L3 
cache configuration can match the performance of a 
conventional three-level hierarchy while dramatically re­
ducing energy dissipation.

Fig. 9 compares the performance and energy of the 
conventional three-level cache hierarchy with the configur­
able scheme. (Recall that TLB configuration was not 
attempted, so the improvements are completely attributable 
to the cache.) Since the LI cache organization has the largest 
impact on cache hierarchy performance, as expected, there 
is little performance difference between the two, as each 
uses an identical conventional LI cache. However, the 
ability of the dynamic scheme to adapt the L2/L3 
configuration to the application results in a 42 percent 
reduction in memory EPI on average. The savings are 
caused by the ability of the dynamic scheme to use a larger 
L2 and thereby reduce the number of transfers between L2 
and L3. Having only a two-level cache would, of course, 
eliminate these transfers altogether, but would be detri­
mental to program performance because of the large 
60-cycle L2 access. Thus, in contrast to this approach of
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Fig. 9. Results for conventional three-level and dynamic cache hierarchies. Memory CPI is shown in (a) and memory EPI (in nanoJoules) in (b).

simply opting for a lower energy, and lower performing, 
solution (the two-level hierarchy), dynamic L2/L3 cache 
configuration can improve performance while dramatically 
improving energy efficiency.

6  R e la te d  W o rk
In order to address the growing gap between memory and 
processor speeds, techniques such as nonblocking caches 
[15] and hardware and software-based prefetching [20], [27] 
have been proposed to reduce memory latency. However, 
their effectiveness can be greatly improved by changing the 
underlying structure of the memory hierarchy.

Recently, Ranganathan et al. [28] proposed a reconfigur- 
able cache in which a portion of the cache could be used for 
another function, such as an instruction reuse buffer. 
Although the authors show that such an approach only 
modestly increases cache access time, fundamental changes 
to the cache may be required so that it may be used for other 
functionality as well and long wire delays may be incurred 
in sourcing and sinking data from potentially several 
pipeline stages.

Dahlgren and Stenstrom [12] describe a cache whose 
organization can be changed by the compiler on a per- 
application basis. To handle conflict misses in a direct- 
mapped cache, they break the cache into multiple subunits 
and map different virtual address regions to these different 
subunits. This changes the way the cache is indexed. They 
also propose using different cache line sizes for different 
address ranges. Veidenbaum et al. [34] also talk about such 
a reeonfigurable cache, where the cache line size can be 
changed dynamically based on the spatial locality exhibited 
by the program. These changes are not done at the layout 
level—the cache has a small line size and, depending on the 
program needs, an appropriate number of adjacent cache 
lines are fetched on a miss.

Albonesi [3] proposed the disabling of data cache ways for 
programs with small working sets to reduce energy con­
sumption. A similar proposal by Yang et al. [35] that reduces 
the number of sets in an instruction cache helps reduce 
leakage power for programs with small instruction working

sets. In our approach, parts of the cache are never turned 
off—their allocations between the LI and L2 are changed.

In an attempt to reduce the TLB miss rate, Romer et al. 
[30] proposed the use of superpages. Contiguous virtual 
addresses that are accessed simultaneously are brought 
together to form a larger superpage. This requires the copy 
of the different physical pages into contiguous physical 
locations. In this way, a single TLB entry can then be used to 
translate a much larger set of virtual addresses. While this 
proves to be a very effective way to reduce TLB miss rates, 
it imposes some time and space overheads to copy the 
pages and to monitor and identify candidate pages for 
superpage promotion. In our design, the size of the TLB is 
increased to reduce the TLB miss rate and an occasional IPC 
penalty is paid because of a potentially larger access time.

Various works [16], [32], [33] have characterized load 
latency tolerance and metrics for identifying critical loads. 
Such metrics could prove useful in determining the cache 
requirements for a program phase (tolerance to a longer hit 
latency, tolerance to cache misses, etc.), but we found that 
such hints do not improve the performance of the selection 
mechanisms.

7 C onclusions

We have described a novel configurable cache and TLB as a 
higher performance and lower energy alternative to con­
ventional on-chip memory hierarchies. Cache and TLB 
reconfiguration is effected by leveraging repeater insertion 
to allow dynamic speed/size trade offs while limiting the 
impact of speed changes to within the memory hierarchy. 
Our results demonstrate that a simple interval-based 
configuration management algorithm is sufficient to 
achieve good performance. The algorithm is able to 
dynamically balance the trade off between an application's 
hit and miss intolerance using CPI as the ultimate metric to 
determ ine appropriate  cache size and speed. At
0.1/um technologies, our results show an average 15 percent 
reduction in CPI in comparison with the best conventional 
L1-L2 design of comparable total size, with the benefit 
almost equally attributable on average to the configurable



BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1257

cache and TLB. Furthermore, energy-aware enhancements 
to the algorithm trade off a more modest performance 
improvement for a significant reduction in energy. These 
results are not qualitatively affected by changes in relative 
processor speeds. Projecting to a 3-level cache hierarchy 
potentially necessitated by submicron technologies, we 
show an average 42 percent reduction in memory hierarchy 
energy at 0.035pm  technology when compared to a 
conventional design.

Future work includes investigating the use of compiler 
support for applications where an interval-based scheme is 
unable to effectively capture the phase changes in an 
application. Compiler support would be beneficial both to 
select appropriate adaptation points as well as to predict an 
application's working set sizes and, correspondingly, the 
appropriate cache sizes. Finally, improvements at the circuit 
and microarchitectural levels can be pursued that better 
balance configuration flexibility with access time and 
energy consumption.
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