
IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO, 10, OCTOBER 2003 1243

A D y n a m i c a l l y T u n a b l e M e m o r y H i e r a r c h y
Rajeev Balasubramonian, David H. Albonesi, S e n io r M em ber, IEEE,

Alper Buyuktosunoglu, S tu d e n t M em ber, IEEE, and Sandhya Dwarkadas, M em ber, IE E E

Abstract—The widespread use of repeaters in long wires creates the possibility of dynamically sizing regular on-chip structures. We
present a tunable cache and translation lookaside buffer (TLB) hierarchy that leverages repeater insertion to dynamically trade off size
for speed and power consumption on a per-application phase basis using a novel configuration management algorithm. In comparison
to a conventional design that is fixed at a single design point targeted to the average application, the dynamically tunable cache and
TLB hierarchy can be tailored to the needs of each application phase. The configuration algorithm dynamically detects phase changes
and selects a configuration based on the application’s ability to tolerate different hit and miss latencies in order to improve the memory
energy-delay product. We evaluate the performance and energy consumption of our approach and project the effects of technology
scaling trends on our design.

Index Terms— High performance microprocessors, memory hierarchy, reconfigurable architectures, energy and performance of
on-chip caches.

1 Introduction

M o d e r n microarchitectures continue to push the per­
formance envelope by using architectural techniques
to exploit improvements in technology. In the last 15 years,

performance has improved at a rate of roughly 1 . 6 times per
year, with about half of this gain attributed to techniques for
exploiting instruction-level parallelism and memory locality
[19]. Correspondingly, however, the gap between processor
speed and memory bandwidth and latency is continuing to
increase. In addition, power dissipation levels have increased
to the point where future designs may be fundamentally
limited by this constraint in terms of the functionality that can
be included in future microprocessors. The sheer number of
transistors dedicated to the on-chip memory hierarchy in
future processors (for example, roughly 92 percent of the
transistors on the Alpha 21364 are dedicated to caches [8])
requires that these structures be effectively used so as not to
needlessly waste chip power. Thus, new approaches are
needed in order to prevent the memory system from
fundamentally limiting future performance gains or exceed­
ing power constraints. In this paper, we present a dynami­
cally configurable cache and translation lookaside buffer
(TLB) organization that exploits trends in technology to
provide low-cost configurability in order to trade size for
speed in the memory hierarchy.

The most common conventional memory system today is
the multilevel memory hierarchy. The rationale behind this
approach, which is used primarily in caches but also in
some TLBs (e.g., in the MIPS R10000 [36]), is that a
combination of a small, low-latency LI memory backed by
a higher capacity, yet slower, L2 memory and, finally, by

• The authors are with the Departments of Computer Science and Electrical
and Computer Engineering, University of Rochester, Rochester, NY 14627.
E-mail: Irajeev, sandhya}@cs.rochester.edu,
I albonesi, buyuktosl@ece.rochester.edu.

Manuscript received 24 Oct. 2001; revised 4 Apr. 2002; accepted 24 June
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115244.

0018-9340/03/$17.00 © 2003 IEEE

main memory provides the best trade off between optimiz­
ing hit time and miss time. The fundamental issue with
these designs is that they are targeted to the average
application—no single memory hierarchy organization
proves to be the best for all applications. When running a
diverse range of applications, there will inevitably be
significant periods of execution during which performance
degrades and energy is needlessly expended due to a
mismatch between the memory system requirements of the
application and the memory hierarchy implementation. As
an example, programs whose working sets exceed the
LI capacity may expend considerable time and energy
transferring data between the various levels of the
hierarchy. If the miss tolerance of the application is lower
than the effective LI miss penalty, then performance may
degrade significantly due to instructions waiting for
operands to arrive. For such applications, a large, single­
level cache (as used in the HP PA-8X00 series of micro­
processors [18], [23], [24]) may perform better and be more
energy-efficient than a two-level hierarchy for the same
total amount of memory.

In this paper, we present a configurable cache and TLB
orchestrated by a configuration algorithm that tailors the
memory hierarchy to each individual application phase in
order to improve the performance and energy-efficiency of
the memory hierarchy. Key to our approach is the
exploitation of the properties of conventional caches and
future technology trends in order to provide cache and TLB
configurability in a low-intrusive and low-latency manner.
Our cache and TLB are logically designed and laid out as a
virtual two-level, physical one-level noninclusive hierarchy,
where the partition between the two levels is dynamic. The
noninclusive nature of the hierarchy minimizes the over­
heads at the time of repartitioning. Our approach monitors
cache and TLB usage by detecting phase changes, and
improves performance by resizing (using an exploration
phase) the cache and TLB to properly balance hit latency
intolerance with miss latency intolerance dynamically

Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:buyuktosl@ece.rochester.edu
mailto:tc@computer.org

1244 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

during application execution (using CPI as the ultimate
performance metric). We evaluate the use of miss rates and
branch frequencies to detect phase changes and limit the
exploration space, as well as the use of more complex
metrics that attempt to measure application hit and miss
intolerance more accurately. Furthermore, instead of chan­
ging the clock rate as proposed in [2], we implement a cache
and TLB with a variable latency so that changes in the
organization of these structures only impact memory
instruction latency and throughput. We also evaluate
energy-aware modifications to the configuration algorithm
that trade off a modest amount of performance for
significant energy savings.

Our previous approaches to this problem ([2], [3]) have
exploited the partitioning of hardware resources to enable/
disable parts of the cache under software control, but in a
limited manner. The issues of how to practically implement
such a design were not addressed in detail, the analysis
only looked at changing configurations on an application-
by-application basis (and not dynamically during the
execution of a single application), and the simplifying
assumption was made that the best configuration was
known for each application. Furthermore, the organization
and performance of the TLB was not addressed and the
reduction of the processor clock frequency with increases in
cache size limited the performance improvement that could
be realized.

We also expand on our more recent work ([6], [7]) in
many ways. First, we examine how the results for our
configurable memory hierarchy scale for additional pro­
cessor frequencies beyond the base 1GHz frequency used
exclusively in our earlier papers and discuss how higher
frequencies may simplify the timing of our design. Second,
we evaluate the benefits of using more complex latency
tolerance metrics for our phase detection and for limiting
our search heuristics and compare it with the simpler
approach of using miss rates and branch frequencies.
Finally, we quantify the energy-delay product benefits for
our two energy-aware configurations in relation to the
baseline conventional and configurable approaches.

The rest of this paper is organized as follows: The cache
and TLB architectures are described in Section 2, including
the modifications necessary to enable dynamic reconfigura­
tion. In Section 3, we discuss the dynamic selection
mechanisms, including the counter hardware required
and the configuration m anagement algorithms. In
Sections 4 and 5, we describe our simulation methodology
and present a performance and energy dissipation compar­
ison with conventional multilevel cache and TLB hierar­
chies for two technology design points and several clock
frequencies. Finally, we discuss related work in Section 6

and we conclude in Section 7.

2 C ache and TLB C ircuit S tru ctu res

We present the design of a cache and TLB that can be
dynamically partitioned in order to change size and speed.
Our cache and TLB are logically designed as virtual two-
level, physical one-level noninclusive hierarchies, where the
partition between the two levels is dynamic. The non­
inclusive nature of the hierarchy minimizes the overheads

2000

1800

1600

1400

—.1200

“ 1000
S'
Q

800

600

400L

200"
06­
128 256 512 1024 2048 4096 Number of Columns

Fig. 1. Wordline wire delay as a function of the number of array columns
for various numbers of wire sections.

at the time of repartitioning. In the following, we describe
the circuit structures of the conventional caches and TLBs,
and the modifications made to the conventional layout in
order to accommodate the repartitioning with minimal
impact on performance and area.

2.1 C on figu rab le C ache O rgan ization
The cache and TLB layouts (both conventional and
configurable) that we model follow that described by
McFarland in his thesis [25], McFarland developed a
detailed timing model for both the cache and TLB that
balances both performance and energy considerations in
subarray partitioning and which includes the effects of
technology scaling.

We took into account several considerations in choosing
the cache layout as well as parameters such as size and
associativity for our configurable cache and the L2 cache in
a conventional processor. First, we determined that the
cache should be at least 1MB in size. We based this on the
size of on-chip L2 caches slated to be implemented in next
generation processors (such as the Alpha 21364 [8] which
will have 1.5MB of on-chip cache). Based on performance
simulation results with our benchmark suite, we picked
2MB as the target size for our configurable cache as well as
for the L2 (or combined LI and L2) of the conventional
baseline memory hierarchies.

To further define the number of subarrays and associativ­
ity, we calculated (following Bakoglu and Meindl [5]) the
SRAM array wordline delay as a function of the number of
array columns and the number of wire sections (separated by
repeater switches) using the 0.1 ^m parameters of McFarland
and Flynn [26], The results are shown in Fig. 1 for an
unbuffered wire (no repeater switches), a wire broken into
two sections by a single repeater switch, and so on. Note that
repeater switches provide no delay benefit for arrays of 1,024
columns or less. For the longer wordlines in arrays of 2,048
columns or more, the "linearization" of the delay provided by
repeater switches (as opposed to the quadratic delay increase
of the unbuffered wire) results in a decrease in delay. The best
delay is achieved with four repeater switches for 2,048
columns and eight for 4,096 columns.

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1245

Even D ata Bus Odd D ata Bus

512KB Array
Structure

Fig. 2. The overall organization of the cache data arrays.

Based on the above constraints, on delay calculations
using various numbers of subarrays and layouts, and on the
need to make the cache banked to obtain sufficient
bandwidth, we arrived at the organization shown in Fig. 2.
The cache is structured as two 1MB interleaved banks. 1 In
order to reduce access time and energy consumption, each
1MB bank is further divided into two 512KB SRAM
structures (with data being block interleaved among the
structures), one of which is selected on each bank access.
We make a number of modifications to this basic structure
to provide configurability with little impact on access time,
energy dissipation, and functional density.

The data array section of the configurable structure is
shown in Fig. 3a in which only the details of one subarray
are shown for simplicity. (The other subarrays are identi­
cally organized.) There are four subarrays, each of which
contains four ways. Each of these subarrays has 512 rows
and 2,048 columns. In both the conventional and configur­
able cache, two address bits (Subarray Select) are used to
select only one of the four subarrays on each access in order
to reduce energy dissipation. The other three subarrays
have their local wordlines disabled and their precharge,
sense amp, and output driver circuits are not activated. The
TLB virtual to real page number translation and tag check
proceed in parallel and only the output drivers for the way
in which the hit occurred are turned on. Parallel TLB and
tag access can be accomplished if the operating system can
ensure that index_bits-page_offset_bits bits of the virtual and
physical addresses are identical, as is the case for the four­
way set associative 1MB dual-banked LI data cache in the
HP PA-8500 [17].

In order to provide configurability while retaining fast
access times, we implement several modifications to
McFarland's baseline design, as shown in Fig. 3a:

• McFarland drives the global wordlines to the center
of each subarray and then the local wordlines across
half of the subarray in each direction in order to
minimize the worst-case delay. In the configurable
cache, because we are more concerned with achiev­
ing comparable delay with a conventional design for
our smallest cache configurations, we distribute the
global wordlines to the nearest end of each subarray
and drive the local wordlines across the entire
subarray.

1. The banks are word-interleaved when used as an L1/L2 cache
hierarchy and block interleaved when used as L2/L3.

• McFarland organizes the data bits in each subarray
by bit number. That is, data bit 0 from each way are
grouped together, then data bit 1, etc. In the
configurable cache, we organize the bits according
to ways as shown in Fig. 3a in order to increase the
number of configuration options.

• Repeater switches are used in the global wordlines
to electrically isolate each subarray. That is, sub­
arrays 0 and 1 do not suffer additional global
wordline delay due to the presence of subarrays 2

and 3. Providing switches as opposed to simple
repeaters also prevents wordline switching in
disabled subarrays thereby saving dynamic power.

• Repeater switches are also used in the local
wordlines to electrically isolate each way in a
subarray. The result is that the presence of addi­
tional ways does not impact the delay of the fastest
ways. Dynamic power dissipation is also reduced by
disabling the wordline drivers of disabled ways.

• Configuration Control signals from the Configuration
Register provide the ability to disable entire sub­
arrays or ways within an enabled subarray. Local
wordline and data output drivers and precharge and
sense amp circuits are not activated for a disabled
subarray or way.

Using McFarland's area model, the additional area from
adding repeater switches to electrically isolate wordlines is
7 percent. In addition, based on our column length (2,048),
the use of repeater switches to isolate each way achieves a
faster propagation delay than with unbuffered lines (Fig. 1).
Moreover, because local wordline drivers are required in a
conventional cache, these extra buffers do not impact the
spacing of the wordlines and, thus, bitline length is
unaffected. In terms of energy, the addition of repeater
switches increases the total memory hierarchy energy
dissipation by 2-3 percent (using the model described in
Section 4) in comparison with a cache with no repeaters for
the simulated benchmarks.

2.2 C on figu rab le C ache O peration
With these modifications, the sizes, associativities, and
latencies of the resulting virtual two-level, physical one-
level noninclusive cache hierarchy are dynamic. That is, a
single large cache organization serves as a configurable
two-level noninclusive cache hierarchy, where the ways
within each subarray that are initially enabled for an
LI access are varied to match application characteristics.
The latency of access is changed on half-cycle increments
according to the timing of each configuration. Half cycle
increments are required to provide the granularity to
distinguish the different configurations in terms of their
organization and speed. Such an approach can be imple­
mented by capturing cache data using both phases of the
clock, similar to the double-pumped Alpha 21264 data
cache [2 2], and enabling the appropriate latch according to
the configuration. The advantage of this approach is that the
timing of the cache can change with its configuration while
the main processor clock remains unaffected and that no
clock synchronization is necessary between the pipeline and
cache/TLB.

1246 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

(a) (b)

Fig. 3. (a) The organization of the data array section of one of the 512KB cache structures, (b) The organization of the configurable TLB.

However, because a constant two-stage cache pipeline is
maintained regardless of the cache configuration, cache
bandwidth degrades for the larger, slower configurations.
Furthermore, the implementation of a cache whose latency
can vary on half-cycle increments requires two pipeline
modifications. First, the dynamic scheduling hardware
must be able to speculatively issue (assuming a data cache
hit) load-dependent instructions at different times depend­
ing on the currently enabled cache configuration. Second,
for some configurations, running the cache on half-cycle
increments requires an extra half-cycle for accesses to be
caught by the processor clock phase.

The possible configurations for a 2MB L1/L2 on-chip
cache hierarchy at 0.1 /.tm technology are shown in Fig. 4.
Although multiple subarrays may be enabled as LI in an
organization, as in a conventional cache, only one is selected

each access according to the Snbarray Select field of the
address. When a miss in the LI section is detected, all tag
subarrays and ways are read. This permits hit detection to
data in the remaining portion of the cache (designated as L2
in Fig. 4). When such a hit occurs, the data in the LI section
(which has already been read out and placed into a buffer)
is swapped with the data in the L2 section. In the case of a
miss to both sections, the displaced block from the
LI section is placed into the L2 section. This prevents
thrashing in the case of low-associative LI organizations.

The direct-mapped 512KB and two-way set associative
1MB cache organizations are lower energy, and lower
performance, alternatives to the 512KB two-way and 1MB
four-way organizations, respectively. These options activate
half the number of ways on each access for the same
capacity as their counterparts. For execution periods in

Subarray/Way Allocation (L I o rL 2)

256-1

512-2
e_o 768-3
£ 1024-4
CO

cn 512-1
U
o 1024-2u
U 1536-3

2048-4

L I
Size

L I
Assoc

L I
Acc Time

Subarray 2 Subarray 0 Subarray 1 Subarray 3

W3 W2 W l WO W3 W2 W l WO W0 W l W2 W3 W0 W l W2 W3

256KB 1 way 2.0 L2 L2 L2 L2 L2 L2 L2 LI L I L2 L2 L2 L2 L2 L2 L2

512KB 2 way 2.5 L2 L2 L2 L2 L2 L2 L I LI 1.1 L I L2 L2 L2 L2 L2 L2

768KB 3 way 2.5 L2 L2 L2 L2 L2 L I L I LI L I 1.1 1.1 L2 L2 L2 L2 L2

1024KB 4 way 3.0 L2 L2 L2 L2 LI L I L I 1.1 L I 1.1 1.1 1.1 L2 L2 L2 L2

512KB 1 way 3.0 L2 L2 L2 L I L2 L2 L2 l . l L I L2 L2 L2 l . l L2 L2 L2

1024KB 2 way 3.5 L2 L2 L I L I L2 L2 1.1 l.l L I L I L2 L2 L I L I L2 L2

1536KB 3 way 4.0 L2 1.1 LI L I L2 L I LI l . l LI 1.1 1.1 L2 1.1 1.1 LI L2

2048KB 4 way 4.5 L I L I L I L I L I L I L I l . l L I 1.1 LI L I 1.1 1.1 L I l .l

Fig. 4. Possible L1/L2 cache organizations that can be configured shown by the ways that are allocated to L1 and L2. Only one of the four 512KB
SRAM structures is shown. Abbreviations for each organization are listed to the left of the size and associativity of the L1 section, while L1 access
times in cycles are given on the right. Note that the TLB access may dominate the overall delay of some configurations. The numbers listed here
simply indicate the relative order of the access times for all configurations and, thus, the size/access time trade offs allowable.

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1247

which there are few cache conflicts and hit latency tolerance
is high, the low energy alternatives may result in compar­
able performance yet potentially save considerable energy.
These configurations are used in an energy-aware mode of
operation as described in Section 3.

Note that, because some of the configurations span only
two subarrays, while others span four, the number of sets is
not always the same. Hence, it is possible that a given
address might map into a certain cache line at one time and
into another at another time (called a mismap). However, the
noninclusive nature of our cache helps prevent aliasing and
guarantees correctness. In cases where subarrays two and
three are disabled, the high-order Subarray Select signal is
replaced by an extra tag bit. This extra tag bit is used to
detect mismaps. In order to minimize the performance
impact of mismapped data, an L2 look-up examines twice
as many tags as the conventional L2 in order to examine all
subarrays where mismapped data may reside. Mismapped
data is handled the same way as an LI miss and L2 hit, i.e.,
it results in a swap. Our simulations indicate that such
events are infrequent.

In conventional two-level hierarchies, the L2 implements
additional hardware to ensure cache coherence with the L2s
of other chips. This involves replication of its tags and a
snooping protocol on the system bus. The use of a
noninclusive L1-L2 does not affect this in any way. The
tags for the entire 2MB of on-chip cache are replicated (just
as for the 2MB L2 in the conventional hierarchy) and the
snooping protocol ensures that data in the LI and L2 are
coherent with other caches. There is potential for added
interference with the processor to LI datapath when
compared to a conventional design in the presence of
inactive shared data that would only be present in the L2 in
the case of a conventional design.

2.3 C on figu rab le L2-L3 C ache
In sub-0.1/im technologies, the long access latencies of a
large on-chip L2 cache [1] may be prohibitive for those
applications that make use of only a small fraction of the
L2 cache. Thus, for performance reasons, a three-level
hierarchy with a moderate size (e.g., 512KB) L2 cache will
become an attractive alternative to two-level hierarchies at
these feature sizes. However, the cost may be a significant
increase in energy dissipation due to transfers involving the
additional cache level. We demonstrate in Section 5 that the
use of the aforementioned configurable cache structure as a
replacement for conventional L2 and L3 caches can
significantly reduce energy dissipation without any com­
promise in performance as feature sizes scale below 0 .1 /im.

2.4 C on figu rab le TLB O rgan ization
Our 512-entry, fully associative TLB can be similarly
configured as shown in Fig. 3b. There are eight TLB
increments, each of which contains a CAM of 64 virtual
page numbers and an associated RAM of 64 physical page
numbers. Switches are inserted on the input and output
buses to electrically isolate successive increments. Thus, the
ability to configure a larger TLB does not degrade the access
time of the minimal size (64 entry) TLB. Similarly to the
cache design, the TLB behaves as a two-level noninclusive

hierarchy and misses result in a second access, but to the
backup portion of the TLB.

3 Dynamic S election Mechanism s

Our configurable cache and TLB permits picking appropriate
configurations and sizes based on application requirements.
The different configurations spend different amounts of time
and energy accessing the LI and the lower levels of the
memory hierarchy. Our heuristics improve the efficiency of
the memory hierarchy by trying to minimize idle time due to
memory hierarchy access. The goal is to determine the right
balance between hit latency and miss rate for each application
phase based on the tolerance of the phase for the hit and miss
latencies. Our approach is to design the selection mechanisms
to improve performance and then to introduce modifications
to the heuristics that opportunistically trade off a small
amount of performance for significant energy savings. These
heuristics require appropriate metrics for assessing the
cache/TLB performance of a given configuration during
each application phase.

The two key aspects in designing a mechanism that
dynamically selects one of many configurations is, first, to
identify when the application moves to a different phase
and, second, to pick the correct configuration for that phase.
A combination of profiling and compiler analysis can do an
effective job identifying when the program moves in and
out of a new phase, for example, a long subroutine or a
loop. To minimize programmer intervention, we use
hardware mechanisms to approximate the detection of
phase changes—that is, we use certain hardware events to
signal a phase change instead of using special instructions
inserted by the compiler. We found that such a solution not
only worked well, it also required very modest amounts of
additional hardware. To determine the correct cache and
TLB organization for a given phase, we need to estimate the
effect of each organization on performance (assuming that
we are trying to maximize performance). One way to do
this is to simply explore the configuration space by
measuring performance when executing using each config­
uration. While this is the simplest and most accurate way to
pick the appropriate configuration, it could cause serious
overhead (and result in potential inaccuracies) if this initial
monitoring process lasts for a significant fraction of the
duration of the phase. An alternative is to use metrics that
predict the performance for each configuration so that the
best configuration can be chosen without exploration [14]
This would trade some accuracy for lower overheads. As
our results show later, these overheads are small enough
and the phases are long enough for our range of bench­
marks to make exploration the method of choice.

3.1 Phase D etection
A change in program phase potentially occurs when the
program enters or exits loops or subroutines. Such a change
can be detected by certain hardware events—a mispre­
dicted branch, a jump to a subroutine, I-cache misses,
change in the instruction composition, etc. Since we are
using an interval-based selection mechanism, we use the
last metric to detect a phase change. We found that different
phases usually have different branch frequencies—loops

1248 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

with differently sized loop bodies, subroutines with
different average basic block sizes, etc. Since different
phases could have the same branch frequency, but different
cache behaviors, we also use the number of cache misses as
an additional significant metric that indicates a phase
change. Hence, a phase change is indicated by changes in
either the branch frequency or the number of cache misses.

3.2 S earch H euristics
We first describe a simple interval-based scheme that uses
history to pick a size for the future. Large LI caches have a
high hit rate, but also have higher access times. One of the
many different LI sizes afforded by the reconfigurable cache
has the best trade off point between the cache hit and miss
times. At regular intervals (100K cycles in our simulations),
the hardware counters described in Section 3.1 are inspected
to detect a phase change and determine if a change in cache
organization is required. When a change in phase is detected,
each cache configuration is tried for an interval of 100K cycles.
After this exploratory process, the organization that has the
lowest CPI is used until the next phase change.

Our initial scheme is tuned to improve performance and
thus explores the following five cache configurations:
256KB 1-way LI, 768KB 3-way LI, 1MB 4-way LI, 1.5MB
3-way LI, and 2MB 4-way LI. The 512KB 2-way LI
configuration provides no performance advantage over
the 768KB 3-way LI configuration (due to their identical
access times in cycles) and, thus, this configuration is not
used. For similar reasons, the two low-energy configura­
tions (direct-mapped 512KB LI and two-way set associative
1MB LI) are only used with modifications to the heuristics
that reduce energy (described shortly).

At the end of each interval of execution (100K cycles), we
examine a set of hardware counters. These hardware
counters tell us the miss rate, the CPI, and the branch
frequency experienced by the application in that last
interval. Based on this information, the selection mechan­
ism (which could be implemented in software or hardware)
picks one of two states—stable or unstable. The former
suggests that behavior in this interval is not very different
from the last and we do not need to change the cache
configuration, while the latter suggests that there has
recently been a phase change in the program and we need
to explore (or continue to explore) to determine the
appropriate cache configuration.

The initial state is unstable and the initial LI cache is
chosen to be the smallest (256KB in this paper). At the end
of an interval, we enter the CPI experienced for that cache
size into a table. If the miss rate exceeds a certain threshold
(1 percent in our experiments) during that interval, we
switch to the next largest LI cache configuration for the next
interval of operation in an attempt to contain the working
set. This exploration continues until the maximum LI size is
reached or until the miss rate is sufficiently small. At this
point, the table is examined, the cache configuration with
the lowest CPI is picked, the table is cleared, and we switch
to the stable state. We continue to remain in the stable state
while the number of misses and branches do not signifi­
cantly differ from that experienced for that particular cache
size during the exploration phase. When there is a change,
we switch to the unstable state, return to the smallest LI

cache configuration, and start exploring again. The pseu­
docode for the mechanism is listed below.

Initializations and definitions:
base_br_noise = 4500; base_miss_rate_noise = 450;
br_incr = 1000; br_decr = 50;
miss rate incr = 100; miss_rate_decr = 5;
miss_rate_noise = base_miss_rate_noise;
br_noise = base_br_noise;
state = UNSTABLE;

Repeat the following every 100K cycles:
(inputs: num_miss, num_br, CPI)
if (state == STABLE)

if ((I num_miss-last_num_miss I) < miss_rate_noise &&
(I num_br-last_num_br I) < br_noise)
miss_rate_noise = max(miss_rate_noise-miss_rate_

deer, base_miss_rate_noise);
br_noise = max(br_noise - br_decr, base_br_noise);

else
last_cache_size = cache_size;
cache size = SMALLEST; state = UNSTABLE;

else if (state == UNSTABLE)
record CPI, num_miss, num_br;
if ((num_miss > THRESHOLD) && (cache_size != MAX))

Increase cache_size;
else

cache_size = that with best CPI; state = STABLE;
last_num_miss = num_miss recorded for selected size;
last_num_br = num_br recorded for selected size;
if (cache_size == last_cache_size)

miss rate noise= miss rate noise + miss rate incr;
br_noise = br_noise + br_incr;

Different applications see different variations in the
number of misses and branches as they move across
application phases. Hence, instead of using a single fixed
number as the threshold to detect phase changes, we vary it
dynamically. If an exploration results in picking the same
cache size as before, the noise thresholds are increased to
discourage such needless explorations. Likewise, every
interval spent in the stable state causes a slight decrement
in the noise thresholds in case they had been set too high.

The miss rate threshold ensures that we explore larger
cache sizes only if required. Note that a high miss rate need
not necessarily have a large impact on performance because
of the ability of dynamic superscalar processors to hide L2
latencies.

Clearly, such an interval-based mechanism is best suited to
programs that can sustain uniform behavior for a number of
intervals. While switching to an unstable state, we also move
to the smallest LI cache configuration as a form of "damage
control" for programs that have irregular behavior. This
choice ensures that, for these programs, more time is spent at
the smaller cache sizes and, hence, performance is similar to
that using a conventional cache hierarchy. We also keep track
of how many intervals are spent in stable and unstable states.
For every interval in stable state, a saturating counter is
incremented by one and is decremented by four for every

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1249

interval in unstable state. If the counter value goes below a
threshold (-25 in our simulations), we conclude that we are
spending too much time exploring, i.e., the program behavior
is not suited to an interval-based scheme and we remain fixed
at the smallest sized cache.

Mismaps, as described in Section 2.2, occur when the
cache uses four subarrays soon after having used two
subarrays (or vice versa). This usually happens only once
during each exploration phase. Given the infrequent
occurrence of explorations for most programs, we found
that the number of mismaps are usually few and do not
impact performance by much. Among our benchmarks,
health has the highest number of mismaps, encountering
one per 1,000 committed instructions. The average increase
in memory energy consumption due to the need to examine
twice as many tags on an L2 look-up is 0.7 percent.

We envision that the selection algorithm would be
implemented in software. Every 100K cycles, a low-over­
head software handler is invoked that examines the
hardware counters and updates the state as necessary. This
imposes minimal hardware overhead and allows flexibility
in terms of modifying the selection algorithm. We estimate
the code size of the handler to be about 1 2 0 static assembly
instructions, only a fraction of which is executed during
each invocation, resulting in a net overhead of less than
0.1 percent. In terms of hardware cost, we need 20-bit
counters for the number of misses, loads, cycles, instruc­
tions, and branches, in addition to a state register. This
amounts to less than 8 , 0 0 0 transistors.

3.3 P erfo rm ance M etrics
Cache miss rates provide a first order approximation of the
cache requirements of an application, but they do not
directly reflect the effects of various cache sizes on memory
stall cycles. We present and evaluate a metric that quantifies
this effect in order to better identify the appropriate cache
configuration.

The actual number of memory stall cycles is a function of
the time taken to satisfy each cache access and the ability of
the out-of-order execution window to overlap other useful
work while these accesses are made. Load latency tolerance
has been characterized in [33], and [16] introduces two
hardware mechanisms for estimating the criticality of a load.
One of these monitors the issue rate while a load is
outstanding and the other keeps track of the number of
instructions dependent on that load. While these schemes are
easy to implement, they are not very accurate in capturing the
number of stall cycles resulting from an outstanding load. We
propose an approach that more accurately characterizes load
stall time and further breaks this down as stalls due to cache
hits and misses. The goal is to provide insight to the selection
algorithm as to whether it is necessary to move to a larger or
smaller LI cache configuration (or not to move at all) for each
application phase.

To every entry in the register map table, we add one bit
that indicates whether the given (logical) register is to be
written by a load instruction. In addition, for every entry in
the Register Update Unit (RUU)2, we add one bit per

2. The RUU [31] is a unified queue and reorder buffer that holds all
instructions that have dispatched and not committed.

operand that specifies if the operand is produced by a load
(which can be deduced from the additional register map
table bits) and another specifying if the load was a hit (the
initial value upon insertion into the RUU) or a miss. Each
cycle, every instruction in the RUU that directly depends on
a load increments one of two global intolerance counters if
1) all operands except for the operand produced by a load
are ready, 2) a functional unit is available, and 3) there are
free issue slots in that cycle. For every cycle in which these
conditions are met up to the point that the load-dependent
instruction issues, the hit intolerance counter is incremented
unless a cache miss is detected for the load that it is
dependent on; if such a miss occurs, the hit/miss bit is
switched and the miss intolerance counter is incremented
each cycle in which the above three conditions are met until
the point at which the instruction issues. If more than one
operand of an instruction is produced by a load, a heuristic
is used to choose the hit/miss bit of one of the operands. In
our simulations, we choose the operand corresponding to
the load that issued first. This scheme requires only very
minor changes to existing processor structures and two
additional performance counters, while providing a fairly
accurate assessment of the relative impact of the hit time
and the miss time of the current cache configuration on
actual execution time of a given program phase.

3.4 R econfiguration on a P er-S u brou tin e B asis
As previously mentioned, the interval-based scheme will
work well only if the program can sustain its execution
phase for a number of intervals. This limitation may be
overcome by collecting statistics and making subsequent
configuration changes on a per-subroutine basis. The finite
state machine that was used for the interval-based scheme
is now employed for each subroutine—i.e., the event used
to determine the phase change is not the instruction
composition, but the use of a "jump subroutine" or a
"return" instruction. This requires maintaining a table with
CPI values at different cache sizes and the next size to be
picked for a limited number of subroutines (1 0 0 in this
paper). To focus on the important routines, we only monitor
those subroutines whose invocations exceed a certain
threshold of dynamic instructions (1 , 0 0 0 in this paper).
When a subroutine is invoked, its table is looked up and a
change in cache configuration is effected depending on the
table entry for that subroutine. When a subroutine exits, it
updates the table based on the statistics collected during
that invocation. A stack is used to checkpoint counters on
every subroutine call so that statistics are maintained for
each subroutine invocation.

We investigated two subroutine-based schemes. In the
nonnested approach, statistics are collected for a subroutine
and its callees. Cache size decisions for a subroutine are
based on these statistics collected for the call-graph rooted
at this subroutine. Once the cache configuration is changed
for a subroutine, none of its callees can change the
configuration unless the outer subroutine returns. Thus,
the callees inherit the size of their callers because their
statistics play a role in determining the configuration of the
caller. In the nested scheme, each subroutine collects
statistics for the period when it is the top of the subroutine

1250 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

call stack. Thus, every subroutine invocation is looked upon
as a possible change in phase.

These schemes work well only if successive invocations of
a particular subroutine are consistent in their behavior. A
common case where this is not true is that of a recursive
program. We handle this situation by not letting a subroutine
update the table if there is an outer invocation of the same
subroutine, i.e., we assume that only the outermost invoca­
tion is representative of the subroutine and that successive
outermost invocations will be consistent in their behavior.

If the stack used to checkpoint statistics overflows, we
assume that future invocations will inherit the size of their
caller for the nonnested case and will use the minimum
sized cache for the nested case. While the stack is in a state
of overflow, subroutines will be unable to update the table.
If a table entry is not found while entering a subroutine, the
default smallest sized cache is used for that subroutine for
the nested case. Since the simpler nonnested approach
generally outperformed the nested scheme, we only report
results for the former in Section 5.

3.5 T LB R econfiguration
In addition to cache reconfiguration, we also progressively
change the TLB configuration on an interval-by-interval
basis. A counter tracks TLB miss handler cycles and the
LI TLB size is increased if this counter exceeds a threshold
(3 percent in this paper) of the total execution time counter
for an interval. A single bit is added to each TLB entry that
is set to indicate if it has been used in an interval (and is
flash cleared in hardware at the start of an interval). At the
end of each interval, the number of TLB entries that have
their bit set is counted. This can be done in hardware with
fairly simple and energy-efficient logic. Similar logic that
aggregates usage information within the issue queue has
been proposed by Buyuktosunoglu et al. [11]. The LI TLB
size is decreased if the TLB usage is less than half.

For the cache reconfiguration, we chose an interval size
of 1 0 0 K cycles so as to react quickly to changes without
letting the selection mechanism pose a high cycle overhead.
For the TLB reconfiguration, we used a one million cycle
interval so that an accurate estimate of TLB usage could be
obtained. A smaller interval size could result in a high TLB
miss rate and a low TLB usage over the same interval.

3.6 E nergy-A w are M o d ifica tions
There are two energy-aware modifications to the selection
mechanisms that we consider. The first takes advantage of
the inherently low-energy configurations (those with direct-
mapped 512KB and two-way set associative 1MB LI caches).
With this approach, the selection mechanism simply uses
these configurations in place of the 768KB 3-way LI and
1MB 4-way LI configurations.

A second approach is to serially access the tag and data
arrays of the LI data cache. Conventional LI caches always
perform parallel tag and data look-up to reduce hit time,
thereby reading data out of multiple cache ways and
ultimately discarding data from all but one way. By
performing tag and data look-up in series, only the data
way associated with the matching tag can be accessed,
thereby reducing energy consumption. Hence, our second
low-energy mode operates just like the interval-based

TABLE 1
Architectural Parameters

Branch predictor comb, of bimodal & 2-level gshare;
Combining pred. entries - 1024;

bimodal - 2048 entries
Gshare - levell/2 - 1024/4096

RAS entries - 32; BTB - 2048 sets
Branch misprcd. latency 8 cycles

Fetch, decode, issue width 4
RIJIJ and LSQ entries 64 and 32

LI I-cache 2-way; 64KB (0.1/im),
32KB (0.035/tm)

Memory latency 80 cycles (0 .1/tm),
114 cycles (0.035//m)

Integer ALUs/mult-div 4/2
FP ALUs/mult-div 2 /1

scheme as before, but accesses the set-associative cache
configurations by serially reading the tag and data arrays.

3.7 L2/L3 R econfiguration
The selection mechanism for the L2/L3 reconfiguration is
similar to the simple interval-based mechanism for the
L1/L2. In addition, because we assume that the L2 and L3
caches (both conventional and configurable) already use
serial tag/data access to reduce energy dissipation, the
energy-aware modifications would provide no additional
benefit for L2/L3 reconfiguration. (Recall that performing
the tag look-up first makes it possible to turn on only the
required data way within a subarray, as a result of which,
all configurations consume the same amount of energy for
the data array access.) Finally, we did not simultaneously
examine TLB reconfiguration so as not to vary the access
time of the fixed LI data cache. The motivation for these
simplifications was due to our expectation that dynamic
L2/L3 cache configuration would yield mostly energy
saving benefits due to the fact that we were not altering
the LI cache configuration (the organization of which has
the largest memory performance impact for most applica­
tions). To further improve our energy savings at minimal
performance penalty, we also modified the search mechan­
ism to pick a larger sized cache if it performed almost
(within 95 percent) as well as the best performing cache
during the exploration, thus reducing the number of
transfers between the L2 and L3.

4 Evaluation Methodology

4.1 S im u lation M etho d o lo gy
We used Simplescalar-3.0 [10] for the Alpha AXP ISA to
simulate an aggressive 4-way superscalar out-of-order
processor. The architectural parameters used in the simula­
tion are summarized in Table 1.

The data memory hierarchy is modeled in great detail.
For example, contention for all caches and buses in the
memory hierarchy as well as for writeback buffers is

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1251

TABLE 2
Benchmarks

Benchmark Suite Datasets Simulation window (instrs) 64KB-2way LI
miss rate

% of instrs
that arc loads

em3d Olden 2 0 ,0 0 0 nodes, arity 20 1000M-1100M 2 0 % 36%
health Olden 4 levels, 1000 iters 80M-140M 16% 54%
mst Olden 256 nodes entire program 14M 8 % 18%

compress SPEC95INT ref 1900M-2100M 13% 2 2 %
hydro2 d SPEC95 FP ref 2000M-2135M 4% 28%

apsi SPEC95 FP ref 2200M-2400M 6 % 23%
swim SPEC2000 FP ref 2500M-2782M 1 0 % 25%
art SPEC2000 FP ref 300M-1300M 16% 32%

modeled. The line size of 128 bytes was chosen because it
yielded a much lower miss rate for our benchmark set than
smaller line sizes.

For both configurable and conventional TLB hierarchies,
a TLB miss at the first level results in a look-up in the
second level. A miss in the second level results in a call to a
TLB handler that is assumed to complete in 30 cycles. The
page size is 8 KB.

4.2 B enchm arks
We used a mix of programs from SPEC95, SPEC2000, and
the Olden suite [29], These programs were chosen because
they have high miss rates for the LI caches we considered.
For programs with low miss rates for the smallest cache
size, the dynamic scheme affords no advantage and
behaves like a conventional cache. The benchmarks were
compiled with the Compaq cc, f77, and f90 compilers at an
optimization level of 03. Warmup times were determined
for each benchmark and the simulation was fast-forwarded
through these phases. A further million instructions were
simulated in detail to prime all structures before starting the
performance measurements. The window size was chosen
to be large enough to accommodate at least one outermost
iteration of the program, where applicable. Table 2
summarizes the benchmarks and their memory reference
properties (the LI miss rate and load frequency).

4.3 T im in g and E nergy E stim ation
We investigated two future technology feature sizes: 0.1
and 0.035/im. For the 0.035/im design point, we use the
cache latency values of Agarwal et al. [1], whose model
parameters are based on projections from the Semiconduc­
tor Industry Association Technology Roadmap [4]. For the
0.1/im design point, we use the cache and TLB timing
model developed by McFarland [25] to estimate timings for
both the configurable and conventional caches and TLBs.
McFarland's model contains several optimizations, includ­
ing the automatic sizing of gates according to loading
characteristics, and the careful consideration of the effects of
technology scaling down to 0.1 /an technology [26], The
model integrates a fully associative TLB with the cache to
account for cases in which the TLB dominates the LI cache
access path. This occurs, for example, for all of the
conventional caches that were modeled as well as for the

minimum size LI cache (direct mapped 256KB) in the
configurable organization.

For the global wordline, local wordline, and output
driver select wires, we recalculate cache and TLB wire
delays using RC delay equations for repeater insertion [13].
Repeaters are used in the configurable cache, as well as in
the conventional LI cache, whenever they reduce wire
propagation delay.

We estimate cache and TLB energy dissipation using a
modified version of the analytical model of Kamble and
Ghose [21]. This model calculates cache energy dissipation
using similar technology and layout parameters as those
used by the timing model (including voltages and all
electrical parameters appropriately scaled for 0 .1 /im tech­
nology). The TLB energy model was derived from this
model and included CAM match line precharging and
discharging, CAM wordline and bitline energy dissipation,
as well as the energy of the RAM portion of the TLB. For
main memory, we include only the energy dissipated due to
driving the off-chip capacitive buses.

For all L2 and L3 caches (both configurable and
conventional), we assume serial tag and data access and
selection of only one of 16 data banks at each access, similar
to the energy-saving approach used in the Alpha 21164 L2
cache [9], The conventional LI caches were divided into two
subarrays, only one of which is selected at each access.
Thus, the conventional cache hierarchy against which we
compared our reconfigurable hierarchy was highly opti­
mized for fast access time and low energy dissipation.

Detailed event counts were captured during the simula­
tions of each benchmark. These event counts include all
cache and TLB operations and are used to obtain final
energy estimations.

4.4 S im u la ted C on figu ra tio n s
Table 3 shows the conventional and dynamic L1/L2
schemes that were simulated. We compare our dynamic
schemes with three conventional configurations that are
identical in all respects, except the data cache hierarchy. The
first uses a two-level noninclusive cache, with a direct
mapped 256KB LI cache backed by a 14-way 1.75MB L2
cache (configuration A). The L2 associativity results from
the fact that 14 ways remain in each 512KB structure after
two of the ways are allocated to the 256KB LI (only one of

1252 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

TABLE 3
Simulated L1/L2 Configurations

A Base excl. cache: 256KB 1-way LI & 1.75MB 14-way L2
B Base incl. cache: 256KB 1-way LI fe 2MB 16-way L2
C Base incl. cache; 64KB 2-way LI & 2MB 16-way L2
D Interval-based dynamic scheme
E Subroutine-based non-nested scheme
F Interval-based with energy-aware configurations
G Interval-based with serial tag and data access

which is selected on each access). Comparison of this
scheme with the configurable approach demonstrates the
advantage of resizing the first level. We also compare with a
two-level inclusive cache that consists of a 256KB direct
mapped LI backed by a 16-way 2MB L2 (configuration B).
This configuration serves to measure the impact of the
noninclusive policy of the first base case on performance (a
noninclusive cache performs worse because every miss
results in a swap or writeback, which causes greater bus
and memory port contention). We also compare with a
64KB 2-way inclusive LI and 2MB of 16-way L2 (config­
uration C), which represents a typical configuration in a
modern processor and ensures that the performance gains
for our dynamically sized cache are not obtained simply by
moving from a direct mapped to a set associative cache. For
both the conventional and configurable L2 caches, the
access time is 15 cycles due to serial tag and data access and
bus transfer time, but is pipelined with a new request
beginning every four cycles. The conventional TLB is a two-
level inclusive TLB with 64 entries in the first level and
448 entries in the second level with a six cycle look-up time.

For L2/L3 reconfiguration, we compare our interval-
based configurable cache with a conventional three-level
on-chip hierarchy. In both, the LI data and instruction
caches are 32KB two-way set associative with a three cycle
latency, reflecting the smaller LI caches and increased
latency likely required at 0.035/im geometries [1]. For the
conventional hierarchy, the L2 cache is 512KB two-way set
associative with a 21 cycle latency and the L3 cache is 2MB
16-way set associative with a 60 cycle latency. Serial tag and
data access is used for both L2 and L3 caches to reduce
energy dissipation (the 2 1 and 60 cycle latencies take this
serialization into account).

5 R esults

5.1 L1/L2 P erfo rm ance R esults
The performance afforded by a given cache organization is
determined greatly by the LI miss rate and, to a lesser
extent, by the LI access time. A number of programs have
working sets that do not fit in today's LI caches. For our
chosen memory-intensive benchmark set, half of the total
execution time can be attributed to memory hierarchy
accesses (as shown by later graphs). Increasing the size of
the LI and thereby reducing the miss rate has a big impact
on CPI for such programs. At the same time, the increased
access time for the LI results in poorer performance for

other non-memory-intensive programs. For example, we
observed that, for most SPEC95 integer programs, each
additional cycle in the LI access time resulted in a
4-5 percent performance loss.

The reconfigurable L1/L2 cache provides a number of
attractive design points for both memory-intensive and
non-memory-intensive applications. Programs that do not
have large working sets and do not suffer from many
conflict misses can use the smaller and faster 256KB direct-
mapped LI. Programs with large working set sizes, whose
execution times are dominated by accesses to the L2 and
beyond, can use large LI sizes so that most accesses are
satisfied by a single cache look-up. While each access now
takes longer, its performance effect is usually smaller than
the cost of a higher miss rate. Moving to a larger cache size
not only handles many of the capacity misses, it also takes
care of a number of conflict misses as the associativity is
increased in tandem. In our experiments, the combined
L1-L2 hierarchy has a 2MB capacity. If the working set of
the program is close to 2MB, the entire cache can be used as
the LI. This not only reduces the miss rate, it also eliminates
the L2 look-up altogether, reducing the effective memory
access time. Our benchmark set represents programs with
various working set sizes and associativity needs (even for
different phases of the same program) and the dynamic
selection mechanisms adapt the underlying L1-L2 cache
hierarchy to these needs. A couple of the programs also
have frequently changing needs that cannot be handled by
our simple interval-based scheme.

Fig. 5 shows the memory CPI and total CPI achieved by
the conventional and configurable interval and subroutine-
based schemes for the various benchmarks. The memory
CPI is calculated by subtracting the CPI achieved with a
simulated system with a perfect cache (all hits and one cycle
latency) from the CPI with the realistic memory hierarchy.
In comparing the arithmetic mean (AM) of the memory CPI
performance, the interval-based configurable scheme out­
performs the best-performing conventional scheme (B)
(measured in terms of a percentage reduction in memory
CPI) by 27 percent, with roughly equal cache and TLB
contributions, as is shown in Table 4. For each application,
this table also presents the number of cache and TLB
explorations that resulted in the selection of different sizes.
In terms of overall performance, the interval-based scheme
achieves a 15 percent reduction in CPI. The benchmarks
with the biggest memory CPI reductions are health
(52 percent), compress (50 percent), apsi (31 percent), and
mst (30 percent).

The dramatic improvements with health and compress are
due to the fact that particular phases of these applications
perform best with a large LI cache even with the resulting
higher hit latencies (for which there is reasonably high
tolerance within these applications). For health, the config­
urable scheme settles at the 1.5MB cache size for most of the
simulated execution period, while the 768KB configuration
is chosen for much of compress's execution period. Note that
TLB reconfiguration also plays a major role in the
performance improvements achieved. These two programs
best illustrate the mismatch that often occurs between the
memory hierarchy requirements of particular application

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1253

Fig. 5. Performance for conventional (A, B, and C), interval-based (D), and subroutine-based (E) configurable schemes. Memory CPI is shown in (a)
and CPI in (b).

phases and the organization of a conventional memory
hierarchy and how an intelligently managed configurable
hierarchy can better match on-chip cache and TLB resources
to these execution phases. Note that, while some applica­
tions stay with a single cache and TLB configuration for
most of their execution window, others demonstrate the
need to adapt to the requirements of different phases in
each program (see Table 4). Regardless, the dynamic
schemes are able to determine the best cache and TLB
configurations which span the entire range of possibilities,
for each application during execution.

For two of the programs, em3d and swim, the heuristics
choose the entire 2MB cache space as the LI for most of
their execution time. These are examples of programs that
have working sets larger than 2MB. Performance improve­
ments are seen not just because of the lower miss rate
afforded by a large LI, but also by eliminating the 15-cycle
L2 look-up altogether.

The results for art and hydroZd demonstrate how the
dynamic reconfiguration may in some cases degrade
performance. These applications are very unstable in their
behavior and do not remain in any one phase for more than

TABLE 4
Contribution to the Cache and the TLB to Speed Up or Slow

Down in the Dynamic Scheme and the Number of Explorations

Cache

contribution

TLB

contribution

Cache

expl

TLB

changes

em3d 73% 27% 10 2

health 33% 67% 27 2

mst 100% 0% 5 3

compress 64% 36% 54 2

hydro2d 100% 0% 19 0

apsi 100% 0% 63 27

swim 49% 51% 5 6

art 100% 0% 11 5

a few intervals. Art also does not fit in 2MB, so there is no
size that causes a sufficiently large drop in CPI to merit the
cost of exploration. However, the dynamic scheme identi­
fies that the application is spending more time exploring
than in stable state and turns exploration off altogether.
Since this happens early enough in the case of art (the
simulation window is also much larger), art shows no
overall performance degradation, while hydroZd has a
3 percent slowdown. This result illustrates that compiler
analysis to identify such "unstable" applications and
override the dynamic selection mechanism with a statically
chosen cache configuration may be beneficial.

In terms of the effect of TLB reconfiguration, health, swim,
and compress benefit the most from using a larger TLB.
Health and compress perform best with 256 and 128 entries,
respectively, and the dynamic scheme settles at these sizes.
Swim shows phase change behavior with respect to TLB
usage, resulting in five stable phases requiring either 256 or
512 TLB entries.

5.1.1 Reconfiguration on a Per-Subroutine B asis
Fig. 5 also allows us to compare the interval and subroutine-
based schemes. As the results show, the simpler interval-
based scheme usually outperforms the subroutine-based
approach. If the application phase behavior is data or time-
dependent rather than code location dependent, the
subroutine-based scheme will be slower to adapt to the
change. In addition, there is potential for instability across
subroutine invocations, especially if the same procedure is
called from multiple locations or phases in the program.
The exception in our benchmark suite is apsi, for which the
subroutine-based scheme improves performance relative to
the interval-based approach as each subroutine exhibits
consistent behavior across subroutine invocations. With the
interval-based scheme, apsi shows inconsistent behavior
across intervals (indicated by the large number of explora­
tions in Table 4), causing it to thrash between a 256KB LI
and a 768KB LI. However, the interval-based scheme is
better able to capture application behavior on average than
the subroutine-based scheme, in addition to being more

1254 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

TABLE 5
Latencies (in Cycles) for the Various Cache Organizations

at the Three Different Processor Frequency Points
(TLB Size Is 64 in Each Case)

Cache organization Latency

at 1GHz

Latency

at 1.5GHz

Latency

at 2GHz

256KB 1-way 2.0 3.0 4.0

512KB 2-way 2.5 4.0 5.0

768KB 3-way 2.5 4.0 5.0

1MB 4-way 3.0 4.0 6.0

1.5MB 3-way 4.0 6.0 8.0

2MB 4-way 4.5 7.0 9.0

practical since it requires simpler hardware. Hence, we use
the interval-based scheme as the basis for the rest of our
analysis.

5 .1 .2 Limiting the Exploration P rocess
The exploration process that is invoked for a few intervals on
every phase change accounts for a small portion of the total
runtime. We limited the exploration process by not evaluat­
ing larger cache configurations if the LI miss rate was less
than 1 percent. By removing this constraint and causing all
cache configurations to be evaluated on every phase change,
we saw only a 1 percent overall slowdown in CPI.

An LI miss rate of less than 1 percent indicates that the
program is not limited by L2 accesses. However, a program
may have a higher LI miss rate and yet not be limited by the
L2 accesses if the program has the ability to tolerate these
longer load latencies. Hence, to evaluate if more accurate
metrics could help limit the exploration process further, we
used miss intolerance to quantify the effect of LI misses on
the program. Miss intolerance indicates the number of
cycles that a program's completion is delayed because of
accesses to the L2 and beyond and is described in
Section 3.3. Larger cache configurations were explored only
if the LI miss intolerance exceeded a certain threshold. Only
apsi showed a 2 percent CPI improvement, with no overall
CPI improvement being registered.

Overall, limiting the exploration process by using LI
miss rates as the metric improves performance by 1
percent and using more complicated metrics does not
improve this performance by much more, indicating that
the exploration process is not a large overhead for an
interval size of 100,000 cycles.

5 .1 .3 Sensitivity to P rocessor Clock S p e e d
The above results demonstrate potential performance
improvement for one technology point and microarchitec­
ture. In order to determine the sensitivity of our qualitative
results to different technology points and microarchitectur-
al trade offs, we varied the processor pipeline speed relative
to the memory latencies (keeping the memory hierarchy
delays in ns fixed). Apart from the 1GHz processor clock
that has been used for 0.1/.t technology throughout this
paper, we also evaluated the effect of 1.5GHz and 2GHz

e-rOd h M ti mjt w m p m i hydrefid apn m n art AM

Fig. 6. Normalized CPIs with the dynamic interval-based scheme
assuming processor clock speeds of 1, 1.5, and 2GHz. The CPIs have
each been normalized to their respective base cases.

processor clocks. Table 5 summarizes the delays of the
various cache organizations at each frequency. For 1.5GHz
and 2GHz processors, the half-cycle latencies are elimi­
nated, thereby simplifying the design. Fig. 6 shows the
normalized CPIs because of the dynamic interval-based
scheme for each frequency point (the CPIs have been
normalized to their respective base cases, so a CPI of 0.9
indicates a 10 percent improvement). The overall improve­
ments for the three cases are 15 percent, 14 percent, and
17 percent, demonstrating that our results are valid for
various processor-memory speed ratios.

5.2 E nergy-A w are C on figu ra tio n R esults
In this section, we focus on the energy consumption of the
on-chip memory hierarchy. The memory energy per
instruction (memory EPI, with each energy unit measured
in nanojoules) results of Fig. 7a illustrate how, as is usually
the case with performance optimizations, the cost of the
performance improvement due to the configurable scheme
is a significant increase in energy dissipation. This is caused
by the fact that energy consumption is proportional to the
associativity of the cache and our configurable LI uses
larger set-associative caches. For this reason, we explore
how the energy-aware improvements may be used to
provide a more modest performance improvement, yet
with a significant reduction in memory EPI relative to a
pure performance approach.

From Fig. 7a, we observe that merely selecting the
energy-aware cache configurations (scheme F) has only a
nominal impact on energy. In contrast, operating the LI
cache in a serial tag and data access mode (G) reduces
memory EPI by 38 percent relative to the baseline interval-
based scheme (D), bringing it in line with the best overall­
performing conventional approach (B). For compress and
swim, this approach even achieves roughly the same energy,
with significantly better performance (see Fig. 7b) than
conventional configuration C, whose 64KB two-way LI data
cache activates half the amount of cache every cycle than
the smallest LI configuration (256KB) of the configurable
schemes. In addition, because the selection scheme auto­
matically adjusts for the higher hit latency of serial access,

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1255

Fig. 7. Results for conventional (A, B, and C), interval-based (D), and energy-aware (F and G) configurable schemes. Memory EPI (in nanoJoules) is
shown in (a) and memory-CPI in (b).

this energy-aware configurable approach reduces memory
CPI by 13 percent relative to the best-performing conven­
tional scheme (B). Fig. 8 shows memory energy-delay
product for the various configurable schemes. In compar­
ison to the conventional schemes A and B with the same
total amount of cache and TLB, our serial tag-data approach
(G) results in a 25 percent and 8 percent improvement in the
memory energy-delay product, respectively. The energy-
delay product of the interval-based scheme (D) is compar­
able to that of base case A. Thus, the energy-aware
approach may be used to provide more balanced improve­
ments in both performance and energy in portable applica­
tions where design constraints such as battery life are of
utmost importance. Furthermore, as with the dynamic
voltage and frequency scaling approaches used today, this
mode may be switched on under particular environmental
conditions (e.g., when remaining battery life drops below a
given threshold), thereby providing on-demand energy-
efficient operation.

Fig. 8. Memory energy-delay product for conventional (A, B, and C),
interval-based (D), and energy-aware (F and G) configurable schemes.

5.3 L2/L3 P erfo rm ance and Energy R esults
While LI reconfiguration improves performance, it may
consume more energy than conventional approaches if
higher LI associative configurations are enabled. To reduce
energy, mechanisms such as serial tag and data access (as
described in the previous section) have to be used. Since L2
and L3 caches are often already designed for serial tag and
data access to save energy, reconfiguration at these lower
levels of the hierarchy would not increase the energy
consumed. Instead, they stand to decrease it by reducing
the number of data transfers that need to be done between
the various levels, i.e., by improving the efficiency of the
memory hierarchy.

Thus, we investigate the energy benefits of providing a
configurable L2/L3 cache hierarchy with a fixed LI cache as
on-chip cache delays significantly increase with sub-0, lpm
geometries. Due to the prohibitively long latencies of large
caches at these geometries, a three-level cache hierarchy
becomes an attractive design option from a performance
perspective. We use the parameters from Agarwal et al. [1]
for 0.035pm technology to illustrate how dynamic L2/L3
cache configuration can match the performance of a
conventional three-level hierarchy while dramatically re­
ducing energy dissipation.

Fig. 9 compares the performance and energy of the
conventional three-level cache hierarchy with the configur­
able scheme. (Recall that TLB configuration was not
attempted, so the improvements are completely attributable
to the cache.) Since the LI cache organization has the largest
impact on cache hierarchy performance, as expected, there
is little performance difference between the two, as each
uses an identical conventional LI cache. However, the
ability of the dynamic scheme to adapt the L2/L3
configuration to the application results in a 42 percent
reduction in memory EPI on average. The savings are
caused by the ability of the dynamic scheme to use a larger
L2 and thereby reduce the number of transfers between L2
and L3. Having only a two-level cache would, of course,
eliminate these transfers altogether, but would be detri­
mental to program performance because of the large
60-cycle L2 access. Thus, in contrast to this approach of

1256 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

Fig. 9. Results for conventional three-level and dynamic cache hierarchies. Memory CPI is shown in (a) and memory EPI (in nanoJoules) in (b).

simply opting for a lower energy, and lower performing,
solution (the two-level hierarchy), dynamic L2/L3 cache
configuration can improve performance while dramatically
improving energy efficiency.

6 R e la te d W o rk
In order to address the growing gap between memory and
processor speeds, techniques such as nonblocking caches
[15] and hardware and software-based prefetching [20], [27]
have been proposed to reduce memory latency. However,
their effectiveness can be greatly improved by changing the
underlying structure of the memory hierarchy.

Recently, Ranganathan et al. [28] proposed a reconfigur-
able cache in which a portion of the cache could be used for
another function, such as an instruction reuse buffer.
Although the authors show that such an approach only
modestly increases cache access time, fundamental changes
to the cache may be required so that it may be used for other
functionality as well and long wire delays may be incurred
in sourcing and sinking data from potentially several
pipeline stages.

Dahlgren and Stenstrom [12] describe a cache whose
organization can be changed by the compiler on a per-
application basis. To handle conflict misses in a direct-
mapped cache, they break the cache into multiple subunits
and map different virtual address regions to these different
subunits. This changes the way the cache is indexed. They
also propose using different cache line sizes for different
address ranges. Veidenbaum et al. [34] also talk about such
a reeonfigurable cache, where the cache line size can be
changed dynamically based on the spatial locality exhibited
by the program. These changes are not done at the layout
level—the cache has a small line size and, depending on the
program needs, an appropriate number of adjacent cache
lines are fetched on a miss.

Albonesi [3] proposed the disabling of data cache ways for
programs with small working sets to reduce energy con­
sumption. A similar proposal by Yang et al. [35] that reduces
the number of sets in an instruction cache helps reduce
leakage power for programs with small instruction working

sets. In our approach, parts of the cache are never turned
off—their allocations between the LI and L2 are changed.

In an attempt to reduce the TLB miss rate, Romer et al.
[30] proposed the use of superpages. Contiguous virtual
addresses that are accessed simultaneously are brought
together to form a larger superpage. This requires the copy
of the different physical pages into contiguous physical
locations. In this way, a single TLB entry can then be used to
translate a much larger set of virtual addresses. While this
proves to be a very effective way to reduce TLB miss rates,
it imposes some time and space overheads to copy the
pages and to monitor and identify candidate pages for
superpage promotion. In our design, the size of the TLB is
increased to reduce the TLB miss rate and an occasional IPC
penalty is paid because of a potentially larger access time.

Various works [16], [32], [33] have characterized load
latency tolerance and metrics for identifying critical loads.
Such metrics could prove useful in determining the cache
requirements for a program phase (tolerance to a longer hit
latency, tolerance to cache misses, etc.), but we found that
such hints do not improve the performance of the selection
mechanisms.

7 C onclusions

We have described a novel configurable cache and TLB as a
higher performance and lower energy alternative to con­
ventional on-chip memory hierarchies. Cache and TLB
reconfiguration is effected by leveraging repeater insertion
to allow dynamic speed/size trade offs while limiting the
impact of speed changes to within the memory hierarchy.
Our results demonstrate that a simple interval-based
configuration management algorithm is sufficient to
achieve good performance. The algorithm is able to
dynamically balance the trade off between an application's
hit and miss intolerance using CPI as the ultimate metric to
determ ine appropriate cache size and speed. At
0.1/um technologies, our results show an average 15 percent
reduction in CPI in comparison with the best conventional
L1-L2 design of comparable total size, with the benefit
almost equally attributable on average to the configurable

BALASUBRAMONIAN ET AL.: A DYNAMICALLY TUNABLE MEMORY HIERARCHY 1257

cache and TLB. Furthermore, energy-aware enhancements
to the algorithm trade off a more modest performance
improvement for a significant reduction in energy. These
results are not qualitatively affected by changes in relative
processor speeds. Projecting to a 3-level cache hierarchy
potentially necessitated by submicron technologies, we
show an average 42 percent reduction in memory hierarchy
energy at 0.035pm technology when compared to a
conventional design.

Future work includes investigating the use of compiler
support for applications where an interval-based scheme is
unable to effectively capture the phase changes in an
application. Compiler support would be beneficial both to
select appropriate adaptation points as well as to predict an
application's working set sizes and, correspondingly, the
appropriate cache sizes. Finally, improvements at the circuit
and microarchitectural levels can be pursued that better
balance configuration flexibility with access time and
energy consumption.

A c k n o w l e d g m e n t s

The authors would like to thank the referees for numerous
valuable comments. This work was supported in part by US
National Science Foundation grants CDA-9401142, EIA-
9972881, EIA-0080124, CCR-9702466, CCR-9701915, CCR-
9811929, CCR-9988361, and CCR-9705594, by DARPA/ITO
under AFRL contract F29601-00-K-0182, and by an external
research grant from DEC/Compaq.

R e f e r e n c e s

[1] V. Agarwal, M.S. Hrishikesh, S. Keckler, and D. Burger, "Clock
Rate versus IPC: The End of the Road for Conventional
Microarchitectures/' Proc. 27th Int'l Symp. Computer Architecture
(ISCA), 2000.

[2] D.H. Albonesi, "Dynamic IPC/Clock Rate Optimization/' Proc.
25th Int'l Symp. Computer Architecture (ISCA), pp. 282-292, June
1998.

[3] D.H. Albonesi, "Selective Cache Ways: On-Demand Cache
Resource Allocation/' Proc. MICRO-32, pp. 248-259, Nov. 1999.

[4] Semiconductor Industry Assoc., "The National Technology Road­
map for Engineers/'technical report, 1999.

[5] H.B. Bakoglu and J.D. Meindl, "Optimal Interconnect Circuits for
VLSI/' IEEE Trans. Computers, vol. 34, no. 5, pp. 903-909, May 1985.

[6] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas, "Dynamic Memory Hierarchy Performance Optimi­
zation/' Proc. Workshop Solving the Memory Wall Problem, June
2 0 0 0 .

[7] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas, "Memory Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor Architectures/' Proc.
MICRO-33, pp. 245-257, Dec. 2000.

[8] P. Bannon, "Alpha 21364: A Scalable Single-Chip SMP/' Micro­
processor Forum, Oct. 1998.

[9] W.J. Bowhill et al., "Circuit Implementation of a 300-MHz 64-Bit
Second-Generation CMOS Alpha CPU/' Digital Technical J., vol. 7,
no. 1, pp. 100-118, 1995.

[10] D. Burger and T. Austin, "The Simplescalar Toolset, Version 2.0/'
Technical Report TR-97-1342, Univ. of Wisconsin-Madison, June
1997.

[11] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and
D.H. Albonesi, "A Circuit Level Implementation of an Adaptive
Issue Queue for Power-Aware Microprocessors/' Proc. 11th Great
Lakes Symp. VLSI, Mar. 2001.

[12] F. Dahlgren and P. Stenstrom, "On Reconfigurable On-Chip Data
Caches/' Proc. MICRO-24, 1991.

[13] W.J. Dally and J.W. Poulton, Digital System Engineering. Cam­
bridge, U.K.: Cambridge Univ. Press, 1998.

[14] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D.H.
Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis, and M.L. Scott,
"Integrating Adaptive On-Chip Storage Structures for Reduced
Dynamic Power/' Proc. 11th Int'l Conf. Parallel Architectures and
Compilation Techniques, Sept. 2002.

[15] K.I. Farkas and N.P. Jouppi, "Complexity/Performance Tradeoffs
with Non-Blocking Loads/' Proc. 21st Int'l Symp. Computer
Architecture (ISCA), pp. 211-222, Apr. 1994.

[16] B. Fisk and I. Bahar, "The Non-Critical Buffer: Using Load Latency
Tolerance to Improve Data Cache Efficiency/' Proc. IEEE Int'l Conf.
Computer Design, Oct. 1999.

[17] J. Fleischman, private communication, Oct. 1999.
[18] L. Gwennap, "PA-8500's 1.5M Cache Aids Performance/' Micro­

processor Report, vol. 11, no. 15, 17 Nov. 1997.
[19] J.L. Hennessy, "Back to the Future: Time to Return to Some Long

Standing Problems in Computer Systems?/' Proc. Federated
Computer Conf., May 1999.

[20] N.P. Jouppi, "Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers/' Proc. 17th Int'l Symp. Computer Architecture (ISCA),
pp. 364-373, May 1990.

[21] M.B. Kamble and K. Ghose, "Analytical Energy Dissipation
Models for Low Power Caches/' Proc. Int'l Symp. Low Power
Electronics and Design, Aug. 1997.

[22] R. Kessler, "The Alpha 21264 Microprocessor/' IEEE Micro, vol. 19,
no. 2, pp. 24-36, Mar./Apr. 1999.

[23] A. Kumar, "The HP PA-8000 RISC CPU/' Computer, vol. 17, no. 3,
pp. 27-32, Mar. 1997.

[24] G. Lesartre and D. Hunt, "PA-8500: The Continuing Evolution of
the PA-8000 Family/' Proc. Compcon, 1997.

[25] G.W. McFarland, "CMOS Technology Scaling and Its Impact on
Cache Delay/' PhD thesis, Stanford Univ., June 1997.

[26] G.W. McFarland and M. Flynn, "Limits of Scaling MOSFETS/'
Technical Report CSL-TR-95-62, Stanford Univ., Nov. 1995.

[27] T.C. Mowry, M.S. Lam, and A. Gupta, "Design and Evaluation of
a Compiler Algorithm for Prefetching/' Proc. Fifth Int'l Conf
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-V), pp. 62-73, Oct. 1992.

[28] P. Ranganathan, S. Adve, and N.P. Jouppi, "Reconfigurable
Caches and Their Application to Media Processing/' Proc. 27th
Int'l Symp. Computer Architecture (ISCA), pp. 214-224, June 2000.

[29] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, "Supporting
Dynamic Data Structures on Distributed Memory Machines/'
Trans. Programming Languages and Systems, Mar. 1995.

[30] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad, "Reducing TLB
and Memory Overhead Using Online Superpage Promotion/'
Proc. 22nd Int'l Symp. Computer Architecture (ISCA), 1995.

[31] G.S. Sohi, "Instruction Issue Logic for High-Performance, Inter-
ruptible, Multiple Functional Unit, Pipelined Computers/' IEEE
Trans. Computers, vol. 39, no. 3, Mar. 1990.

[32] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson, "Locality vs.
Criticality/' Proc. 28th Int'l Symp. Computer Architecture (ISCA),
pp. 132-143, July 2001.

[33] S.T. Srinivasan and A.R. Lebeck, "Load Latency Tolerance in
Dynamically Scheduled Processors/' /. Instruction-Level Parallelism,
vol. 1, Oct. 1999.

[34] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji,
"Adapting Cache Line Size to Application Behavior/' Proc. Int'l
Conf Supcrcomputing (ICS), 1999.

[35] S. Yang, M.D. Powell, B. Falsafi, K. Roy, and T.N. Vijaykumar,
"An Integrated Circuit/Architecture Approach to Reducing
Leakage in Deep-Submicron High-Performance I-Caches/' Proc.
Seventh Int'l Symp. High-Performance Computer Architecture
(HPCA-7), Jan. 2001.

[36] K.C. Yeager, "The Mips R10000 Superscalar Microprocessor/'
IEEE Micro, vol. 16, no. 2, pp. 28-41, Apr. 1996.

1258 IEEE TRANSACTIONS ON COMPUTERS, VOL 52, NO. 10, OCTOBER 2003

Rajeev Balasubramonian received the BTech
degree in computer science and engineering
from the Indian Institute of Technology, Bombay,
in 1998, and the MS degree in computer science
from the University of Rochester in 2000. He is a
PhD candidate in the Department of Computer
Science at the University of Rochester. His
research focuses on high performance computer
architectures, given the constraints of wire-delay
dominated future technologies.

David H. Albonesi received the BSEE degree
from the University of Massachusetts Amherst in
1982, the MSEE degree from Syracuse Uni­
versity in 1986, and the PhD degree in electrical
and computer engineering from the University of
Massachusetts Amherst in 1996. He is an
associate professor of electrical and computer
engineering at the University of Rochester and
codirector of the Advanced Computer Architec­
ture Laboratory. Prior to receiving his PhD, he

held technical and management leadership positions for 10 years at IBM
Corporation (1982-1986) and Prime Computer, Incorporated (1986­
1992). The primary focus of his industry work was on the micro­
architecture of low-latency, high-bandwidth memory hierarchies for high
performance processors, the design of shared memory multiprocessor
systems, and the development and application of architectural evalua­
tion and hardware emulation tools. At Rochester, he leads the
Complexity-Adaptive Processing (CAP) project and is also conducting
research in the design and application of dynamic data dependence
tracking hardware, multithreaded architectures, VLIW architectures for
voice and video applications, adaptive clustered microarchitectures, and
power-efficient highly available systems. He received a US National
Science Foundation CAREER Award and IBM Faculty Partnership
Awards in 2001 and 2002. He cofounded the Workshop on Complexity-
Effective Design that has been held the last three years at the
International Symposium on Computer Architecture. He holds five US
patents and is a senior member of the IEEE and a member of the IEEE
Computer Society.

Alper Buyuktosunoglu received the BS degree
in electrical and electronics engineering from
Middle East Technical University, Ankara, Tur­
key, in 1998, with honors, and the MS degree in
electrical and computer engineering from the
University of Rochester, Rochester, New York,
in 1999. He is pursuing the PhD degree at the
University of Rochester. He is currently a
research engineer at the IBM T.J. Watson
Research Center. His research interests include:

high-performance, low power computer architectures and digital micro­
electronic design. He is a student member of the IEEE.

Sandhya Dwarkadas received the BTech de­
gree in electrical and electronics engineering
from the Indian Institute of Technology, Madras,
India, in 1986, and the MS and PhD degrees in
electrical and computer engineering from Rice
University in 1989 and 1993, respectively. She is
an associate professor of computer science at
the University of Rochester. From 1992-1996,
she was a research scientist in the Computer
Science Department at Rice University. Her

research interests lie in computer architecture, parallel and distributed
systems, compiler/architecture/runtime interaction, simulation methodol­
ogy, and performance evaluation. The projects she has worked on
include the Rice Parallel Processing Testbed, an execution-driven
simulation system, the design of Willow, a high-performance parallel
architecture, FASTLINK, a software package for sequential and parallel
genetic linkage analysis, and TreadMarks and Cashmere, software
distributed shared memory systems. Her current focus is on adaptive
high-performance and energy-efficient architectures as well as support
for shared state in distributed systems. She has been the recipient of a
US National Science Foundation (NSF) CISE Experimental Science
Postdoctoral Fellowship (1993-1995) and an NSF CAREER Award
(1997-2000). She is an associate editor of the IEEE Transactions on
Parallel and Distributed Systems and a member of the IEEE and IEEE
Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

http://computer.org/publications/dlib

