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Spectral analysis of near threshold random lasers 
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~ Abstract 
~ 

~ Emission spectra from random lasing systems typically have numerous narrow resonant lines. 
n 
H 
~. When excited very near to the laser threshold there are fewer resonant lines which clarify the 
rt 

C 
C 

emission spectrum analysis. We studied three different random lasing systems including n-

conjugated polymer films, zinc oxide and Ti02 scatterers in dye solution. Fourier transform 

analysis of the laser emission spectra near threshold of each system shows that all the sharp 

lines are highly correlated, indicating that they originate from a single high symmetry resonant 

structure. The naturally formed microresonators have a circular geometry in the two

dimensional films, and transient spherical geometry in the scatterers/dye suspension. 

Highlights 

• Near threshold random lasing spectra are based on circles or spheres. 

• The Fourier transform provides information to assign the emission peaks. 

• The same analysis works for multiple random lasing systems. 

Keywords: random lasing, Fourier transform, microresonator 

1. INTRODUCTION 

Disordered optical gain systems that produce laser emission with sharp resonant lines, but 

without an engineered cavity are grouped under the term "random lasers" (RL). There are 

many examples of RL systems such as: powders of laser crystals [1], dye and scatters in 

suspension [2], clusters of nanoparticles [3] , films of n-conjugated polymer [4] liquid crystals 

and dye [5], stacks of slides and dye[6]. Usually random lasing emission spectra are obtained 

with excitation intensity far above lasing threshold, and thus their spectra contain numerous 

narrow lines (>20) on top of a broader background of amplified spontaneous emission (ASE); 

this complicates the analysis of the RL emission spectrum. In spite of this complication 
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several different theoretical models have been advanced recently that yield a variety of 

uncorrelated laser lines for explaining the obtained RL spectra [7-10]. 

In contrast, in this work we look at RL spectra that are obtained just above lasing threshold. 

We studied RL spectra near threshold excitation in three organic disordered gain systems, 

namely suspension of dyes and Ti02 scatterers, zinc oxide (ZnO) films, and n-conjugated 

polymer films. Since there are fewer resonant lines in the emission spectrum near threshold 

excitation, it allows us to present a more credible analysis of the emission spectrum. Using 

Fourier transform analysis we found that the RL resonant lines are highly correlated and thus 

originate from a single resonance structure in each system. 

2. EXPERIMENTAL 

The basic measurement was the same for the three systems. The excitation was from a 

Nd:Yag based regenerative amplifier with pulse width of 100 ps and repetition rate ranging 

from 100 to 800 Hz. The output of the amplifier is either frequency doubled to 532 nm (for the 

dye and polymer systems), or frequency tripled to 355 nm (for the ZnO system). The emission 

spectra were collected, focused on the entrance slit of a spectrometer to disperse the 

spectrum, and then detected with a CCO camera coupled to a computer. 

The n-conjugated polymer used here was poly(2,5-dihexyloxy-p-phenylenevinylene) (OHO

PPV) that we synthesized in house [16]. The polymer chain isomerization length determines 

the solubility, and therefore when choosing a long chain isomerization length and poor 

solvent, the polymer powder may dissolve, but also form aggregates [15]. The aggregates act 

as scatterers and both the film and aggregates play an important role in defining the 

disordered gain medium. The polymer was dissolved in heated toluene, and subsequently 

allowed to cool down to room temperature. From this solution, a 1 ~m thick film was spun cast 

on a glass substrate. Since the refractive index, n of the polymer at the laser wavelength (n = 

1.8) is larger than that of glass (n = 1.4), then the luminescent emission is mostly confined 

inside the polymer film to form a two-dimensional (20) disordered gain medium. 

The zinc oxide film was made from 100 nm nanoclusters. The nanoclusters were suspended 

in ethanol and then deposited on a glass substrate. A conglomerate of about 40 microns was 

used for the measurements. In this case the ZnO nanoparticles are both the gain medium and 

scatterers. 

The dye and scatterers suspension is rhodamine 6G dissolved in ethylene glycol at a 

concentration of 2 mM, that was mixed with 200 nm diameter Ti02 scatterers at a 
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concentration of 1010 cm-3• The excitation light was focused into a stripe 8 mm long and ,...,100 

micron wide, with the emission collected from the long end of the stripe. The RL emission 

spectrum contains only a few sharp lines that are well separated. However we note that the 

spectrum is time dependent, namely it changes dramatically after about 1 millisecond, due to 

the strong diffusion of scatterers that occurs in the suspension. 

3. RESULTS AND DISCUSSION 

Random lasing of n-conjugated polymer films has been well studied over the last dozen years 

[11-13]. Recently spectral mapping of spatial RL emission showed a roughly circular emission 

region [11, 14]. Here we investigate the emission modes of such system in detail and use the 

analysis as a prototype for other random lasing systems. The random lasing polymer film has 

an advantage over other RL systems, since both the gain medium and scatterers are 

embedded in the same material. 

Figure 1 (a) is the RL emission spectrum of the DHO-PPV film excited just above the laser 

threshold. Typically, the RL emission spectrum contains very narrow lines superposed on a 

broader ASE background [13]. Since excitation is near threshold, the RL emission spectrum 

contains a limited number of narrow and well separated peaks. To perform a spectral analysis 

of Fig. 1 (a) the tool we chose is the power Fourier transform of the emission spectrum [17]. 

The Fourier transform is usually applied to data that is a time series to try and determine 

repeating patterns, and resonant frequencies within the data. When applied to an emission 

spectrum, Fourier transform can reveal the existence of regularities or correlation that exist 

among the observed peaks. For example, the Fourier transform peak spacing for a linear 

cavity occurs at nL/n, where n is the index of refraction and L is the separation between the 

two end mirrors. The polymer film is roughly one wavelength thick and covers a large 2D 

plane. In a thin polymer film, a linear cavity may not be applicable and some other resonance 

geometry should be appropriate. The highest symmetry 2D structure is a circle. Previous 

analysis of fabricated circular microcavities correlated emission laser lines as series of 

successive integer Bessel functions, Jm [16, 18]. In that analysis, a simplifying approximation 

was made that the argument of the Bessel function goes to zero at the cavity boundary: 

Jm(nnD/A) = 0, (1 ) 

where D is the circular cavity diameter. The zero condition can be written as Zm,p = nnD/A, 

where Zm,p is the pth zero of Bessel function indexed m. Zeros of Bessel functions are 

numbers that can be calculated with various commercial software packages. In contrast to a 
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linear cavity, the peak spacing, ~d in the Fourier transform of a 20 circular structure occurs at 

n0/2, where n is the refraction index. With the product of nO obtained from the Fourier 

transform of the laser spectrum, the resonant wavelengths can be calculated. Previous 

coherent backscattering measurements have shown the mean free path in the polymer film to 

be about 12 11m [19]. This is considered to be a weak scattering regime that is far from 

Anderson localization, where the scattering length is close to the emission wavelength. 

Figure 1 (b) is the power Fourier transform (PFT) of Fig. 1 (a). Typically the units of the 

Fourier transform are the inverse of the original variable; to have more meaningful results the 

emission spectrum is first converted to wavenumber (2rr/A) and then transformed. The 

resulting units are in length and termed pathlength. Our analysis of the laser spectrum is 

applied to the most intense peak at 634.5 nm. The product of nO/2 that is extracted from ~d in 

the PFT (Fig. 1 (b)) is 66.7 11m. Plots of higher order Bessel functions, In(x), show that 

maximum intensity is near the first zero of the function. The simplest field structure has a 

single maximum in the radial function. We start by looking through a table of the first zeros of 

high index Bessel functions. Bessel function number 644 has the first zero, Z644,1 of 660.1, 

from which we get using Eq.(1) a resonant emission line at 634.37 nm. The neighboring 

peaks can be assigned in the same manner. Using the same value of nO allows four major 

peaks in the spectrum corresponds to successive Bessel functions from Z644,1 ( A = 634.37 

nm) to Z647,1 (A = 631.53 nm). The filled symbols in Fig. 1 (a) show the predicted 

wavelengths, see inset to Fig. 1 (b). These four peaks have a 0.067 nm RMS difference 

between measured and calculated values. 

There are four more candidate peaks at lower wavelengths that correspond to the next four 

Bessel functions. Unfortunately, the signal to noise ratio is too small to accurately discern 

these emission peaks. However our analysis allows eight successive peaks to be assigned 

with RMS of 0.154 nm (Fig. 1 (b) inset) where the hollow symbols in Fig. 1 (a) show the 

predicted wavelengths. This assignment procedure has no adjustable parameters, and only 

assumes a circular resonator. The Bessel function order, m, is selected to be the closest 

value to the most intense line. We note that with previous fabricated cavities, the analysis 

worked equally well for a disk or a ring microcavity [16, 18]. 

Figure 1 (a) and its analysis indicate that all observed peaks in the RL emission spectrum 

near threshold excitation are in fact correlated to one another, and thus originate from a 

unique underlying resonance structure in the film. Matching a random lasing spectrum with a 

circular resonator is surprising. However, there are actually several theoretical works that 

directly support such a resonance structure. A few works explicitly show that circular rings are 
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likely resonance structures that can be formed in disordered films [20, 21]. A random media 

with a disk excitation has been calculated, and its mode structures show the existence of 

modes at the boundary [22] that may interact stronger than previously anticipated in the 

polymer film. In coherent backscattering experiments, there is experimental evidence for 

recurrent multiple scattering, or loops, in strong scattering regimes [23]. We thus infer that in 

our weakly scattering sample multiple scattering loops might be present, though with a much 

lower likelihood of occurrence. There is a theoretical work which discuss random lasing films 

and argues that local regions produce lasing emission [24]. 

As a random lasing system, there is nothing particularly unique about the n-conjugated 

polymer. The same analysis can easily be applied to other random lasing systems. Another 

popular random lasing system is microcrystaline ZnO [3, 25-27]. In this system, micro or 

nano crystaline ZnO provide both gain medium and scattering mechanism. Fig. 2 (a) shows 

an SEM micrograph of a conglomerate optically excited with a size roughly 40 11m. Fig. 2 (b) 

shows the emission spectrum of the entire conglomerate. 

The PFT of Fig. 2 (b) is presented in Fig. 2 (c). The highest intensty peak in the emission 

spectrum occurs at 380.7 nm. Taking the highest intensity PFT harmonic ~ = 21.711m gives a 

value of nD which can be used to calculate an expected peak. The first zero of Bessel 

function 345 is 368.13 which gives a calculated emission peak of 380.6 nm. Taking the ZnO 

refraction index of 2.3 gives a diameter of 19 11m. This value fits within the physical size of the 

conglomerate shown in the picture. As with the polymer film, a series of successive Bessel 

functions from J351 (A = 374.1 nm) to J342 (A = 384.2 nm) matches most of the sharp 

emission peaks in the RL spectrum. The RMS is 0.18 nm for 10 peaks. 

There is a noticeable peak at 381.3 nm which is not within this series. Since the Fourier 

transform spectrum is more complicated, the next most intense peak PFT harmonic ~I = 13.3 

11m in Fig. 2(c) is used to calculate a second series of emission peaks in ZnO. The same nD 

value matches the emission peak at 381.2 nm using J2oa. We note that several emission 

peaks from both series overlap in the emission spectrum. For example, the observed line at 

379.4 nm has predicted peaks in both series at 379.5 predicted value, for both 1=21 and 1=13. 

There are 7 possible peaks assigned by this series with an RMS value of 0.40 nm. Actually in 

the ZnO conglomerate cluster we used there are two circular configurations, and the resulting 

emission spectrum is a composite of each structure's individual spectrum. The physical size 

of the conglomerate puts an upper limit on the possible resonator size. We note that both 

resonator lengths fit within this conglomerate. 
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To further emphasize the generality of this approach, a third random laser system is 

investigated. The same analysis can readily be applied to a suspension of Ti02 scatterers in 

a laser dye [2, 28]. Figure 3 (a) shows the RL emission spectrum from a dye and scatterers 

suspension pumped just above laser threshold at an intensity of 170 mJ/cm2, that was 

collected in an interval of 10 miliseconds. The emission peaks seen in Fig. 3 (a) are narrow 

which again suggests a well confined underlying resonance. Figure 3 (b) is the PFT of Fig.3 

(a). There are very distinct peaks which indicate the existence of a strong correlation that may 

be due to a resonance structure that is transiently formed. The highest symmetry structure in 

three dimensions is a sphere. The same analysis as above for 20 films is attempted here with 

the modification that spherical Bessel functions are used: In(x) = (n/2X)1/2 I n+112(X), where 

I n+112(X) is a regular Bessel function [29]. We look at modes without azimuthal contributions, 

since they have smallest energy. 

This analysis is applied to Fig. 3 (a) by first observing the most intense peak at 562.5 nm. The 

value nO from the FT in Fig. 3 (b) is 192.6. Looking through a table of the first zeros of high 

index spherical Bessel functions shows that Bessel function number 1048 has the first zero at 

a value of 1067.4. Using these values gives a predicted emission peak at 562.4 nm. The 

neighboring peaks can be assigned in the same manner. Using this nO value allows nine 

peaks in the spectrum to be assigned to successive spherical Bessel functions, j1053 at 559.8 

nm to j1045 at 564.1 nm. There are additional three peaks that are likely present, but the signal 

to noise ratio for these is low, and the observed peaks are difficult to ascertain in the emission 

spectrum. All together, twelve peaks are assigned with a 0.09 nm RMS difference between 

measured and calculated values. The inset to Fig. 3 (b) shows the difference between 

measured and calculated peaks wavelengths, the largest difference is 0.18 nm. Not only are 

all the major peaks determined with this procedure, but even small wiggles that are first 

overlooked are actually additional resonances. 

We now discuss situations where a circular resonance structure can explain unexpected RL 

spectra. Figure 4 is a RL spectrum from the dye and Ti02 suspension; it is striking because it 

shows only a single emission line. Nevertheless, we attempt to explain it with an underlying 

spherical structure. The spectral gain width for rhodamine 6G in solution is about 8 nm. 

Taking an arbitrary but small size of nO of 20 11m gives spherical Bessel functions j103 to match 

the peak at 566.6 nm. For j101 to j105 a peak spacing M for spherical cavities is about 5.2 nm. 

The inset in 4 shows the rhodamine gain spectrum and next peaks for nO of 20 11m. Only the 

peak at 566.60 nm has enough gain to overcome losses. If a small spherical resonance 

structure forms, there would be only a single line which falls within the gain spectrum of the 

dye, and this explains the RL spectrum having a single resonant line. 
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In summary, we presented random lasing spectra from three different organic disordered gain 

media that were excited just above lasing threshold. Each spectrum contains only few narrow 

emission lines, in contrast to many such lines that develop at much higher excitation intensity. 

Using Fourier transform analysis we show that the emission lines are not independent, but 

are actually highly correlated coming from a simple underlying resonance structure within the 

gain medium. High symmetry microcavities are in excellent agreement with the RL emission 

spectra in these systems. When the excited circular or spherical resonance structure crosses 

lasing threshold, a series of emission modes are produced that correspond to successive 

Bessel functions. Circular microcavities in 2D and spherical cavities in 3D explain the random 

lasing quite naturally in these three systems, and thus may be studied more thoroughly to 

deepen our understanding of RL in disorder gain media. 
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FIG_ 1: (Color online) (a) Random laser emission spectrum from a DOOPPV poly- mer film 
near threshold excitation. (b) Power Fourier transform of (a)_ (b) inset: Difference between 
observed and calculated peak positions (see text). 
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FIG. 4: (Color online) (a) Random lasing in rhodamine 6G dye and Ti02 scatterers that shows 
a single line. Inset: gain profile of rhodamine 6G and peak spacing for nD=20 11m, (see text). 


