
Automatic Synthesis of Fast Compact
Self-Timed Control Circuits

Bill Coates
A1 Davis

K enneth S. Stevens*

H ew lett-Packard Laboratories
Palo Alto, CA USA

*D epartm ent of Com puter Science
University Of Calgary

Calgary, A lberta T2N 1N4
C anada

ABSTRACT

We present a tool called M EAT which has been designed to autom atically synthesize transistor
level, CMOS, self-timed control circuits. M EAT has been used to specify and synthesize self-timed
circuits for a fully self-timed 300,000 transisto r com m unication coprocessor. The design is specified using
finite sta te machines which perm it burst-mode inputs. Burst.-mode is a lim ited form of MIC (multiple
input change) signalling. The prim ary goal of MEAT is to produce fast and com pact circuits. In order to
achieve this goal, M EAT im plem entations perm it tim ing assum ptions which can be verifiably supported
at the physical im plem entation level, and result in significant im provem ents in speed and area of the
design. Since M EAT has been used for large designs, we have also been forced to make the algorithm s
efficient. The result is a tool which is efficient, easy to use by to d a y ’s hardw are designers since the
specification is based on the commonly used finite sta te machine control model, and synthesizes CMOS
transisto r im plem entations th a t are self-timed, fast and com pact. The paper presents a description of
the tool, the nature of the algorithm s used, and examples of its use.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 In trod uction

Three m ajor constraints - speed of operation, size, and design tim e m ust be considered w ith any large
chip design, be it a commercial product or a laboratory prototype. As in tegrated circuit technology
improves, the am ount of logic th a t can be placed on a VLSI circuit increases quadratically, and the
speed of the com ponents become faster linearly. W ithou t im provem ent in design methodology, the
design tim e of circuits will increase at least quadratically. In addition, synchronous design techniques
are facing critical design and perform ance difficulties as circuit complexity escalates due to a num ber of
prim ary factors:

• It is becoming extrem ely costly to m anage quadratically narrowing clock skew requirem ents.

• An increasingly d isproportionate am ount of power m ust be budgeted to the global clock lines. For
example, the DEC A lpha CPU [7] uses 17 w atts of the chip’s massive 30 w att power budget to
drive the clock.

• Increm ental perform ance im provem ents in a synchronous design are extrem ely costly due to the
global nature of the synchronous tim ing model.

One clear alternative is to adopt an asynchronous design style. M any proponents would also argue
th a t asynchronous circuits are inherently faster since they are controlled by locally adaptive tim ing ra ther
th an the usual global worst-case clock frequency constraints. W hile we believe th a t this claim has m erit,
we feel th a t in general it is m isleading. A synchronous circuits usually require more com ponents to
im plem ent the same function. This may result in longer wires, increased area, and reduced perform ance.
Perform ance is lost in synchronous system s where there is a significant difference betw een the average
and the worst case operation delay since the clock period has to accom m odate the worst case. A simple
example of this is seen in ripple carry arithm etic circuits, where operational delay is dom inated by the
carry propagation tim es and where the average carry only propagates a short distance. In this simple
case, it is relatively inexpensive to adopt more sophisticated carry chain circuits in order to narrow
the average to worst case difference. W hen com pared to a well tuned synchronous design where this
difference is small, a functionally equivalent asynchronous im plem entation may actually run slightly
slower. Hence the perform ance advantage of asynchronous circuits, while often valid, m ust be analyzed
carefully. In practice the speed of a design is more dependent on the quality of the design and the
fabrication process. O ur experience has been th a t, for large designs, it is easier to achieve the necessary
quality using an asynchronous style th an it is in the synchronous discipline prim arily due to the speed
and simplicity obtained from localized com m unication and control. The speed of asynchronous circuits
has been dem onstrated to be on par w ith th a t of synchronous versions[12,14].

The lack of a global clock in asynchronous designs inherently elim inates the clock skew and dispro­
portionate clock power budget problems. The down-side is th a t asynchronous circuit im plem entations
m ust be hazard free which inherently requires additional logic and more careful design. Fortunately these
issues need to be considered only a t the lowest level and therefore do not become in tractab le concerns
as the design becomes complex.

Perhaps the clearest advantage th a t asynchronous designs have over the synchronous approach
is functional m odularity. Asynchronous design modules inherently keep tim e to themselves, whereas
the tim ing model intrinsic to synchronous m ethods applies globally. The result is th a t a change to a
synchronous module often requires concom itant changes in the other system modules. Asynchronous
system modules connect to other system modules through a functional interface which encodes the
tem poral constraints. These interfaces impose sequencing constrain ts on the interconnected modules
and frees them from the need to operate consistently in a global tim ing model [17]. Hence a change in
some module, which significantly changes the modules perform ance bu t not its interface will not require

2

changes in other modules to m aintain the functional consistency of the system. As system complexities
escalate, the need to produce designs as composable modules becomes m andatory. Design tim e and
design perform ance have become equally critical success factors. In addition the ability to reuse modules
of previous designs can be an im portan t way to save on the design tim e of subsequent efforts. Reuse of
asynchronous modules is extrem ely simple while adapting synchronous modules to a new global tim ing
model is potentially very costly.

Still, after a half century of synchronous design m om entum there is m uch to inhibit a change to
asynchronous design:

1. For board level designs, there is little in the way of an asynchronous com ponent selection.

2. Complex designs require sophisticated electronic CAD tool kits, and these tools have been con­
structed to support synchronous design styles.

3. There is a huge pool of experienced synchronous designers who have dem onstrated their ability to
produce complex working system s. A significant style change will be painful.

The first problem can be bypassed if the design is an IC ra ther th an a board. Recently there have
been several a ttem pts which, like M EAT, represent a s ta rt on a solution to the second problem . The th ird
problem is significant and will likely take considerable tim e to solve completely bu t to d a y ’s hardw are de­
signers are relying on increasingly sophisticated synthesis tools in their CAD suite to produce/synthesize
the im plem entation from a design specification. If an asynchronous synthesis tool perm itted a similar
specification style then the change would be less traum atic . This has been our approach w ith MEAT.
Hardw are designers are used to thinking in term s of finite s ta te machines for control and separate d a ta ­
p a th form ulation as their design en try specification. It is our view th a t asynchronous and synchronous
d a tap a th design techniques are quite similar, whereas the im plem entation stra tegy for the asynchronous
control com ponents, i.e. the finite sta te machines, m ust satisfy some additional constraints. Most of
this additional burden is handled by the M EAT tools. The result is th a t an experienced synchronous
circuit designer will notice a very minor conceptual shift in order to use M EAT in the creation of an
asynchronous design.

M EAT is by no means complete or totally original. M EAT is best viewed as an ensemble of
m ethods for asynchronous finite sta te m achine synthesis, m any of which were created elsewhere bu t
modified to suit our needs in the im plem entation of M EAT. Hence the nam e M EAT for Modified Ensem ble
Asynchronous Tool.

All asynchronous design styles are fundam entally concerned w ith the synthesis of hazard free
circuits. To avoid subsequent confusion, we use the following term s:

• Self-timed and asynchronous are general term s used to describe any circuit th a t is not synchronous
and therefore exhibits hazard free behavior under some conditions. We use them synonymously.

• Delay-insensitive circuits exhibit hazard free behavior w ith a rb itra ry delays assigned to bo th wires
and gates.

• Speed-independent circuits exhibit hazard free behavior w ith a rb itra ry gate delays bu t assume zero
delay wires.

There are a large num ber of ra ther different design styles in to d ay ’s asynchronous design com­
munity. One partition of design styles can be based on the type of asynchronous circuit target: locally
clocked [23,11,6], delay-insensitive [15,2,33,20], or various forms of single- and multiple- input change
circuits [31]. Yet another distinction could be m ade on the natu re of the control specification: graph
based [24,18,34,4], program m ing language based [15,2,33,1], or finite s ta te m achine based [23,11]. For

3

the finite sta te m achine based styles, there is a fu rther distinction th a t can be m ade based on the m ethod
by which sta te variables are assigned [13,29]. The design style space is large and each design style has
its own set of m erits and dem erits. It is worthwhile to note th a t v irtually all of the design styles focus
on the design of the control pa th of the circuit since there is little to distinguish the asynchronous and
synchronous d a tap a th design styles.

The m ethods which produce delay-insensitive circuits, while not perfect [16], are the m ost to lerant
of variations in device and wire delays. This tolerance improves the probability th a t a properly designed
circuit will continue to function under variations in supply voltage, tem perature, and process param eters.
We chose to slightly expand the dom ain of tim ing assum ptions which m ust rem ain valid to retain
hazard free im plem entation since this perm its higher perform ance im plem entations at the expense of
reduced operational tolerance. O ur view is m otivated by the reality th a t our designs have to meet
certain perform ance requirem ents. For any given layout and fabrication process, we have models which
predict the speeds of the wires and transistors for the desired operational window. We also know the
percentage of error th a t can be to lerated in those predictions. We could not live w ith a rb itrary delays
for perform ance reasons and therefore it seems im practical to assume arb itrary delays in order to ensure
hazard free operation of the circuits. The approach taken in M EAT has therefore been to insure hazard
free operation under sets of tim ing assum ptions th a t can be verified as being w ithin acceptable windows
of fabrication and operational tolerance.

Compiled im plem entations based on program m ing language like specifications [15,2,33,1], while
elegant and robust, suffer in perform ance because they are presently compiled into in term ediate library
modules ra ther th an into optim ized transisto r networks. The module of greatest concern is the C-element..
C-element.s are common circuit modules in asynchronous circuits and elim inating them completely is
unlikely. However it has been our experience over the past decade th a t C-element.s are sim ilar to
the proverbial G O TO statem ents in program m ing languages, i.e. too m any of them are indications
of serious trouble. C-element.s are stylized latches and as such are synchronization points. Too much
synchronization reduces parallelism and perform ance. Our design style does not. use C-element.s for finite
sta te m achine im plem entations, although our designs do use C-element.s sparingly in interface circuits
such as arbiters.

In order to achieve the necessary hazard free asynchronous finite sta te m achine (AFSM) imple­
m entation, it. is necessary to place constrain ts on how their inputs are allowed to change. The most,
common is the single input change or SIC constraint. [31]. SIC circuits inherently require sta te transi­
tions after each input, variable transition . In cases where the next, interesting behavior is in response
to m ultiple input, changes, the circuit, response will be artificially slow, either due to too m any sta te
transitions or due to the external arbiters required to sequence the m ultiple inputs. Multiple input
change or MIC circuit, design m ethods have been developed [31,5] but. either required input, restrictions
or im plem entation techniques that, were unsuitable for our purposes. As a result, we developed a design
style that, we call b u rst-m od e which perm its a certain style of m ultiple input, change. Our burst.-mode
im plem entation m ethod does not. require perform ance inhibiting local clock generation or flip-flops.

D uring the development, of MEAT, we were fortunate to have Steve Nowick, a m em ber of David
D ill’s Stanford U niversity research group, spend two summers w ith us. He incorporated David D ill’s
verifier [8] into the tool kit., and modified the verifier to accom m odate our burst.-mode tim ing model and
our tim ing assum ption based, perform ance oriented design style. Subsequently the HP and Stanford
efforts have had a substan tia l coupling. In particular, the burst.-mode influence can be seen in the
work of Ken Yun and Steve Nowick [23,22]. The more theoretically oriented Stanford work has pointed
out. some serious oversights in our early M EAT algorithm s and has influenced our approach to hazard
removal.

This paper presents the M EAT synthesis tool, which has proven its ability to greatly reduce
design tim e while also generating com pact, high-perform ance, self-timed circuits. M EAT allows the
designer to specify the logical operation of asynchronous control com ponents as a finite sta te machine.

4

M EAT synthesizes a verifiably correct, hazard free im plem entation of the design to produce a complex
gate CMOS transistor level schem atic. A complex gate is a fully com plem entary CMOS function which
im plem ents the sum of products equations th a t describe the im plem entation. M EAT has been used to
develop a control intensive m ulticom puter com m unication chip called the Post Office [27]. The Post
Office contains 300,000 transistors and has an area of 11 x 8.3 m m in the 1.2 micron MOSIS CMOS
process.

The rem ainder of the paper describes the nature of the design specification, the M EAT algorithm s,
and presents several design issues th a t are exem plar of our design style.

2 MEAT - a Tool for Control Circuit Synthesis

The M EAT tools are fast enough th a t alternative design options can be explored. The designer is
freed from the task of understanding the underlying transform ations required to produce hazard-free
asynchronous circuits. Asynchronous circuits are specified for M EAT as a burst.-mode Mealy sta te
machine. This style of specification provides a powerful way to encapsulate concurrency, com m unication,
and synchronization in an accurate and easily understood form. The input specification is compiled into
a set of CMOS complex gate. The result is an im plem entation which is efficient bo th in term s of speed
and area.

S tate flow diagram s are used to model the behavior of sta te machines im plem ented using MEAT.
They provide an intuitive m ethod for defining control functionality, and are similar to the flow charts
and sta te diagram s th a t are commonly taugh t in m ultiple disciplines to d a y [9]. A finite sta te m achine is
modeled as a directed graph, where the nodes represent states and arcs represent transitions between
states. Each arc is labelled w ith the set of input firings which trigger the transition and an associated
set of ou tp u t firings. These s ta te diagram s can easily represent parallelism and synchronization, and are
reasonably com pact when com pared to other graphical specification m ethods.

M EAT sta te diagram s allow a constrained form of MIC operation, which we refer to as b u rst­
m ode. W hen a sta te change is triggered by a conjunction of input signal transitions (an input burst),
these signals are allowed to change in any order and at any tim e. Allowing MIC operation simplifies the
definition of synchronization operations and tends to more closely m atch the designer’s m ental model of
the hardw are. Presently M EAT does not contain a s ta te graph editor so a tex tual specification form at
is used. The more n a tu ra l graphical s ta te m achine description may be trivially m apped to the tex tual
version: each arc in the sta te diagram is m apped to a single sta tem ent in the tex t file, which indicates
the source and destination sta tes along w ith the associated input and ou tpu t bursts.

Burst.-mode sta te diagram s are reasonably com pact when com pared to petri-nets, m -nets, S T G ’s,
and other graphical representations. These diagram s work well for transition (2 cycle) or level-mode (4
cycle) signalling protocols. Figure 1 shows an example of an STG (a), enhanced STG (b), and burst.-
mode sta te diagram (c) for an asynchronous D flip-flop. In this paper we assume positive logic, hence
a. | corresponds to a. high transition on signal a. In the tex tual version a\ is represented simply as a and
a. | as a.~. The corresponding tex tual en try version for M EAT is:

:fsm Asynch-Flip-Flop ;name of FSM for documentation.

:in (D Clk) ;list of input variables.

:out (Q) ;list of output variables.

:init-in () ;initial value of inputs, default zero.

:init-out () ;initial value of outputs, default zero.

5

VCLK

b) c)

Figure 1: Sample Flip-Flop Specifications

:init-state 0 ;initial state, default is State 0.

:state 0 (Clk~) 0 () ;specification of state transitions:

:state 0 (D * Clk) 1 (Q) ; format is Ccurrent state> Cinput burst>

: state 1 (Clk"") 1 () ; Cnext state> Coutput burst>

:state 1 (D~ * Clk) 0 (Q~)

The first au tom ated task perform ed by M EAT is to generate a prim itive flow table [31] from the
tex tual FSM specification. This is a two-dimensional array structu re which captures, in a more detailed
form, the behavior represented by the sta te diagram . Each row of this table represents a node in the
sta te diagram ; each column represents a unique com bination of input signals. Each entry in the table
thus represents a position in the possible sta te space of the FSM.

For each entry, the value of the ou tpu t signals and the desired next sta te may be specified. If a
nex t-sta te value is the same as th a t of the current row, the sta te machine is said to be in a stable sta te . If
the nex t-sta te value specifies a different row, the table en try represents an unstable state. A simple way
of understanding the flow table is to note th a t horizontal movement w ithin a row represents changes in
the values of input signals, while vertical movement w ithin a column represents a state transition. All of
our specifications are given in normal form , th a t is, each unstable en try in the table m ust lead directly
to a stable state.

Each allowed input bu rst will result in a particu lar p a th th rough the FSM state-space, starting at
the stable en try where the burst begins. O ther entries in the same row m ay be visited during the course
of the input burst. In order for MIC behavior to be correctly represented, it m ust be guaranteed th a t
the circuit will rem ain stable in the initial row until the input burst is complete. This is an im portan t
point and is a cornerstone of the burst.-mode methodology. In essence, any m interm formed from input
variables which can be reached during the course of an input burst m ust be covered by a stable en try in
the flow table. The m interm defined by the completion of the burst will correspond to an unstable sta te

6

which will cause a transition to the target row and fire the ou tpu t burst.

The ou tp u t burst, if any, may occur concurrently w ith the sta te change, or can be constrained
to happen after the s ta te change has occurred. To allow the flexibility for the later synthesis stages to
choose either option, signals in the ou tp u t burst are labeled as don’t cares in the unstable exit s ta te of
the flow table. Since all s ta te transitions are STT Single Transition T im e , the monot.onicit.y of ou tpu t
voltage changes is guaranteed, regardless of w hether the value of a given transitioning ou tpu t in an
unstable entry is m apped to logic level zero or one.

Any en try in the flow table not reachable by any allowed sequence of input bursts is labeled as a
don't care and can take on any value for the ou tpu ts or nex t-sta te values. As in the case of ou tpu t bursts
discussed above, it is not im m ediately evident which values will lead to the simplest circuit. Therefore,
the assignm ent of specific values to the don’t care entries is deferred for as long as possible. The inclusion
of these don’t cares can significantly simplify sta te reduction and boolean m inim ization, and also lead
to more com pact circuits.

The next step in the design process is to a ttem p t to reduce the num ber of rows in the flow table by
merging selected sets of two or more rows into one while retaining the specified behavior. This involves
first calculating the set of maximal compatible states. The set of m axim al com patibles consists of the
largest sets of sta te rows which can be merged, which are not subsets of any other such set. There may
be various valid com binations of the m axim al com patibles th a t can be chosen to produce a reduced table
w ith the same behavior.

This is essentially the well-known state-reduction problem; unfortunately complications are in­
troduced due to the MIC nature of the input bursts. “T raditional” m ethods norm ally apply only to SIC
circuits, and when used for our burst.-mode specifications may produce hazards in the final implement.a-

Nowick et.. a.i.[21] have developed the modifications necessary to the st.at.e-reduct.ion and subse­
quent. synthesis steps to guarantee that, the resulting im plem entation will be hazard-free under burst.-
mode conditions. These modifications are not. presently incorporated into M EAT. C urrently we use a
verifier [8] on the synthesized im plem entation. The verifier has been modified to operate w ith explicit,
tim ing assum ptions. Hazards detected in the im plem entation are then reviewed to see if the circuit,
would exhibit, correct, behavior under reasonable delay assum ptions. If these assum ptions fall w ithin
acceptable bounds of fabrication and operational constrain ts then the tim ing assum ption is entered into
the verifier. If an unacceptable assum ption is required then the circuit, is fixed either by m anual repair
or by modifying the state-m achine specification. The m anual repair usually involves the addition of
appropriate inverter chain to delay the race critical path .

The final choice of minimized sta tes is an example of the bmate covering problem . There are three
constrain ts on this choice. First., and obviously, only com patible sta tes m ay combined (compatibility
constraint.). Second, each sta te in the original design must, be contained in at. least, one of the reduced
sta tes (completeness constraint.). T hird , selecting certain sets of states to be m erged may imply that,
other states must, also be m erged (closure constraint.). Grasselli and Luccio [10] have developed a tabu lar
m ethod for determ ining a closed cover of states, which is also in the process of being incorporated into
M EAT. At. present., M EAT requires the user to m anually determ ine and enter a sta te covering. If any
of the necessary constrain ts are not. satisfied, M EAT will inform the user that, the covering is invalid.

A new flow table representing the behavior of the minimized FSM is then generated by merging
the specified rows of the original flow table. It. should be noted that. it. is not. always true that, minimizing
the num ber of states will simplify the hardw are or increase perform ance. However, a reduced sta te
m achine can result, in fewer sta te variables which in most, cases does indeed result, in a smaller and faster
im plem entation.

A set. of s ta te variables must, then be assigned to uniquely identify each row of the reduced flow

7

table. These sta te variables are used as feedback signals in the final circuit. In contrast to synchronous
control logic design, sta te codes may not be random ly assigned, bu t m ust be carefully chosen to prevent
races. The M EAT sta te assignm ent algorithm is based on a m ethod developed by T racey[29]. The
Tracey algorithm has the advantage th a t it produces STT sta te assignm ents which minimizes delay in
the im plem entation. In cases where tw o or more sta te variables m ust change value when transitioning
to a new sta te , all variables involved are allowed to change concurrently, or race. It m ust be guaranteed
th a t the outcome of the race is independent of the order in which the sta te variables actually transition
in order to produce a non-critical race which exhibits correct asynchronous operation. Several valid
assignm ents m ay be produced, and each will be passed to the next stage for evaluation. Each sta te
assignm ent will result in a unique im plem entation.

After sta te codes are assigned, the next synthesis stage com putes a canonical sum of products
boolean expression for each ou tpu t and sta te variable. A modified Quine-M cCluskey m inim ization
algorithm is used. The resulting expression includes all essential prim e im plicants, and possibly other
prim e im plicants and additional term s necessary to produce a covering free of logic hazards. It m ay be
possible for each ou tpu t or sta te variable to be specified using several a lternate m inim al equations. The
large num ber of don’t care entries typically present in the flow table causes the standard algorithm to be
ra ther inefficient and increases the likelihood th a t more th an one m inim al expression will be found. The
M EAT im plem entation contains optim izations for don’t care dom inant functions. Each possible solution
is given a heuristic “weight” th a t indicates the expected speed and area cost, of im plem entation using
complex CMOS gates. W hen m ultiple s ta te assignm ents have been produced in the previous step, the
to ta l weight of each unique SOP (sum of products) equation is then used to choose betw een the various
instantiations.

The minimized equations produced in the previous step are then used to autom atically generate
transisto r netlists, suitable for sim ulation, representing complex CMOS gates. An interface to the
E lectric[25] design system is used to autom atically produce a schematic diagram to help guide the
layout process, which unfortunately has not yet been autom ated. The com plem entary nature of CMOS
n-t.ype and p-t.ype devices is exploited to generate a single, complex, static gate th rough simple function
preserving transform ations. These transform ations can increase perform ance while reducing the area
and device count. As a SOP equation is folded in to a complex gate, the num ber of logic levels required
to generate the ou tpu t can be reduced. If the function is too large to be im plem ented as a single module,
it can easily be broken up into a tree of complex gates w ith 2 or more logic levels, bu t b e tte r overall
performance[28]. Typical sta te m achine im plem entations have response times between 3 and 5 2-input.
NAND gate delays.

Our complex gate design generates negative logic ou tpu ts (low voltage levels for asserted signals).
A convention of positive logic levels is assum ed for all signals external to the sta te machine, requiring
that, the ou tpu ts be inverted. This is a feature for perform ance reasons as the gain of the inverter can be
used as a driver to increase signal s trength and reduce rise and fall times. W hen ou tpu ts need to drive
a large load, a buffer tree can be used.

All s ta te machines also require a reset, signal to place the storage logic into the correct, in itial
s ta te . Storage in these sta te machines is im plem ented via the sta te variables. If a single complex gate is
used to generate the output., the sta te storage is reset, by NOR-ing the output, w ith the reset, line. For
complex gate trees, a reset.a.ble NAND gate is used. A lthough the perform ance of the NO R gate is not.
optim al, the load on the feedback lines is local to the s ta te m achine and typically small so a large gain
is not. required.

8

3 Design Issues and Examples

Figure 1 essentially shows how AFSM designs are specified using MEAT. R ather th an presenting a series
of more complex designs which will show roughly the same thing, we will present a num ber of design
vignettes which illustrate interesting points in the design space, and an example of M EAT usage.

3.1 A Story about C-elem ent Design

D uring a 1986 course on asynchronous circuits taugh t by Ivan Sutherland and Bob Sproull, the discussion
tu rned to the design of the common C-element. A t th a t tim e, the standard C-element consisted of a
2-high stack, followed by an inverter. This elem ent had the problem th a t it was a dynamic gate. If the
two inputs rem ained at different voltage levels for long enough the C -elem ent’s sta te would be lost and
cause an invalid ou tp u t transition . This was clearly unacceptable for general asynchronous applications.
Static versions of the circuit were created by including a weak “trickle charge” inverter to m aintain
correct voltage on the in ternal node in the absence of it being directly driven by the 2-high stack.

The trickle charge inverter was a problem for several reasons. F irst, it reduced the perform ance
of the circuit. W hen the in ternal node c (in Figure 2a) needed to be flipped to a different voltage, the
trickle inverter would be actively driving the circuit one way, while the 2-high stack was actively driving
it another way. The 2-high stack needed to charge the node, as well as dissipate the current supplied
from the trickle inverter. This caused increased power consum ption due to the existence of a DC path
between the power rails during a sta te change. Secondly, the inherent gain of an inverter is greater than
the gain of a 2-high stack. This design requires the 2-high stack to overpower the inverter to flip the
sta te of the device. Unless the drive of the 2-high stack is significantly greater th an the inverter, the
node becomes susceptible to noise problem s which could result in hazards. This gain difference can only
be overcome by reducing the size of the inverter and increasing the size of the 2-high stack. Hence the
sizing of the com ponents becomes critical. Increasing the size of the 2-high stack slows the circuit by
requiring additional input drive. Decreasing the w idth and increasing the length of the inverter reduces
the reliability of the inverter and the portab ility to o ther processes.

After the d ay ’s discussion, we spent several hours a ttem pting to come up with a be tte r C-element
design which elim inated the trickle inverter, yet did not add significant complexity to the com ponent.
U ltim ately a design was found which was com pact and efficient. This design has been widely used in a
num ber of sites. This design required 4 more transisto rs th an the trickle charge design. However, the
2-high stack could be of optim ally sized transistors and there was no fight to drive the in ternal node c.
A lthough this circuit was larger, and the inputs drive twice the num ber of devices, it was significantly
faster th an the original design and avoided the power consum ption, noise, portability , and function
problem s of the old design.

Several years later, curiosity lead us to see w hat M EAT would produce for a C-element. The
exact same circuit was produced from M EAT in an instan t. M EAT generated equations for the circuit
shown in Figure 2b and the back-end schem atic generated the equivalent bu t optim ized version shown
in Figure 2c.

3.2 U sing Burst-M ode to Increase Performance

Burst.-mode assumes that, inputs and ou tpu ts are generated as discreet, sets, or bursts. In general, this
violates dela.y-insensit.ive and speed-independent, assum ptions. For example, assume th a t an input, burst,
has completed, and the resulting output, burst, causes several ou tpu ts to be generated. One of the ou tputs

9

a) Trickle inverter C-element b) Complex gate for c = ab + ac + be

Figure 2: C-Elem ents, Hand O ptim ized M atched by M EAT

10

could be generated before the others. This ou tpu t can be received by a destination module which could
in tu rn generate an ou tpu t which is fed back as an input to the original module even before the rest of the
ou tpu ts have been generated. This violates burst.-mode operation as the next input burst has occurred
before the previous ou tpu t burst has completed. Burst.-mode assumes th a t all ou tpu ts in the burst, must,
be generated before the environment, can respond to the output, burst, or com putation interference may
occur. The cases where com putation interference can occur can be flagged and checked by circuit, tim ing
analysis.

M EA T’s burst.-mode MIC model is similar to the fundam ental mode assum ptions for trad itional
SIC AFSM designs. Namely we assumes th a t once an input, burst, has arrived the AFSM will settle in a
stable sta te before the next, burst, can arrive. If this assum ption cannot, be met. then external arb itra tion
will be required to enforce the assum ption.

If an input, burst, changes an in ternal sta te variable, speed-independent, operation will generally
require the sta te variable to stabilize before the output, can be changed. Perform ance can be improved
if ou tpu ts can change concurrently w ith sta te changes. M EAT accomplishes this by m aking the transi­
tioning output, a don’t, care in the unstable exit, point, of a row in the flow table. This places a priority
on logic m inim ization, but. usually will produce a circuit, which can generate an output, concurrent, with
sta te changes. The fundam ental mode assum ption guarantees that, the AFSM is ready to accept, the next,
input, burst, when it. arrives, as the sta te variable transition has completed and the logic has stabilized.
Unger has shown that. it. is possible to weaken this fundam ental mode assum ption [30], although his
m ethod is not. presently incorporated into MEAT.

3.3 W hen Speed-Independent Circuits Fail: The Isochronous Fork

Ideally all asynchronous circuits should be designed as dela.y-insensit.ive modules. However, performance
requirem ents may force one to make weakening assum ptions about, circuit, behavior. M any of these
assum ptions are realistic, as physical devices and wires do not. require unbounded delays to generate and
propagate signals. However, care must, be used to assure th a t the circuit, complies to these assum ptions
under all operating conditions or the design will be unsafe and costly failures may occur.

Simplifying assum ptions are best, exploited when they are constrained to a fixed extent, physical
dom ain as is the case w ith AFSM modules. Hierarchical composition of these modules can then proceed
conforming to dela.y-insensit.ive rules since all of the external interfaces should be designed avoid tim ing
assum ptions. Inside an AFSM, the relative delay of wires and gates can be more easily controlled,
analyzed, and modified as the constrain ts are all local. W hen these tim ing assum ptions apply outside
an individual module then the entire system must, be analyzed to assure compliance w ith the tim ing
assum ption set.. At. this point, there is little to distinguish the circuit, from a synchronous one.

A common perform ance and synthesis assum ption m ade by m any asynchronous circuit, designers
is th a t of speed-independence. The assum ption th a t wire delay is zero leads to the isochronous fork
assum ption. This implies th a t m ultiple devices driven by a single component, react, to the signal change
at. approxim ately the same tim e. This model works well for situations where the transistors are slow
and the paths are fast.. U nfortunately this model becomes less valid as IC technology progresses and is
certainly suspect, even today.

Furtherm ore, whenever the rise or fall tim e of an isochronous fork is greater th an the switching
delay of any physical device, failure m ay occur due to variances in switching thresholds. Noise, long wires,
and high-capacit.ance paths exacerbate the problem. W ithin a particu lar AFSM module, this problem
can be m anaged successfully but. between modules it. is difficult.. M artin [14] and Van Berkel [32] have
bo th described circuit, failures due to paths which did not. behave in an isochronous fashion. Both failures
were the result, of using C-element.s in module interfaces. C-element.s inherently contain an isochronous

11

Y

State Machine
MEAT State Machine Logic Blocks

Figure 3: S tate M achine G eneration

fork. Namely the ou tpu t of the C-element. will be an ou tpu t of the module as well as being fed back
locally to m aintain the C -elem ent’s state.

The philosophy we have used in the M EAT tool and in the design of our circuits is to remove
isochronous forks from external interfaces. M EAT sta te machines are broken into the partitions shown
in Figure 3. Our philosophy is th a t we would ra ther increase the cost, and difficulty of designing modules
if it. can simplify the composition of systems. Tim ing assum ptions are always easier to analyze and fix
in a small, local cell ra ther th an across a series of modules. Systems are hard to design and low-level
modules are relatively easy. If by m aking the module design harder, it. becomes easier to do the inherently
complex task then the overall difficulty is reduced.

The trigger box has two functions. First., high capacitance inputs (inputs w ith a slow rise tim e) will
be passed through an inverter or Schmitt, trigger. This will reduce the load on the input, line, which can
increase circuit, perform ance. It. also results in crisp rise and fall tim es of signals in ternal to the AFSM.
Secondly when an una.ssert.ed input, signal is required by the state or output boxes, the trigger box will
invert, that, signal. Each input, will have its inverted and uninvert.ed signal shared among all function
blocks in the s ta te m achine to elim inate hazards and create a smaller im plem entation. The isochronous
forks created by sharing the inverters are easily controlled w ithin the AFSM domain. C om ponents w ithin
a particu lar AFSM are physically close. Hence wire delays of the in ternal signals and the trigger box
delay are norm ally insignificant..

The driver block is used to generate positive output, voltage levels and to increase the signal
s trength when the output, is heavily loaded. Circuit, perform ance is enhanced since it. is sized to drive
its output, load appropriately. Isochronous forks in M EAT will only exist, when a sta te variable is used
directly as an output.. In such cases, the output, can be buffered by one or two inverters to assure the
fork is isolated w ithin the AFSM . W hile this decreases the perform ance of the circuit., the module can
function in a delay-insensitive m anner and can be safely used without, analyzing i t ’s load in a broader
context..

This design style has been tested continuously over the last, five years. We have designed several
large asynchronous circuits which have generally worked the first, tim e, merely using sim ulators to verify
correct, composition of the modules. The result, of this experience has led to a high confidence factor in
the m ethod.

3.4 An AFSM exam ple

In order to illustrate exactly what. M EAT does, we will transcribe an actual synthesis run using M EAT
to create a Post. Office s ta te m achine called the SBUF-SEND-CTL. The behavior is initially specified
as a burst.-mode AFSM as shown in Figure 4. This example is taken from the suite of Post. Office sta te
machines publicly available for use by other researchers [26,23].

12

13

The specification of sbuf-send-ctl from Figure 4 is textually entered for M EAT as follows:

:fsm sbuf-send-ctl
:in (Deliver Begin-Send Ack-Send) ;list of input variables
:out (Latch-Addr IdleBAR Send-Pkt) ;list of output variables
state 0 (Deliver)

1 (IdleBAR * Latch-Addr)
state 1 (Deliver”)

2 0
state 2 (Begin-Send)

3 (Latch-Addr”)
state 3 (Begin-Send~)

4 (Send-Pkt)
state 4 (Ack-Send)

5 (Send-Pkt~)
state 5 (Ack-Send~)

0 (IdleBAR")
state 4 (Deliver)

6 0
state 6 (Deliver” * Ack-Send)

7 (Send-Pkt~ * Latch-Addr)
state 7 (Ack-Send~)

2 0

The following is a transcrip t from a M EAT session. The specification resulted in a single imple­
m entation w ith two sta te variables.

> (meat "sbuf-send-ctl.data")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))
Enter State set: ’((0 5) (1 2 7) (3 4) (6))

SOP for "Yl":
18: DELIVER + Y1*BEGII-SEIFD~

SOP for "Y0":
28: BEGIN-SEND + Y0*ACK-SEND~ + Y0*DELIVER

SOP for LATCH-ADDR:
12: Y1*Y0~

SOP for IDLEBAR:
30: ACK-SEND + BEGIN-SEND + Y0 + Yl

SOP for SEND-PKT:
12: Y0*BEGIU—SEND ~

HEURISTIC TOTAL FOR THIS ASSIGNMENT: 100

The im plem entation can then be verified for hazard-free operation by the verifier. The verifier
reads the specification and im plem entation. For this example, the s ta te variables and ou tpu ts generated
by M EAT are im plem ented as t.wo-level A N D /O R logic. Each signal is generated independently of the
others. Only direct inputs are shared, so the same inverted signal in different ou tpu t logic blocks will
use separate inverters. Separate inverters will result in verification errors in the burst.-mode speed-
independent. analysis. In this example, the begin-send signal is shared by Y l and send-pkt. The two
inverters are merged and the output, is forked to bo th logic blocks. This im plem entation is then verified.

14

ack-send

deliver c |r Y O

begin-send 4

begin-send

ack-send

Y O

Y O |

|| | deliver || |

Figure 5: Complex CMOS G ate for sbuf-send-ctl YO

The verifier points out a d-trio hazard [31] which is removed by adding an inverter to change the
sequencing of begin-send into the YO logic. The im plem entation is then verified as hazard free as
follows:

> (verifier-read-fsm "sbuf-send-ctl.data")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))
Enter State set: ’((0 5) (1 2 7) (3 4) (6))

> (setq *impl* (merge-gates ’(1 11) *impl*))
> (verify-module *impl* *spec*)
10 20 30 40 50
Error: Implementation produces illegal output.

> (setq *impl* (connect-inverter 10 6 *impl*))
> (verify-module *impl* *spec*)
10 20 30 40 50 60 70 79 states.

The canonical SOP equations generated by M EAT are then transform ed into complex gates
for im plem entation. The CMOS circuit for YO is shown in Figure 5. The complex gates are then
m anually im plem ented using the Electric [25] layout editor. The physical layout is then sim ulated w ith
COSMOS [3] to check for layout errors. C ooperating sets of sta te m achine cells are interconnected to
form larger modules, integrating clocked d a tap a th logic when necessary.

3.5 D-Trio Hazards, A ssum ptions, and Possible Elim ination

15

W8
Req-S

W8
Req-S

0 0 01 11 10

0 0 0 -- 1 0

1 1 [D] ID' " 1 X

Req-S

------------------------ Done)W8 —
Done

Logic with d-trio hazard D-trio hazard removed

Figure 6: H azard removal from “Sendr-Done” s ta te machine

Figure 6 shows a static d-trio or nonessential function hazard which is found in some of the sta te
machines produced by M EAT. D -trio hazards are fundam ental and cannot be removed in every case,
bu t they will be detected by the verifier In this cases the hazard occurs because the input burst resulted
in an in ternal s ta te change while the ou tpu t burst contained no transition for the Done signal. The
d-trio hazard in this example can produce a static 1-hazard on the Done signal. The input burst is
perceived by the Done ou tpu t logic after the sta te change bu rst thereby creating the hazard.

The W S signal of the logic w ith the d-trio also contains an isochronous fork. If we ignore the
po ten tia l threshold deviations then tim ing analysis shows th a t the physical behavior will not exhibit the
hazard. However, this circuit cannot be included in a system w ithout analyzing the driver, load, and
stray capacitance on the W S input or errors will result.

By modifying the trigger logic in the Sendr-Done s ta te m achine shown in Figure 6, we can both
elim inate the d-trio hazard and the external isochronous fork. This incurs no perform ance penalty. The
W S signal to the Done logic rem ains delayed by a single inverter, while the W S signal to the sta te logic
becomes double inverted ra ther th an fed directly into the logic from the input.

The double inversion has the effect enforcing correct sequencing of the order of arrival of the W S
signal to the Done logic. Transitions on W S will always be perceived by the Done logic before changes
in the sta te variable, resulting in hazard-free circuit operation. Transitions are ordered such th a t the
assertion of the sta te variable is not critical to the perform ance of the circuit, so the double inversion of
W S in to the sta te logic has no deleterious effect.

3.6 W hen MIC Circuits Cannot Be Designed: The N A K ing Arbiter

M EAT sta te graphs m ust be unam biguous and determ inistic. Nondeterm inistic behavior inside a sta te
graph is not allowed as it can result in m etastability . However, the operation of a sta te m achine may
be nondeterm inistic if a m utual exclusion element (ME) is used to order the arrival of two or more
concurrent inputs into the sta te machine. M E ’s are analog devices, and are the only external device
th a t m ay be required to im plem ent control functions using the M EAT methodology. They are easily

16

A«><

Figure 7: Naking A rbiter SIC S tate M achine Specification.

fabricated in m ost VLSI technologies, requiring 12 transisto rs in CMOS.

W hen m ultiple edges exit a single state, there m ust be a t least one pair of m utually exclusive
signals for all pairs of edges exiting the s ta te [19]. If there is no pair of m utually exclusive signals for
all pairs of edges then the sta te machine can only operate in single input change (SIC) mode for those
signals. This has been referred to as the semi-modularity property [4].

A rbiters are inherently nondeterm inistic circuits which cannot be directly im plem ented as an
AFSM. The Naking A rbiter of Figure 7 is an SIC sta te machine. Since the environm ent perm its the R l
and R2 signals to arrive concurrently these signals pass th rough a sequencer before entering the sta te
machine. A sequencer consists of a set of ME gates, AND gates, and latches, w ith an input to enable
the next transition . Sequencers are nondeterm inistic and ra ther expensive to build in term s of size and
speed.

4 Summary

The goal in the developm ent of the M EAT tool was to generate fast, com pact, efficient circuits. Showing
the excellent perform ance th a t can be achieved with asynchronous designs is an im portan t p art of
forwarding this technology to the general circuit design community. W hile experienced asynchronous
designers understand th a t there are more benefits in the asynchronous approach than speed, it is clear
th a t the dom inant metric in evaluating circuit design styles in the commercial arena is perform ance. Our
Post Office design was no exception; as long as the circuit was fast nobody cared how we did it except
us. We view this as a sad reality, since it relegates the im pact of the conceptual elegance of asynchronous
circuits to the academic community.

Building a large, fully self-timed circuit has resulted in m any insights. The need for synthesis
and analysis tools th a t compare w ith those available to the synchronous design com m unity is of prim ary
im portance. We hope th a t M EAT is a step in the direction of a ttrac tin g more broad based interest.
We have publicly offered bo th the M EAT tool and m any of the Post Office sta te machines to the IC
CAD design com m unity in hopes th a t others will improve on this step. The need for more robust circuit
behavior and for higher perform ance levels is ubiquitous.

MEAT, like any CAD tool, is incomplete. The back-end only produces schem atics. M anual lay­
out. is prohibitively tim e consuming. Some form of autom atic layout, is necessary unless we abandon the
complex gate approach in order take advantage of s tandard cell and technology m apping approaches.

17

A utom atic layout is a difficult, task and should also include autom atically sized transistors for the per­
formance needs of the design. Using standard cells will result, in some lost, perform ance but. the synthesis
task is easier. We are investigating bo th options. There are other perform ance oriented factors th a t
should be included. As a design is passed down through the different, stages of MEAT, some infor­
m ation is lost.. The complexity of the algorithm s and sim plicity of the circuits could be enhanced by
preserving some of this inform ation. S tate graphs lack the formalisms required to analyze compositions
of these circuits for safety, liveness, deadlock, and other properties. We are currently investigating a
process calculus as a means of specifying and generating M EAT sta te graphs as well as proving correct,
operation and construction. M EAT also needs to be connected to existing CAD tools. An example is
the connection to a tim ing analyzer so that, the tim ing assum ptions can be autom atically analyzed for
compliance. Since d a tap a th design is similar to that, of synchronous designs, we need to integrate the
M EAT capability into an existing CAD framework. Presently, too m uch designer in teraction is required
to traverse the seams separating M EAT and other pieces of our tool environment..

A pproxim ately a fifth of the Post. Office control p a th design was done manually, and the rest,
was done using MEAT. The au tom ated part, of the design took one-fourth the amount, of design time
and was v irtually error free. Those errors were corrected when Steve Nowick pointed out. a flaw in
our m inim ization algorithm s. Our design style has proven to be a very n a tu ra l transition for existing
hardw are designers, prim arily since it. is based on trad itional finite s ta te m achine control. O ur synthesis
techniques have generated compact, high-perform ance circuits that, work, and the complexity of the
synthesis algorithm s has proven to be viable for large designs.

References

[1] Erik Brunva.nd and Robert. Sproull. T ranslating Concurrent. Program s into Dela.y-Insensit.ive Cir­
cuits. In IE E E International Conference on Computer Aided, Design: Digest of Technical Papers ,
pages 262-265. IE E E C om puter Society Press, 1989.

[2] Steven M. Burns and Alain J. M artin. The Fusion o f Hardware Design and Verification, chap­
ter Synthesis of Self-Timed Circuits by Program Transform ation, pages 99-116. Elsevier Science
Publishers, 1988.

[3] Ca.rnegie-Mellon University. User's Guide to COSMOS.

[4] Ta.m-Anh Chu. On the models for designing VLSI asynchronous digital system s. Technical Report.
M IT-LCS-TR-393, M IT, 1987.

[5] Henry Y. H. Chua.ng and Sa.nt.anu Das. Synthesis of multiple-input, change asynchronous machines
using controlled excitation and flip-flops. IE E E Transactions on Computers, C-22(12): 1103—1109,
December 1973.

[6] A. L. Davis. The A rchitecture of DDM1: A Recursively S tructured D ata-D riven Machine. Technical
Report. UUCS-77-113, U niversity of U tah, Com puter Science Dept., 1977.

[7] Digital Equipment. Corporation., M aynard, MA. Alpha Architecture Handbook, 1992.

[8] David Dill. Trace Theory fo r Automatic Hierarchical Verification of Speed-Independent Circuits. An
A C M Distinguished Dissertation. M IT Press, 1989.

[9] W illiam I. F letcher. An Engineering Approach to Digital Design. Prent.ice-Ha.ll, 1980.

[10] A Grasselli and F. Luccio. A M ethod for Minimizing the N um ber of In ternal States of Incom pletely
Specified Sequential Networks. IE E E T E C , June 1965.

18

[11] A. B. Hayes. Stored State Asynchronous Sequential Circuits. IE E E Transactions on Com puters,
C-30(8), August 1981.

[12] A. B. Hayes. Self-Timed IC Design with P PL ’s. In R. E. Bryant, editor, Third Caltech Conference on
Very Large Scale Integration , pages 257-274, Rockville, Maryland, 1983. Computer Science Press,
Inc.

[13] Lee A. Hollaar. Direct implementation of asynchronous control units. IE E E Transactions on
Com puters, C-31(12): 1133-1141, December 1982.

[14] A.J. Martin, S.M. Burns, T.Iv. Lee, D. Borkovic, and P.J. Hazewindus. ’’The Design of an Asyn­
chronous Microprocessor” . In C.L. Seitz, editor, Advanced Reserach in VLSI: Proceeedmgs o f the
Decennial Caltech Conference on V L SI, pages 351-373. MIT Press, 1989.

[15] Alain Martin. Compiling Communicating Processes into Delay-Insensitive VLSI Circuits. Dis­
tributed Com puting , 1(1):226—234, 1986.

[16] Alain Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits. In William J. Dally,
editor, Sixth M IT Conference on Advanced Research in V L SI , pages 263-278. MIT Press, 1990.

[17] C. Mead and L. Conway. Introduction to V L SI System s. McGraw-Hill, 1979. Chapter 7.

[18] Teresa Meng. Synchronization Design fo r Digital System s. Ivluwer Academic, 1990.

[19] R.E. Miller. Switching Theory, II: Sequential circuits and machines. Wiley, 1965. Chapter 10.

[20] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of Delay-Insensitive
Modules. In Henry Fuchs, editor, Chapel Hill Conference on Very Large Scale Integration, pages
67-86. Computer Science Press, 1985.

[21] S. M. Nowick and D. L. Dill. Synthesis of asynchronous state machines using a local clock. In 1991
IE E E International Conference on Com puter Design: V L SI in Computers and Processors. IEEE
Computer Society, 1991.

[22] S. M. Nowick, Iv. Y. Yun, and D. L. Dill. Practical asynchronous controller design. In 1992
IE E E International Conference on Com puter Design: V L SI in Computers and Processors. IEEE
Computer Society, 1992.

[23] Steven M. Nowick and David L. Dill. Automatic synthesis of locally-clocked asynchronous state
machines. In 1991 IE E E International Conference on Com puter-Aided Design. IEEE Computer
Society, 1991.

[24] S.S. Patil. Coordination of asynchronous events. Technical Report TR-72, MIT Project MAC, June
1970.

[25] Steven M. Rubin. Com puter A ids fo r V L SI Design. VLSI Systems. Addison-Wesley, 1987.

[26] L. Lavagno; Iv. Iveutzer; A. Sangiovanni-Vincentelli. Synthesis of Verifiably Hazard-Free Asyn­
chronous Control Circuits. Technical Report UCB/ERL M90/99, Univ. of California at Berkeley,
November 1990.

[27] Kenneth S. Stevens, Shane V Robison, and A.L. Davis. “The Post Office - Communication Sup­
port for Distributed Ensemble Architectures” . In Proceedings o f 6th In ternational Conference on
Distributed Computing Systems, pages 160 - 166, May 1986.

[28] Ivan E. Sutherland and Robert F. Sproull. Logical effort: Designing for speed on the back of an
envelope. In Carlo H. Sequin, editor, Proceedings o f the 13th Conference on Advanced Research in
VLSI, pages 1-16. UC Santa Cruz, March 1991.

19

[29] J. H. Tracey. Internal state assignments for asynchronous sequential machines. IE E E Transactions
on Electronic Com puters, EC-15:551-560, August 1966.

[30] S. H. Unger. A Building Block Approach to Undocked Systems. In Proceedings o f the 26th H ICSS
Conference, January 1993. To appear.

[31] S.H. Unger. Asynchronous sequential switching circuits. Wiley-Interscience, 1969.

[32] C. H. van Berkel. Beware the Isochronic Fork. Technical Report Nat. Lab Rep. UR 003/91, Philips
Research Laboratories, January 1991.

[33] C. H. (Ivees) van Berkel. Handshake circuits: an interm ediary between communicating processes
and VLSI. PhD thesis, Technical University of Eindhoven, May 1992.

[34] Peter Vanbekbergen, Francky Catthoor, Gert. Goossens, and Hugo De Man. Optimized synthesis of
asynchronous control circuits from graph-theoretic specifications. In In ternational Conference on
Computer-Aided Design. IEEE Computer Society Press, 1990.

20

