Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

Automatic Synthesis of Fast Compact
Self-Timed Control Circuits

Bill Coates
Al Davis
Kenneth S. Stevens*

Hewlett-Packard Laboratories
Palo Alto, CA USA

*Department of Computer Science
University Of Calgary
Calgary, Alberta T2N 1N4
Canada

ABSTRACT

We present a tool called MEAT which has been designed to automatically synthesize transistor
level, CMOS, self-timed control circuits. MEAT has been used to specify and synthesize self-timed
circuits for a fully self-timed 300,000 transistor communication coprocessor. The design is specified using
finite state machines which permit burst-mode inputs. Burst.-mode is a limited form of MIC (multiple
input change) signalling. The primary goal of MEAT is to produce fast and compact circuits. In order to
achieve this goal, MEAT implementations permit timing assumptions which can be verifiably supported
at the physical implementation level, and result in significant improvements in speed and area of the
design. Since MEAT has been used for large designs, we have also been forced to make the algorithms
efficient. The result is a tool which is efficient, easy to use by today’ hardware designers since the
specification is based on the commonly used finite state machine control model, and synthesizes CMOS
transistor implementations that are self-timed, fast and compact. The paper presents a description of
the tool, the nature of the algorithms used, and examples of its use.

https://core.ac.uk/display/276283989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Three major constraints - speed of operation, size, and design time must be considered with any large
chip design, be it a commercial product or a laboratory prototype. As integrated circuit technology
improves, the amount of logic that can be placed on a VLSI circuit increases quadratically, and the
speed of the components become faster linearly. Without improvement in design methodology, the
design time of circuits will increase at least quadratically. In addition, synchronous design techniques
are facing critical design and performance difficulties as circuit complexity escalates due to a number of
primary factors:

e It is becoming extremely costly to manage quadratically narrowing clock skew requirements.

* An increasingly disproportionate amount of power must be budgeted to the global clock lines. For
example, the DEC Alpha CPU [7] uses 17 watts of the chip’s massive 30 watt power budget to
drive the clock.

e Incremental performance improvements in a synchronous design are extremely costly due to the
global nature of the synchronous timing model.

One clear alternative is to adopt an asynchronous design style. Many proponents would also argue
that asynchronous circuits are inherently faster since they are controlled by locally adaptive timing rather
than the usual global worst-case clock frequency constraints. While we believe that this claim has merit,
we feel that in general it is misleading. Asynchronous circuits usually require more components to
implement the same function. This may result in longer wires, increased area, and reduced performance.
Performance is lost in synchronous systems where there is a significant difference between the average
and the worst case operation delay since the clock period has to accommodate the worst case. A simple
example of this is seen in ripple carry arithmetic circuits, where operational delay is dominated by the
carry propagation times and where the average carry only propagates a short distance. In this simple
case, it is relatively inexpensive to adopt more sophisticated carry chain circuits in order to narrow
the average to worst case difference. When compared to a well tuned synchronous design where this
difference is small, a functionally equivalent asynchronous implementation may actually run slightly
slower. Hence the performance advantage of asynchronous circuits, while often valid, must be analyzed
carefully. In practice the speed of a design is more dependent on the quality of the design and the
fabrication process. Our experience has been that, for large designs, it is easier to achieve the necessary
quality using an asynchronous style than it is in the synchronous discipline primarily due to the speed
and simplicity obtained from localized communication and control. The speed of asynchronous circuits
has been demonstrated to be on par with that of synchronous versions[12,14].

The lack of a global clock in asynchronous designs inherently eliminates the clock skew and dispro-
portionate clock power budget problems. The down-side is that asynchronous circuit implementations
must be hazard free which inherently requires additional logic and more careful design. Fortunately these
issues need to be considered only at the lowest level and therefore do not become intractable concerns
as the design becomes complex.

Perhaps the clearest advantage that asynchronous designs have over the synchronous approach
is functional modularity. Asynchronous design modules inherently keep time to themselves, whereas
the timing model intrinsic to synchronous methods applies globally. The result is that a change to a
synchronous module often requires concomitant changes in the other system modules. Asynchronous
system modules connect to other system modules through a functional interface which encodes the
temporal constraints. These interfaces impose sequencing constraints on the interconnected modules
and frees them from the need to operate consistently in a global timing model [17]. Hence a change in
some module, which significantly changes the modules performance but not its interface will not require

changes in other modules to maintain the functional consistency of the system. As system complexities
escalate, the need to produce designs as composable modules becomes mandatory. Design time and
design performance have become equally critical success factors. In addition the ability to reuse modules
of previous designs can be an important way to save on the design time of subsequent efforts. Reuse of
asynchronous modules is extremely simple while adapting synchronous modules to a new global timing
model is potentially very costly.

Still, after a half century of synchronous design momentum there is much to inhibit a change to
asynchronous design:

1. For board level designs, there is little in the way of an asynchronous component selection.

2. Complex designs require sophisticated electronic CAD tool kits, and these tools have been con-
structed to support synchronous design styles.

3. There is a huge pool of experienced synchronous designers who have demonstrated their ability to
produce complex working systems. A significant style change will be painful.

The first problem can be bypassed if the design is an IC rather than a board. Recently there have
been several attempts which, like MEAT, represent astart on a solution to the second problem. The third
problem is significant and will likely take considerable time to solve completely but today’s hardware de-
signers are relying on increasingly sophisticated synthesis tools in their CAD suite to produce/synthesize
the implementation from a design specification. If an asynchronous synthesis tool permitted a similar
specification style then the change would be less traumatic. This has been our approach with MEAT.
Hardware designers are used to thinking in terms of finite state machines for control and separate data-
path formulation as their design entry specification. It is our view that asynchronous and synchronous
datapath design techniques are quite similar, whereas the implementation strategy for the asynchronous
control components, i.e. the finite state machines, must satisfy some additional constraints. Most of
this additional burden is handled by the MEAT tools. The result is that an experienced synchronous
circuit designer will notice a very minor conceptual shift in order to use MEAT in the creation of an
asynchronous design.

MEAT is by no means complete or totally original. MEAT is best viewed as an ensemble of
methods for asynchronous finite state machine synthesis, many of which were created elsewhere but
modified to suit our needs in the implementation of MEAT. Hence the name MEAT for Modified Ensem ble
Asynchronous Tool.

All asynchronous design styles are fundamentally concerned with the synthesis of hazard free
circuits. To avoid subsequent confusion, we use the following terms:

e Self-timed and asynchronous are general terms used to describe any circuit that is not synchronous
and therefore exhibits hazard free behavior under some conditions. We use them synonymously.

* Delay-insensitive circuits exhibit hazard free behavior with arbitrary delays assigned to both wires
and gates.

e Speed-independent circuits exhibit hazard free behavior with arbitrary gate delays but assume zero
delay wires.

There are a large number of rather different design styles in today’s asynchronous design com-
munity. One partition of design styles can be based on the type of asynchronous circuit target: locally
clocked [23,11,6], delay-insensitive [15,2,33,20], or various forms of single- and multiple- input change
circuits [31]. Yet another distinction could be made on the nature of the control specification: graph
based [24,18,34,4], programming language based [15,2,33,1], or finite state machine based [23,11]. For

the finite state machine based styles, there is a further distinction that can be made based on the method
by which state variables are assigned [13,29]. The design style space is large and each design style has
its own set of merits and demerits. It is worthwhile to note that virtually all of the design styles focus
on the design of the control path of the circuit since there is little to distinguish the asynchronous and
synchronous datapath design styles.

The methods which produce delay-insensitive circuits, while not perfect [16], are the most tolerant
of variations in device and wire delays. This tolerance improves the probability that a properly designed
circuit will continue to function under variations in supply voltage, temperature, and process parameters.
We chose to slightly expand the domain of timing assumptions which must remain valid to retain
hazard free implementation since this permits higher performance implementations at the expense of
reduced operational tolerance. Our view is motivated by the reality that our designs have to meet
certain performance requirements. For any given layout and fabrication process, we have models which
predict the speeds of the wires and transistors for the desired operational window. We also know the
percentage of error that can be tolerated in those predictions. We could not live with arbitrary delays
for performance reasons and therefore it seems impractical to assume arbitrary delays in order to ensure
hazard free operation of the circuits. The approach taken in MEAT has therefore been to insure hazard
free operation under sets of timing assumptions that can be verified as being within acceptable windows
of fabrication and operational tolerance.

Compiled implementations based on programming language like specifications [15,2,33,1], while
elegant and robust, suffer in performance because they are presently compiled into intermediate library
modules rather than into optimized transistor networks. The module of greatest concern is the C-element..
C-element.s are common circuit modules in asynchronous circuits and eliminating them completely is
unlikely. However it has been our experience over the past decade that C-element.s are similar to
the proverbial GOTO statements in programming languages, i.e. too many of them are indications
of serious trouble. C-element.s are stylized latches and as such are synchronization points. Too much
synchronization reduces parallelism and performance. Our design style does not. use C-element.s for finite
state machine implementations, although our designs do use C-element.s sparingly in interface circuits
such as arbiters.

In order to achieve the necessary hazard free asynchronous finite state machine (AFSM) imple-
mentation, it. is necessary to place constraints on how their inputs are allowed to change. The most,
common is the single input change or SIC constraint. [31]. SIC circuits inherently require state transi-
tions after each input, variable transition. In cases where the next, interesting behavior is in response
to multiple input, changes, the circuit, response will be artificially slow, either due to too many state
transitions or due to the external arbiters required to sequence the multiple inputs. Multiple input
change or MIC circuit, design methods have been developed [31,5] but. either required input, restrictions
or implementation techniques that, were unsuitable for our purposes. As a result, we developed a design
style that, we call burst-mode which permits a certain style of multiple input, change. Our burst.-mode
implementation method does not. require performance inhibiting local clock generation or flip-flops.

During the development, of MEAT, we were fortunate to have Steve Nowick, a member of David
Dill’s Stanford University research group, spend two summers with us. He incorporated David Dill’s
verifier [8] into the tool kit., and modified the verifier to accommodate our burst.-mode timing model and
our timing assumption based, performance oriented design style. Subsequently the HP and Stanford
efforts have had a substantial coupling. In particular, the burst.-mode influence can be seen in the
work of Ken Yun and Steve Nowick [23,22]. The more theoretically oriented Stanford work has pointed
out. some serious oversights in our early MEAT algorithms and has influenced our approach to hazard
removal.

This paper presents the MEAT synthesis tool, which has proven its ability to greatly reduce
design time while also generating compact, high-performance, self-timed circuits. MEAT allows the
designer to specify the logical operation of asynchronous control components as a finite state machine.

MEAT synthesizes a verifiably correct, hazard free implementation of the design to produce a complex
gate CMOS transistor level schematic. A complex gate is a fully complementary CMOS function which
implements the sum of products equations that describe the implementation. MEAT has been used to
develop a control intensive multicomputer communication chip called the Post Office [27]. The Post
Office contains 300,000 transistors and has an area of 11 x 8.3 mm in the 1.2 micron MOSIS CMOS
process.

The remainder of the paper describes the nature of the design specification, the MEAT algorithms,
and presents several design issues that are exemplar of our design style.

2 MEAT - a Tool for Control Circuit Synthesis

The MEAT tools are fast enough that alternative design options can be explored. The designer is
freed from the task of understanding the underlying transformations required to produce hazard-free
asynchronous circuits. Asynchronous circuits are specified for MEAT as a burst.-mode Mealy state
machine. This style of specification provides a powerful way to encapsulate concurrency, communication,
and synchronization in an accurate and easily understood form. The input specification is compiled into
a set of CMOS complex gate. The result is an implementation which is efficient both in terms of speed
and area.

State flow diagrams are used to model the behavior of state machines implemented using MEAT.
They provide an intuitive method for defining control functionality, and are similar to the flow charts
and state diagrams that are commonly taught in multiple disciplines today[9]. A finite state machine is
modeled as a directed graph, where the nodes represent states and arcs represent transitions between
states. Each arc is labelled with the set of input firings which trigger the transition and an associated
set of output firings. These state diagrams can easily represent parallelism and synchronization, and are
reasonably compact when compared to other graphical specification methods.

MEAT state diagrams allow a constrained form of MIC operation, which we refer to as burst-
mode. When a state change is triggered by a conjunction of input signal transitions (an input burst),
these signals are allowed to change in any order and at any time. Allowing MIC operation simplifies the
definition of synchronization operations and tends to more closely match the designer’s mental model of
the hardware. Presently MEAT does not contain a state graph editor so a textual specification format
is used. The more natural graphical state machine description may be trivially mapped to the textual
version: each arc in the state diagram is mapped to a single statement in the text file, which indicates
the source and destination states along with the associated input and output bursts.

Burst.-mode state diagrams are reasonably compact when compared to petri-nets, m-nets, STG’,
and other graphical representations. These diagrams work well for transition (2 cycle) or level-mode (4
cycle) signalling protocols. Figure 1 shows an example of an STG (a), enhanced STG (b), and burst.-
mode state diagram (c) for an asynchronous D flip-flop. In this paper we assume positive logic, hence
a| corresponds to a high transition on signal a. In the textual version a\ is represented simply as a and
a| as a.~. The corresponding textual entry version for MEAT is:

:fsm Asynch-Flip-Flop ;name of FSM for documentation.
:in (D Clk) ;list of input variables.

out (Q ;list of output variables.

tinit-in Q ;initial value of inputs, default zero.

zinit-out Q ;initial value of outputs, default zero.

VCLK

b) (9)

Figure 1: Sample Flip-Flop Specifications

tinit-state 0 ;initial state, default is State O.

:state 0 (Clk~) 0 (Q ;specification of state transitions:

:state 0 (D * Clk) 1 (@ ; format is Ccurrent state> Cinput burst>
state 1 CIK") 1 O ; Cnext state> Coutput burst>

:state 1 (D~ * Clk) 0 (@)

The first automated task performed by MEAT is to generate a primitive flow table [31] from the
textual FSM specification. This is a two-dimensional array structure which captures, in a more detailed
form, the behavior represented by the state diagram. Each row of this table represents a node in the
state diagram; each column represents a unique combination of input signals. Each entry in the table
thus represents a position in the possible state space of the FSM.

For each entry, the value of the output signals and the desired next state may be specified. If a
next-state value is the same as that of the current row, the state machine is said to be in a stable state. If
the next-state value specifies a different row, the table entry represents an unstable state. A simple way
of understanding the flow table is to note that horizontal movement within a row represents changes in
the values of input signals, while vertical movement within a column represents a state transition. All of
our specifications are given in normal form, that is, each unstable entry in the table must lead directly
to a stable state.

Each allowed input burst will result in a particular path through the FSM state-space, starting at
the stable entry where the burst begins. Other entries in the same row may be visited during the course
of the input burst. In order for MIC behavior to be correctly represented, it must be guaranteed that
the circuit will remain stable in the initial row until the input burst is complete. This is an important
point and is a cornerstone of the burst.-mode methodology. In essence, any minterm formed from input
variables which can be reached during the course of an input burst must be covered by a stable entry in
the flow table. The minterm defined by the completion of the burst will correspond to an unstable state

which will cause a transition to the target row and fire the output burst.

The output burst, if any, may occur concurrently with the state change, or can be constrained
to happen after the state change has occurred. To allow the flexibility for the later synthesis stages to
choose either option, signals in the output burst are labeled as don’t cares in the unstable exit state of
the flow table. Since all state transitions are STT Single Transition Time, the monot.onicit.y of output
voltage changes is guaranteed, regardless of whether the value of a given transitioning output in an
unstable entry is mapped to logic level zero or one.

Any entry in the flow table not reachable by any allowed sequence of input bursts is labeled as a
don't care and can take on any value for the outputs or next-state values. As in the case of output bursts
discussed above, it is not immediately evident which values will lead to the simplest circuit. Therefore,
the assignment of specific values to the don’t care entries is deferred for as long as possible. The inclusion
of these don’t cares can significantly simplify state reduction and boolean minimization, and also lead
to more compact circuits.

The next step in the design process is to attempt to reduce the number of rows in the flow table by
merging selected sets of two or more rows into one while retaining the specified behavior. This involves
first calculating the set of maximal compatible states. The set of maximal compatibles consists of the
largest sets of state rows which can be merged, which are not subsets of any other such set. There may
be various valid combinations of the maximal compatibles that can be chosen to produce a reduced table
with the same behavior.

This is essentially the well-known state-reduction problem; unfortunately complications are in-
troduced due to the MIC nature of the input bursts. “Traditional” methods normally apply only to SIC
circuits, and when used for our burst.-mode specifications may produce hazards in the final implement.a-

Nowick et.. a.i.[21] have developed the modifications necessary to the st.at.e-reduct.ion and subse-
quent. synthesis steps to guarantee that, the resulting implementation will be hazard-free under burst.-
mode conditions. These modifications are not. presently incorporated into MEAT. Currently we use a
verifier [8] on the synthesized implementation. The verifier has been modified to operate with explicit,
timing assumptions. Hazards detected in the implementation are then reviewed to see if the circuit,
would exhibit, correct, behavior under reasonable delay assumptions. If these assumptions fall within
acceptable bounds of fabrication and operational constraints then the timing assumption is entered into
the verifier. If an unacceptable assumption is required then the circuit, is fixed either by manual repair
or by modifying the state-machine specification. The manual repair usually involves the addition of
appropriate inverter chain to delay the race critical path.

The final choice of minimized states is an example of the bmate covering problem. There are three
constraints on this choice. First.,, and obviously, only compatible states may combined (compatibility
constraint.). Second, each state in the original design must, be contained in at. least, one of the reduced
states (completeness constraint.). Third, selecting certain sets of states to be merged may imply that,
other states must, also be merged (closure constraint.). Grasselli and Luccio [10] have developed a tabular
method for determining a closed cover of states, which is also in the process of being incorporated into
MEAT. At present., MEAT requires the user to manually determine and enter a state covering. If any
of the necessary constraints are not. satisfied, MEAT will inform the user that, the covering is invalid.

A new flow table representing the behavior of the minimized FSM is then generated by merging
the specified rows of the original flow table. It. should be noted that. it. is not. always true that, minimizing
the number of states will simplify the hardware or increase performance. However, a reduced state
machine can result, in fewer state variables which in most, cases does indeed result, in a smaller and faster
implementation.

A set. of state variables must, then be assigned to uniquely identify each row of the reduced flow

table. These state variables are used as feedback signals in the final circuit. In contrast to synchronous
control logic design, state codes may not be randomly assigned, but must be carefully chosen to prevent
races. The MEAT state assignment algorithm is based on a method developed by Tracey[29]. The
Tracey algorithm has the advantage that it produces STT state assignments which minimizes delay in
the implementation. In cases where two or more state variables must change value when transitioning
to a new state, all variables involved are allowed to change concurrently, or race. It must be guaranteed
that the outcome of the race is independent of the order in which the state variables actually transition
in order to produce a non-critical race which exhibits correct asynchronous operation. Several valid
assignments may be produced, and each will be passed to the next stage for evaluation. Each state
assignment will result in a unique implementation.

After state codes are assigned, the next synthesis stage computes a canonical sum of products
boolean expression for each output and state variable. A modified Quine-McCluskey minimization
algorithm is used. The resulting expression includes all essential prime implicants, and possibly other
prime implicants and additional terms necessary to produce a covering free of logic hazards. It may be
possible for each output or state variable to be specified using several alternate minimal equations. The
large number of don’t care entries typically present in the flow table causes the standard algorithm to be
rather inefficient and increases the likelihood that more than one minimal expression will be found. The
MEAT implementation contains optimizations for don’t care dominant functions. Each possible solution
is given a heuristic “weight” that indicates the expected speed and area cost, of implementation using
complex CMOS gates. When multiple state assignments have been produced in the previous step, the
total weight of each unique SOP (sum of products) equation is then used to choose between the various
instantiations.

The minimized equations produced in the previous step are then used to automatically generate
transistor netlists, suitable for simulation, representing complex CMOS gates. An interface to the
Electric[25] design system is used to automatically produce a schematic diagram to help guide the
layout process, which unfortunately has not yet been automated. The complementary nature of CMOS
n-t.ype and p-t.ype devices is exploited to generate a single, complex, static gate through simple function
preserving transformations. These transformations can increase performance while reducing the area
and device count. As a SOP equation is folded into a complex gate, the number of logic levels required
to generate the output can be reduced. If the function is too large to be implemented as a single module,
it can easily be broken up into a tree of complex gates with 2 or more logic levels, but better overall
performance[28]. Typical state machine implementations have response times between 3 and 5 2-input.
NAND gate delays.

Our complex gate design generates negative logic outputs (low voltage levels for asserted signals).
A convention of positive logic levels is assumed for all signals external to the state machine, requiring
that, the outputs be inverted. This is a feature for performance reasons as the gain of the inverter can be
used as a driver to increase signal strength and reduce rise and fall times. When outputs need to drive
a large load, a buffer tree can be used.

All state machines also require a reset, signal to place the storage logic into the correct, initial
state. Storage in these state machines is implemented via the state variables. If a single complex gate is
used to generate the output., the state storage is reset, by NOR-ing the output, with the reset, line. For
complex gate trees, a reset.a.ble NAND gate is used. Although the performance of the NOR gate is not.
optimal, the load on the feedback lines is local to the state machine and typically small so a large gain
is not. required.

3 Design Issues and Examples

Figure 1 essentially shows how AFSM designs are specified using MEAT. Rather than presenting a series
of more complex designs which will show roughly the same thing, we will present a number of design
vignettes which illustrate interesting points in the design space, and an example of MEAT usage.

3.1 A Story about C-element Design

During a 1986 course on asynchronous circuits taught by Ivan Sutherland and Bob Sproull, the discussion
turned to the design of the common C-element. At that time, the standard C-element consisted of a
2-high stack, followed by an inverter. This element had the problem that it was a dynamic gate. If the
two inputs remained at different voltage levels for long enough the C-element’s state would be lost and
cause an invalid output transition. This was clearly unacceptable for general asynchronous applications.
Static versions of the circuit were created by including a weak “trickle charge” inverter to maintain
correct voltage on the internal node in the absence of it being directly driven by the 2-high stack.

The trickle charge inverter was a problem for several reasons. First, it reduced the performance
of the circuit. When the internal node c (in Figure 2a) needed to be flipped to a different voltage, the
trickle inverter would be actively driving the circuit one way, while the 2-high stack was actively driving
it another way. The 2-high stack needed to charge the node, as well as dissipate the current supplied
from the trickle inverter. This caused increased power consumption due to the existence of a DC path
between the power rails during a state change. Secondly, the inherent gain of an inverter is greater than
the gain of a 2-high stack. This design requires the 2-high stack to overpower the inverter to flip the
state of the device. Unless the drive of the 2-high stack is significantly greater than the inverter, the
node becomes susceptible to noise problems which could result in hazards. This gain difference can only
be overcome by reducing the size of the inverter and increasing the size of the 2-high stack. Hence the
sizing of the components becomes critical. Increasing the size of the 2-high stack slows the circuit by
requiring additional input drive. Decreasing the width and increasing the length of the inverter reduces
the reliability of the inverter and the portability to other processes.

After the day’s discussion, we spent several hours attempting to come up with a better C-element
design which eliminated the trickle inverter, yet did not add significant complexity to the component.
Ultimately a design was found which was compact and efficient. This design has been widely used in a
number of sites. This design required 4 more transistors than the trickle charge design. However, the
2-high stack could be of optimally sized transistors and there was no fight to drive the internal node c.
Although this circuit was larger, and the inputs drive twice the number of devices, it was significantly
faster than the original design and avoided the power consumption, noise, portability, and function
problems of the old design.

Several years later, curiosity lead us to see what MEAT would produce for a C-element. The
exact same circuit was produced from MEAT in an instant. MEAT generated equations for the circuit
shown in Figure 2b and the back-end schematic generated the equivalent but optimized version shown
in Figure 2c.

3.2 Using Burst-Mode to Increase Performance

Burst.-mode assumes that, inputs and outputs are generated as discreet, sets, or bursts. In general, this
violates dela.y-insensit.ive and speed-independent, assumptions. For example, assume that an input, burst,
has completed, and the resulting output, burst, causes several outputs to be generated. One ofthe outputs

a) Trickle inverter C-element b) Complex gate for ¢ = ab + ac + be

Figure 2: C-Elements, Hand Optimized Matched by MEAT

10

could be generated before the others. This output can be received by a destination module which could
in turn generate an output which is fed back as an input to the original module even before the rest of the
outputs have been generated. This violates burst.-mode operation as the next input burst has occurred
before the previous output burst has completed. Burst.-mode assumes that all outputs in the burst, must,
be generated before the environment, can respond to the output, burst, or computation interference may
occur. The cases where computation interference can occur can be flagged and checked by circuit, timing
analysis.

MEAT’s burst.-mode MIC model is similar to the fundamental mode assumptions for traditional
SIC AFSM designs. Namely we assumes that once an input, burst, has arrived the AFSM will settle in a
stable state before the next, burst, can arrive. If this assumption cannot, be met. then external arbitration
will be required to enforce the assumption.

If an input, burst, changes an internal state variable, speed-independent, operation will generally
require the state variable to stabilize before the output, can be changed. Performance can be improved
if outputs can change concurrently with state changes. MEAT accomplishes this by making the transi-
tioning output, a don’t care in the unstable exit, point, of a row in the flow table. This places a priority
on logic minimization, but. usually will produce a circuit, which can generate an output, concurrent, with
state changes. The fundamental mode assumption guarantees that, the AFSM is ready to accept, the next,
input, burst, when it. arrives, as the state variable transition has completed and the logic has stabilized.
Unger has shown that. it. is possible to weaken this fundamental mode assumption [30], although his
method is not. presently incorporated into MEAT.

3.3 When Speed-Independent Circuits Fail: The Isochronous Fork

Ideally all asynchronous circuits should be designed as dela.y-insensit.ive modules. However, performance
requirements may force one to make weakening assumptions about, circuit, behavior. Many of these
assumptions are realistic, as physical devices and wires do not. require unbounded delays to generate and
propagate signals. However, care must, be used to assure that the circuit, complies to these assumptions
under all operating conditions or the design will be unsafe and costly failures may occur.

Simplifying assumptions are best, exploited when they are constrained to a fixed extent, physical
domain as is the case with AFSM modules. Hierarchical composition of these modules can then proceed
conforming to dela.y-insensit.ive rules since all of the external interfaces should be designed avoid timing
assumptions. Inside an AFSM, the relative delay of wires and gates can be more easily controlled,
analyzed, and modified as the constraints are all local. When these timing assumptions apply outside
an individual module then the entire system must, be analyzed to assure compliance with the timing
assumption set.. At. this point, there is little to distinguish the circuit, from a synchronous one.

A common performance and synthesis assumption made by many asynchronous circuit, designers
is that of speed-independence. The assumption that wire delay is zero leads to the isochronous fork
assumption. This implies that multiple devices driven by a single component, react, to the signal change
at. approximately the same time. This model works well for situations where the transistors are slow
and the paths are fast.. Unfortunately this model becomes less valid as IC technology progresses and is
certainly suspect, even today.

Furthermore, whenever the rise or fall time of an isochronous fork is greater than the switching
delay of any physical device, failure may occur due to variances in switching thresholds. Noise, long wires,
and high-capacit.ance paths exacerbate the problem. Within a particular AFSM module, this problem
can be managed successfully but. between modules it is difficult.. Martin [14] and Van Berkel [32] have
both described circuit, failures due to paths which did not. behave in an isochronous fashion. Both failures
were the result, of using C-element.s in module interfaces. C-element.s inherently contain an isochronous

1

State Machine
MEAT State Machine Logic Blocks

Figure 3: State Machine Generation

fork. Namely the output of the C-element. will be an output of the module as well as being fed back
locally to maintain the C-element’s state.

The philosophy we have used in the MEAT tool and in the design of our circuits is to remove
isochronous forks from external interfaces. MEAT state machines are broken into the partitions shown
in Figure 3. Our philosophy is that we would rather increase the cost, and difficulty of designing modules
if it. can simplify the composition of systems. Timing assumptions are always easier to analyze and fix
in a small, local cell rather than across a series of modules. Systems are hard to design and low-level
modules are relatively easy. Ifby making the module design harder, it. becomes easier to do the inherently
complex task then the overall difficulty is reduced.

The trigger box has two functions. First., high capacitance inputs (inputs with a slow rise time) will
be passed through an inverter or Schmitt, trigger. This will reduce the load on the input, line, which can
increase circuit, performance. It. also results in crisp rise and fall times of signals internal to the AFSM.
Secondly when an una.ssert.ed input, signal is required by the state or output boxes, the trigger box will
invert, that, signal. Each input, will have its inverted and uninvert.ed signal shared among all function
blocks in the state machine to eliminate hazards and create a smaller implementation. The isochronous
forks created by sharing the inverters are easily controlled within the AFSM domain. Components within
a particular AFSM are physically close. Hence wire delays of the internal signals and the trigger box
delay are normally insignificant..

The driver block is used to generate positive output, voltage levels and to increase the signal
strength when the output, is heavily loaded. Circuit, performance is enhanced since it. is sized to drive
its output, load appropriately. Isochronous forks in MEAT will only exist, when a state variable is used
directly as an output.. In such cases, the output, can be buffered by one or two inverters to assure the
fork is isolated within the AFSM. While this decreases the performance of the circuit.,, the module can
function in a delay-insensitive manner and can be safely used without, analyzing it’s load in a broader
context..

This design style has been tested continuously over the last, five years. We have designed several
large asynchronous circuits which have generally worked the first, time, merely using simulators to verify
correct, composition of the modules. The result, of this experience has led to a high confidence factor in
the method.

3.4 An AFSM example

In order to illustrate exactly what. MEAT does, we will transcribe an actual synthesis run using MEAT
to create a Post. Office state machine called the SBUF-SEND-CTL. The behavior is initially specified
as a burst.-mode AFSM as shown in Figure 4. This example is taken from the suite of Post. Office state
machines publicly available for use by other researchers [26,23].

12

13

The specification of sbuf-send-ctl from Figure 4 is textually entered for MEAT as follows:

:fsm sbuf-send-ctl
zin (Deliver Begin-Send Ack-Send) ;list of input variables
out (Latch-Addr 1dleBAR Send-Pkt) ;list of output variables
state 0 (Deliver)

1 (1dleBAR * Latch-Addr)
state 1 (Deliver”)
20
state 2 (Begin-Send)
3 (Latch-Addr™)
state 3 (Begin-Send~)
4 (Send-Pkt)
state 4 (Ack-Send)
5 (Send-Pkt~)
state 5 (Ack-Send~)
0 (1dIeBAR™)
state 4 (Deliver)
6 0
state 6 (Deliver” * Ack-Send)
7 (Send-Pkt~ * Latch-Addr)
state 7 (Ack-Send~)
20

The following is a transcript from a MEAT session. The specification resulted in a single imple-
mentation with two state variables.

> (meat "sbuf-send-ctl._data™)

Max Compatibles: ((0 5 (@ 27 @ 4 (®6)
Enter State set: “((05 @27 (@4 (®6)

SOP for "YI':
18: DELIVER + Y1*BEGII-SEIFD~
SOP for "YO":
28: BEGIN-SEND + YO*ACK-SEND~ + YO*DELIVER
SOP for LATCH-ADDR:
12: Y1*YO~
SOP for IDLEBAR:
30: ACK-SEND + BEGIN-SEND + YO + YI
SOP for SEND-PKT:
12: YO*BEGIU-SEND ~
HEURISTIC TOTAL FOR THIS ASSIGNMENT: 100

The implementation can then be verified for hazard-free operation by the verifier. The verifier
reads the specification and implementation. For this example, the state variables and outputs generated
by MEAT are implemented as two-level AND/OR logic. Each signal is generated independently of the
others. Only direct inputs are shared, so the same inverted signal in different output logic blocks will
use separate inverters. Separate inverters will result in verification errors in the burst.-mode speed-
independent. analysis. In this example, the begin-send signal is shared by YI and send-pkt. The two
inverters are merged and the output, is forked to both logic blocks. This implementation is then verified.

14

ack-send

deliver cjr Yo
begin-send4
YO
begin-send vo |
ack-send || | deliver || |

Figure 5: Complex CMOS Gate for sbuf-send-ctl YO

The verifier points out a d-trio hazard [31] which is removed by adding an inverter to change the
sequencing of begin-send into the YO logic. The implementation is then verified as hazard free as
follows:

> (verifier-read-fsm "sbuf-send-ctl.data")

Max Compatibles: ((0 5 @27 (@4 (6)
Enter State set: “((05 @27 (@4 (®6)

> (setq *impl* (merge-gates (1 11) *impl¥*))

> (verify-module *impl* *spec¥*)

10 20 30 40 50

Error: Implementation produces illegal output.

> (setq *impl* (connect-inverter 10 6 *impl*))
> (verify-module *impl* *spec¥*)
10 20 30 40 50 60 70 79 states.

The canonical SOP equations generated by MEAT are then transformed into complex gates
for implementation. The CMOS circuit for YO is shown in Figure 5. The complex gates are then
manually implemented using the Electric [25] layout editor. The physical layout is then simulated with
COSMOS [3] to check for layout errors. Cooperating sets of state machine cells are interconnected to
form larger modules, integrating clocked datapath logic when necessary.

3.5 D-Trio Hazards, Assumptions, and Possible Elimination

15

w8
Req-S

00 01 11 10
0O O 0--1 0

1 1[0 "1 X

W8
Reg-S Reg-S

Done Done
W8 —

Logic with d-trio hazard D-trio hazard removed

Figure 6: Hazard removal from “Sendr-Done” state machine

Figure 6 shows a static d-trio or nonessential function hazard which is found in some of the state
machines produced by MEAT. D-trio hazards are fundamental and cannot be removed in every case,
but they will be detected by the verifier In this cases the hazard occurs because the input burst resulted
in an internal state change while the output burst contained no transition for the Done signal. The
d-trio hazard in this example can produce a static 1-hazard on the Done signal. The input burst is
perceived by the Done output logic after the state change burst thereby creating the hazard.

The WS signal of the logic with the d-trio also contains an isochronous fork. If we ignore the
potential threshold deviations then timing analysis shows that the physical behavior will not exhibit the
hazard. However, this circuit cannot be included in a system without analyzing the driver, load, and
stray capacitance on the WS input or errors will result.

By modifying the trigger logic in the Sendr-Done state machine shown in Figure 6, we can both
eliminate the d-trio hazard and the external isochronous fork. This incurs no performance penalty. The
WS signal to the Done logic remains delayed by a single inverter, while the WS signal to the state logic
becomes double inverted rather than fed directly into the logic from the input.

The double inversion has the effect enforcing correct sequencing of the order of arrival of the WS
signal to the Done logic. Transitions on WS will always be perceived by the Done logic before changes
in the state variable, resulting in hazard-free circuit operation. Transitions are ordered such that the
assertion of the state variable is not critical to the performance of the circuit, so the double inversion of
WS into the state logic has no deleterious effect.

3.6 When MIC Circuits Cannot Be Designed: The NAKing Arbiter

MEAT state graphs must be unambiguous and deterministic. Nondeterministic behavior inside a state
graph is not allowed as it can result in metastability. However, the operation of a state machine may
be nondeterministic if a mutual exclusion element (ME) is used to order the arrival of two or more
concurrent inputs into the state machine. ME’s are analog devices, and are the only external device
that may be required to implement control functions using the MEAT methodology. They are easily

16

A<

Figure 7: Naking Arbiter SIC State Machine Specification.

fabricated in most VLSI technologies, requiring 12 transistors in CMOS.

When multiple edges exit a single state, there must be at least one pair of mutually exclusive
signals for all pairs of edges exiting the state[19]. If there is no pair of mutually exclusive signals for
all pairs of edges then the state machine can only operate in single input change (SIC) mode for those
signals. This has been referred to as the semi-modularity property [4].

Arbiters are inherently nondeterministic circuits which cannot be directly implemented as an
AFSM. The Naking Arbiter of Figure 7 is an SIC state machine. Since the environment permits the RI
and R2 signals to arrive concurrently these signals pass through a sequencer before entering the state
machine. A sequencer consists of a set of ME gates, AND gates, and latches, with an input to enable
the next transition. Sequencers are nondeterministic and rather expensive to build in terms of size and
speed.

4 Summary

The goal in the development of the MEAT tool was to generate fast, compact, efficient circuits. Showing
the excellent performance that can be achieved with asynchronous designs is an important part of
forwarding this technology to the general circuit design community. While experienced asynchronous
designers understand that there are more benefits in the asynchronous approach than speed, it is clear
that the dominant metric in evaluating circuit design styles in the commercial arena is performance. Our
Post Office design was no exception; as long as the circuit was fast nobody cared how we did it except
us. We view this as a sad reality, since it relegates the impact of the conceptual elegance of asynchronous
circuits to the academic community.

Building a large, fully self-timed circuit has resulted in many insights. The need for synthesis
and analysis tools that compare with those available to the synchronous design community is of primary
importance. We hope that MEAT is a step in the direction of attracting more broad based interest.
We have publicly offered both the MEAT tool and many of the Post Office state machines to the IC
CAD design community in hopes that others will improve on this step. The need for more robust circuit
behavior and for higher performance levels is ubiquitous.

MEAT, like any CAD tool, is incomplete. The back-end only produces schematics. Manual lay-
out. is prohibitively time consuming. Some form of automatic layout, is necessary unless we abandon the
complex gate approach in order take advantage of standard cell and technology mapping approaches.

17

Automatic layout is a difficult, task and should also include automatically sized transistors for the per-
formance needs of the design. Using standard cells will result, in some lost, performance but. the synthesis
task is easier. We are investigating both options. There are other performance oriented factors that
should be included. As a design is passed down through the different, stages of MEAT, some infor-
mation is lost. The complexity of the algorithms and simplicity of the circuits could be enhanced by
preserving some of this information. State graphs lack the formalisms required to analyze compositions
of these circuits for safety, liveness, deadlock, and other properties. We are currently investigating a
process calculus as a means of specifying and generating MEAT state graphs as well as proving correct,
operation and construction. MEAT also needs to be connected to existing CAD tools. An example is
the connection to a timing analyzer so that, the timing assumptions can be automatically analyzed for
compliance. Since datapath design is similar to that, of synchronous designs, we need to integrate the
MEAT capability into an existing CAD framework. Presently, too much designer interaction is required
to traverse the seams separating MEAT and other pieces of our tool environment..

Approximately a fifth of the Post. Office control path design was done manually, and the rest,
was done using MEAT. The automated part, of the design took one-fourth the amount, of design time
and was virtually error free. Those errors were corrected when Steve Nowick pointed out. a flaw in
our minimization algorithms. Our design style has proven to be a very natural transition for existing
hardware designers, primarily since it. is based on traditional finite state machine control. Our synthesis
techniques have generated compact, high-performance circuits that, work, and the complexity of the
synthesis algorithms has proven to be viable for large designs.

References

[1] Erik Brunva.nd and Robert. Sproull. Translating Concurrent. Programs into Dela.y-Insensit.ive Cir-
cuits. In IEEE International Conference on Computer Aided, Design: Digest of Technical Papers,
pages 262-265. IEEE Computer Society Press, 1989.

[2] Steven M. Burns and Alain J. Martin. The Fusion of Hardware Design and Verification, chap-
ter Synthesis of Self-Timed Circuits by Program Transformation, pages 99-116. Elsevier Science
Publishers, 1988.

[3] Ca.rnegie-Mellon University. User's Guide to COSMOS.

[4 Ta.m-Anh Chu. On the models for designing VLSI asynchronous digital systems. Technical Report.
MIT-LCS-TR-393, MIT, 1987.

[5] Henry Y. H. Chua.ng and Sa.nt.anu Das. Synthesis of multiple-input, change asynchronous machines
using controlled excitation and flip-flops. IEEE Transactions on Computers, C-22(12): 1103—109,
December 1973.

[6] A. L. Davis. The Architecture of DDM1: A Recursively Structured Data-Driven Machine. Technical
Report. UUCS-77-113, University of Utah, Computer Science Dept., 1977.

[7] Digital Equipment. Corporation., Maynard, MA. Alpha Architecture Handbook, 1992.

[8] David Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. An
ACM Distinguished Dissertation. MIT Press, 1989.

[9] William I. Fletcher. An Engineering Approach to Digital Design. Prent.ice-Ha.ll, 1980.
[10] A Grasselli and F. Luccio. A Method for Minimizing the Number of Internal States of Incompletely

Specified Sequential Networks. IEEE TEC, June 1965.

18

(11]

(12]

(13]

[14]

[15]

(16]

(17]
(18]
(19]
[20]

(21]

(22]

(23]

[24]

(29]
[26]

[27]

(28]

A. B. Hayes. Stored State Asynchronous Sequential Circuits. IEEE Transactions on Computers,
C-30(8), August 1981.

A. B. Hayes. Self-Timed IC Design with PPL’s. In R. E. Bryant, editor, Third Caltech Conference on
Very Large Scale Integration, pages 257-274, Rockville, Maryland, 1983. Computer Science Press,
Inc.

Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE Transactions on
Computers, C-31(12): 1133-1141, December 1982.

A.J. Martin, S.M. Burns, T.lv. Lee, D. Borkovic, and P.J. Hazewindus. "The Design of an Asyn-
chronous Microprocessor”. In C.L. Seitz, editor, Advanced Reserach in VLSI: Proceeedmgs of the
Decennial Caltech Conference on VLSI, pages 351-373. MIT Press, 1989.

Alain Martin. Compiling Communicating Processes into Delay-Insensitive VLSI Circuits. Dis-
tributed Computing, 1(1):226—234, 1986.

Alain Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits. In William J. Dally,
editor, Sixth MIT Conference on Advanced Research in VLSI, pages 263-278. MIT Press, 1990.

C. Mead and L. Conway. Introduction to VLSI Systems. McGraw-Hill, 1979. Chapter 7.
Teresa Meng. Synchronization Design for Digital Systems. Ivluwer Academic, 1990.
R.E. Miller. Switching Theory, Il: Sequential circuits and machines. Wiley, 1965. Chapter 10.

Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of Delay-Insensitive
Modules. In Henry Fuchs, editor, Chapel Hill Conference on Very Large Scale Integration, pages
67-86. Computer Science Press, 1985.

S. M. Nowick and D. L. Dill. Synthesis of asynchronous state machines using a local clock. In 1991
IEEE International Conference on Computer Design: VLSI in Computers and Processors. IEEE
Computer Society, 1991.

S. M. Nowick, Iv. Y. Yun, and D. L. Dill. Practical asynchronous controller design. In 1992
IEEE International Conference on Computer Design: VLSI in Computers and Processors. IEEE
Computer Society, 1992.

Steven M. Nowick and David L. Dill. Automatic synthesis of locally-clocked asynchronous state
machines. In 1991 IEEE International Conference on Computer-Aided Design. IEEE Computer
Society, 1991.

S.S. Patil. Coordination of asynchronous events. Technical Report TR-72, MIT Project MAC, June
1970.

Steven M. Rubin. Computer Aids for VLSI Design. VLSI Systems. Addison-Wesley, 1987.

L. Lavagno; Iv. Iveutzer; A. Sangiovanni-Vincentelli. Synthesis of Verifiably Hazard-Free Asyn-
chronous Control Circuits. Technical Report UCB/ERL M90/99, Univ. of California at Berkeley,
November 1990.

Kenneth S. Stevens, Shane V Robison, and A.L. Davis. “The Post Office - Communication Sup-
port for Distributed Ensemble Architectures”. In Proceedings of 6th International Conference on
Distributed Computing Systems, pages 160 - 166, May 1986.

Ivan E. Sutherland and Robert F. Sproull. Logical effort: Designing for speed on the back of an
envelope. In Carlo H. Sequin, editor, Proceedings of the 13th Conference on Advanced Research in
VLSI, pages 1-16. UC Santa Cruz, March 1991.

19

[29] J. H. Tracey. Internal state assignments for asynchronous sequential machines. IEEE Transactions
on Electronic Computers, EC-15:551-560, August 1966.

[30] S. H. Unger. A Building Block Approach to Undocked Systems. In Proceedings of the 26th HICSS
Conference, January 1993. To appear.

[31] S.H. Unger. Asynchronous sequential switching circuits. Wiley-Interscience, 1969.

[32] C. H. van Berkel. Beware the Isochronic Fork. Technical Report Nat. Lab Rep. UR 003/91, Philips
Research Laboratories, January 1991.

[33] C. H. (lvees) van Berkel. Handshake circuits: an intermediary between communicating processes
and VLSI. PhD thesis, Technical University of Eindhoven, May 1992.

[34] Peter Vanbekbergen, Francky Catthoor, Gert. Goossens, and Hugo De Man. Optimized synthesis of
asynchronous control circuits from graph-theoretic specifications. In International Conference on
Computer-Aided Design. IEEE Computer Society Press, 1990.

