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Abstract - In order to successfully integrate asynchronous and synchronous de-
signs, great care must be taken at the interface between the two types of systems.
Synchronizing asynchronous inputs with a free running clock can cause well-
known problems with metastability in the synchronization circuits. Stretchable
clocks allow a clock cycle to expand dynamically in response to the metastability
effects of sampling asynchronous inputs. We use an interface organization where
the special circuitry for detecting metastability and for stretching the clock that
is delivered to the synchronous part of the system is encapsulated in a Q-flop-
based interface. This provides a very convenient method for interfacing mixed
systems, as the interface and clock generation circuitry are isolated into one spe-
cial module, and neither the asynchronous nor the synchronous system need be
modified internally to accommodate the interface. This is especially important
when standard synchronous components are used as there is no opportunity to
modify these parts. We show that this interface module is suitable for most
mixed design needs and conclude with an example.

1 Introduction

As VLSI technology improves, hardware systems become larger, faster, and more complex.
Along with these improvements, however, come many problems directly associated with
the speed and scale of the new systems. Asynchronous and self-timed design techniques
are currently attracting renewed interest as a method for coping with some of the problems
associated with the scale of modern systems. These systems that do not rely on a global clock
to keep system components synchronized have been shown to exhibit a number of inherent
advantages: more robust behavior (in terms of process and environmental variations), a
capability for higher performance operation, decreased power consumption, and inherently
higher reliability in high speed applications. However, for many applications, designing
completely asynchronous circuits is currently an impractical approach. Because of the large
body of work related to synchronous system design, and the many tools available for this
style of design, mixed asynchronous-synchronous design is an important approach.

One domain where this mixed design style may be especially appropriate is in embedded
systems and controllers. These systems typically use a commodity-type synchronous con-
troller, but respond to a variety of external inputs that are not synchronized to the system
clock. Processing the asynchronous input data as it arrives may be best accomplished using
a specialized asynchronous circuit with overall system response being coordinated by the
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synchronous controller. When these devices are used in remote locations there is a real need
for low power control circuits that are extremely robust under significant temperature and
power supply variation. These types of systems present an inherent opportunity for highly
parallel control interaction that must operate correctly and whose behavioral parameters are
well proven and understood, due to the extreme remote nature of their operation and the
resultant expense of repair.

In order to successfully integrate asynchronous and synchronous designs, great care must
be taken at the interface between the two types of systems. Synchronizing asynchronous
inputs with a free running clock can cause well-known problems with metastability in the
synchronization circuits. To achieve this interfacing successfully, we implement an inter-
face/clock generation module based on Q-flops, special flip-flops that signal when they have
exited metastability, and stretchable clocks. Stretchable clocks allow a clock cycle to expand
dynamically in response to the metastability effects of sampling asynchronous inputs. In our
scheme the special circuitry for detecting these events and for stretching the clock that is de-
livered to the synchronous part of the system is encapsulated in a Q-flop-based interface, as
an extension of Rosenberger’s )-Module organization [24]. This provides a very convenient
method for interfacing mixed systems as the interface and clock generation is isolated into
one special module, and neither the asynchronous nor the synchronous system need be mod-
ified internally to accommodate the interface. This is especially important when standard
synchronous components are used as there is no opportunity to modify these parts.

In spite of the natural inertia from the mass of existing synchronous designs, there is
currently a renaissance in asynchronous circuit design. As one aspect of our asynchronous
systems design work, we look for ways to exploit the rediscovered advantages of asynchronous
designs while capitalizing on the preponderance of previously designed synchronous parts.
One approach involves designing globally asynchronous, locally synchronous systems (here-
after called “mixed systems”). We use -module-based interface/clock generation elements
as shown in Figure 1 and described in Section 3 to safely coordinate and synchronize inter-
actions between the different regions in these mixed systems. Unlike other value-reliable [9]
synchronization circuits such as stretchable or stoppable clock methods, Q-modules (inter-
nally clocked, delay insensitive circuits) conform naturally to the self-timed asynchronous
design style that we advocate in our asynchronous systems research.

One goal for this work is to devise an interface scheme that will allow us to use previously
designed synchronous parts “as is”. (We consider this category of synchronous parts to
include off-the-shelf parts, design library modules, and modules synthesized from a behavioral
specification by a high-level synthesis system.) This allows us to focus our efforts on the (to
us) more interesting asynchronous design aspects yet avail ourselves as necessary of existing
synchronous circuits.

The asynchronous circuits we consider in this paper are all built using two-phase delay-
insensitive (DI) control circuits (the individual control modules may be speed independent,
but exhibit delay-insensitive interfaces) and bundled data paths.

This paper describes our approach to building globally asynchronous, self-timed systems
that incorporate locally synchronous regions. First we discuss mixed-system design issues,
then review typical synchronization approaches and list their limitations. Next we present
a (Q-module-based interface implementation which combines synchronization and clock gen-
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Figure 1: Q-module organization.

eration and facilitates the mixed-system design style we are advocating. We follow this by
an example using the interface in a mixed asynchronous-synchronous implementation for a
Finite Input Response (FIR) filter. Finally, we draw some conclusions about the method
and indicate future extensions to this work.

2 Mixed Systems - Combining Asynchronous and Syn-
chronous Regions

As system sizes and circuit technology speeds increase, it becomes more difficult to satisfy the
high frequency clock requirements of robust, hazard- and race-free clock schemes and small
skew global clock distribution [3]. Using autonomous locally clocked and/or asynchronous
subsystems can facilitate large system design. As a corollary, global communication require-
ments are reduced since most communications can be localized. However, communications
among synchronous systems not sharing a common clock must be synchronized.

2.1 Synchronization Issues in Mixed Systems

In synchronous systems, whenever flip-flop timing constraints such as minimum pulse width,
setup, or hold times are not met, there is a finite probability that instead of resolving to a
state matching the input value, the flip-flop will enter a metastable state. This metastable
state may eventually resolve to the correct output state, or it may resolve to an incorrect
output state. If it takes longer than one clock period for the metastability to resolve, and
the synchronous system is allowed to proceed, the metastable output may be interpreted as
a “1” by part of the system and “0” by the rest. We refer to this effect as “value failure”.
Metastability occurrence is probabalistic and exponentially related to the synchronous
clock rate and the asynchronous data rate: the mean time between failure is shorter at



high asynchronous data rates and high fast synchronizing clock frequencies. Conversely, the
longer one waits before using the sampled data, the lower the probability of synchronizer
failure. Conventional techniques for decreasing the probability of metastable failure [17, 20]
include using fast devices, allowing for extended settling times, and employing masking and
redundancy. These techniques all amount to allowing a long but bounded amount of time
for metastability to resolve, accepting the finite probability that failures will occur. Thus
these methods trade the advantage of time-certainty for the possibility of value failure.

2.2 Conventional Interface Techniques

Because of its probabilistic nature, metastability is hard to characterize, detect, and repro-
duce. As circuit technologies improve and circuit speeds increase, handling metastability
issues becomes more important. Although the consequences of ignoring its effects are po-
tentially catastrophic, it is still considered a very difficult problem to treat correctly in the
design of interface circuits. Evidence for this is the number of interface specification systems
that completely disregard this issue. For example, a range of interface specification methods
are being developed in conjunction with several high-level synthesis systems. The implemen-
tations synthesized from these descriptions either include conventional synchronizers on the
asynchronous inputs [2, 4, 13], or only handle signals related to the same clock internally
or externally [12, 18, 21]. For high-speed, value-critical system interfaces, these methods
cannot guarantee the required combination of value-reliability plus speed.

2.3 Reliable Value Synchronization Methods

Alternatively, less conventional methods using stoppable or stretchable clocks trade a degree
of time-uncertainty for value-reliability. Stoppable clocks [9, 22, 25, 27, 28, 31] can be used
for interfacing asynchronous-synchronous circuits communicating via specific protocols and
when the synchronous system does not require a continuously running clock. The locally
generated clock is stopped synchronously, and the system passively awaits the next asyn-
chronous input. The clock is then re-started asynchronously by the asynchronous input with
known value but unknown arrival time. For circuits that operate using this restricted inter-
face model, this scheme avoids metastability because it avoids sampling a changing signal.
However, stoppable clock circuits require careful delay analysis in their design to ensure
correct circuit operation [9, 31]. Often redesign of the synchronous part itself is required as
well. Thus stoppable-clock based interface schemes are applicable only in certain restricted
cases.

Stretchable clock circuits can be used in the more general case when neither the value
nor the arrival time of the incoming asynchronous signal is known in advance. In stretchable
clock circuits [9, 10, 22, 28], a comparator-based metastability detector is used to delay
the next clock edge when a potentially changing input is sampled. Again, critical timing
conditions must be met in the design and operation [24].
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3 Q-Module-Based Interfaces

The goal is to build value-safe interfaces for combining synchronous and asynchronous de-
signs. The main difficulty with the stoppable/stretchable clock based approaches is that
they require specialized and somewhat hard-to-build circuits. Yet interfaces based on these
methods would facilitate the decoupled mixed-design style we are advocating, allowing us
to incorporate synchronous parts into an asynchronous design without redesign of the syn-
chronous parts. Because they are the more general of the two schemes, we focus primarily
on stretchable clock techniques for our interfaces.

We implement a stretchable clock interface where the metastabillty detection circuitry
is encapsulated in a special module called a -module, shown in Figure 1 and described
in Rosenberger, et al., [24]. Q-modules are internally clocked, delay-insensitive state ma-
chines. Data inputs are sampled on one clock event using Q-flops: these special flip-flops use
comparator-based circuits to acknowledge when metastability has resolved and values are
stable. The acknowledgements from the Q-flops and the state registers are used to generate
the next clock event.

We extend the )-module organization by altering the Clock Generation element to pro-
vide the appropriate clock signal to the synchronous side of the interface. Note that in the
normal case the period of this exported clock signal is regular and set by the delay through
the clock generator element (with any additional delay needed to model the combinational
delay time, or to achieve a particular minimum clock frequency). If the internal Q-flops
stall, waiting to resolve metastability due to asynchronous inputs, the clock signal will be
stretched automatically until the data resolve.

In contrast to conventional stretchable clock implementations, because Q-flops acknowl-
edge when they are ready to accept new inputs as well as acknowledging when the storage
operation is completed, the clock generation utilizes a delay-insensitive protocol. Clock
generation and distribution are also simpler: delay through the combinational logic imple-
menting the state function provides the single delay constraint that must be satisfied in
the clock generation and distribution for the -module itself. For our interfaces, we use
(QQ-modules both to synchronize the asynchronous inputs and to act as clock generators. The
internal two-phase single wire clock, used for internal sequencing, is exported to form the
synchronous part clock input, as is shown in Figure 2. Thus we have to adjust the single
delay constraint in the Clock Generation element to provide the minimum clock frequency
required by the synchronous part.



The goal for this work is to demonstrate an interfacing method to allow value-reliable
synchronization between self-timed asynchronous and conventional synchronous systems.
In contrast to the stretchable and stoppable clock methods discussed above, Q-modules
provide the safety, generality, and simplicity required of an easily designed interface. Our
Q-module interface/clock generation circuits avoid synchronization failure by ensuring that
storage elements have resolved before using the stored values by dynamically adjusting the
additional delay.

Contrast this with the fixed time delay that is normally introduced for synchronization
in conventional clocked circuits (for example, by including extra latching stages or dividing
down the clock for sampling latches). In the Q-module-based interface, value-safety is assured
at the expense of an occasional stretching in the clock period. In conventional clocked
circuits, the clock period must always be long enough to allow sufficient time for metastability
to resolve with as high a probability as possible. Yet because the resolution time is fixed
and bounded in conventional techniques, there is always a finite probability of value failure
and subsequent circuit failure.

4 An Example Mixed-System Design

Now we discuss a relatively small example - a mixed asynchronous-synchronous circuit im-
plementation for an FIR filter. This circuit incorporates a ()-module-based interface for
value-safe synchronization and clock generation. This circuit contains all the typical ele-
ments of a larger mixed-system design, but is simple enough to allow us to focus on the
important interface details. For example, synchronous arithmetic parts are inexpensive,
generally compact, and readily available. Their use can be very cost effective in a circuit
which is otherwise asynchronous. The FIR filter circuit below is designed to operate in an
asynchronous environment and so it must present an asynchronous interface to the external
world. However, in addition to the asynchronous data buffering parts, it uses synchronous
computation parts internally and so requires synchronization at that internal interface. The
asynchronous control structure will allow the data-dependent processing time of the required
arithmetic calculations to enhance the average-case performance of the filter.

The circuit described represents a class of circuits where mixed design is appropriate.
For example, embedded control using standard synchronous controllers responding to asyn-
chronous events are an excellent target for the synchronization strategy we describe here.

4.1 Circuit Description

We implement a universal FIR filter for asynchronous inputs. This is a sixth order filter,
with input and output done in parallel. The symmetric coefficient algorithm is used which
reduces the number of multiplications by a half over the standard filter. For the 4-bit input
vector x, and for three 4-bit coefficient vectors k., kj, k., the 11-bit output vector vy, is
computed as:

y(n) = ka * [l’n —I_ l’n_g,] —I_ kb * [xn—l —I_ xn—4] —I' kc * [xn—Q —I' xn—S]
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Figure 3: Top-level diagram for mixed asynchronous-synchronous FIR implementation.

The FIR filter circuit as shown in Figure 3 consists of an asynchronous data-fetching unit
ASYNCH and a synchronous computation unit SYNCH. A Q-module-based interface part
ASYNCH-TO-SYNCH INTERFACE between the asynchronous module and the synchronous
module links the control of both parts, synchronizes the data, and generates the clock for the
synchronous part. The external interface is self-timed using two-phase transition signaling
and data-bundling. The environment issues a Req when the next input data value is ready.
The FIR returns an Ack when the FIR computation completes and a new output value is
available. The asynchronous self-timed interface constrains event sequencing rather than
event timing. The environment can supply data and use results at any rate as long as the
sequence of “send-Req; receive-Ack” is obeyed.

The data-fetching part ASYNCH is an asynchronous shift register with 6 data taps im-
plemented as a Sutherland micropipelined-based FIFO [29]. It uses two-phase self-timed
control with data-bundling.

The Q-module-based interface part ASYNCH-TO-SYNCH INTERFACE, Figure 4, provides
synchronized asynchronous data and the clock for use by the synchronous computation unit.
A Q-flop is used to detect metastability when latching the “begin next computation” control
signal REQ2IN is received from the asynchronous part. The clock generation circuit waits
for metastability to resolve before initiating the next clock pulse and latching the outputs.
The clock is exported to the synchronous part and is continuously running. While the
maximum period may vary, the minimum clock period to match the synchronous part delay
is guaranteed by the delay in the clock generation circuit.

Since the asynchronous interface communicates via a two-phase protocol, and the syn-
chronous interface obeys a four-phase protocol, the interface circuit includes a 2-to-4 phase
protocol converter part. This asynchronous converter circuit takes the place of the combi-
national logic implementing the state function in a regular -module. For this very simple
interface, no additional logic or state-holding Q-flops are required. This is not usually the
case. We are working on more complicated examples where state information and feedback
within the Q-module are required [11, 16].
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Figure 4: Asynch-to-Synch Interface Implementation

The synchronous computation unit SYNCH consists of five adders and three synchronous
multipliers. The multipliers have data-dependent completion times, so the number of cycles
for each FIR computation will vary. Output data are latched, and so remain valid until
the next FIR computation starts. For historical reasons, this module obeys a four-phase
synchronous self-timed protocol.

4.2 Implementation Details

A prototype version of the mixed asynchronous-synchronous FIR filter has been designed
for implementation in Actel FPGAs [1]. It was built and functionally simulated using the
asynchronous macro cells described in [6] and the synchronous parts provided as Actel Macro
Library soft macros, and contains 640 logic modules.

Q-flops used in the interface are not available as standard digital parts. Although Q-flops
cannot be built using FPGAs because it is not possible to implement the required analog
comparator circuit, we have designed circuits that mimic the behavior of a Q-flop using Actel
FPGAs [6]. These FPGA circuits use a fixed delay to resolve metastability [1] and so are
not value-safe, but they allow us to prototype designs quickly that can then be upgraded to
use custom Q-flops as required.

We have built and tested actual Q-flops in a variety of technologies including CMOS [5,
11], and Gallium Arsenide [7]. The next step is to implement the asynchronous parts of this
interface design in another technology where the actual analog metastability resolver parts
can be used.

5 Results and Future Work

Q-flops are found in several circuit libraries [5, 7, 8, 19, 24, 26]. Combining Q-flops with
control logic to form delay-insensitive state machine modules (Q-modules) has been ex-
tensively described by Rosenberger, et al., in [24]. Sutherland and Sproull suggest such
an asynchronous state machine built using Q-flops as an asynchronous replacement for a
conventional register-based synchronizer plus synchronous state machine in a three port
memory controller in [30]. In this paper, we introduce a -module-based interface circuit
for value-safe synchronization and clock generation. We demonstrate its use in a mixed
asynchronous-synchronous FIR circuit implementation.
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In general, these interface modules can be used in mixed systems whenever synchroniza-
tion and clock generation are required and the synchronous element can tolerate some occa-
sional clock elongation. Value-safety is assured. Chapiro [9] has done studies that indicate
clock speeds can actually be increased, now that synchronization delay can be “dynamically
adapting”. In contrast to other recent work [2], no redesign of the synchronous part is re-
quired to accommodate it in the globally asynchronous self-timed environment. This makes
the method especially suitable for correctly including previously designed synchronous parts
in mixed systems.

There are many kinds of mixed systems where these interfaces can be used. This paper
describes one example circuit containing asynchronous and synchronous regions that need
to synchronize. Traver [31] describes a method for interfacing multiple locally-synchronous
but mutually-asynchronous circuits. Synchronization problems arise in embedded controllers
using synchronous circuits but responding to asynchronous events. These types of systems
are often installed in remote locations and must be robust under a variety of environmental
conditions that tend to make synchronization problems worse. Our technique could be used
in both of these applications.

The FIR is a small mixed-system demonstration circuit. As asynchronous systems evolve
in size, such an approach will become a necessity until suitable asynchronous computation
components are commonly available. One system-size example we are working on in our
lab [16] is interfacing a synchronous off-the-shelf math coprocessor chip to a fully self-timed
asynchronous microprocessor [23]. Yet another example involves connecting synchronous
analog-to-digital input converters and digital-to-analog output converters to an asynchronous
neural net classifier system [14, 15] also being constructed in our lab. The issues involved in
successfully combining more than two systems using these interfaces are being explored, as
described in [11].

For a variety of reasons, including limitations in current asynchronous design tools, de-
signing completely asynchronous circuits may not always be practical or desirable. With
the addition of the interface method described here, the self-timed circuit design style we
advocate allows us to design and implement globally asynchronous designs that incorpo-
rate correctly synchronized locally synchronous regions. Mixed systems retain many of the
high-level advantages of asynchronous designs, while exploiting existing synchronous designs.
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