
UUCS-92-033 July, 1992

Appears in identical form in Proc. 2nd International Workshop on Object
Orientation in Operating Systems, Paris, France, September 1992.

OMOS � An Object Server for Program Execution

Douglas B� Orr Robert W� Mecklenburg

Department of Computer Science� University of Utah

Salt Lake City� UT �����

dbo�cs�utah�edu� mecklen�cs�utah�edu

Abstract

The bene�ts of object�oriented programming are
well known� but popular operating systems provide very
few object�oriented features to users� and few are im�
plemented using object�oriented techniques themselves�
In this paper we discuss a mechanism for apply�
ing object�oriented programming concepts to program
binding �linking� and execution� We describe OMOS�
an object�meta�object server that embodies a �exible
object framework� The OMOS framework projects an
object�oriented structure onto programs and shared li�
braries that may not have been originally developed
for use within an object�oriented environment� This
framework provides natural facilities for inheritance�
interposition� and overloading of operations� as well
as development of classes with dynamically evolving
behavior��

� Introduction

In recent years object�oriented programming has
gained widespread support due to its facilities for
controlling modularity� division of responsibility� sup�
port for code reuse� and scalability����� We believe
these features can be pro�tably applied to the prob�
lem of program binding and execution to achieve a
more elegant solution than is currently available� while
also providing increased functionality� We present a
mechanism for applying object�oriented programming
concepts to program binding �linking	 and execu�

�This research was sponsored by Hewlett�Packard�s Re�
search Grants Program and by the Defense Advanced Research
Projects Agency �DOD�� monitored by the Department of the
Navy� O�ce of the Chief of Naval Research� under Grant num�
ber N�����	
�	J	����� The opinions and conclusions con�
tained in this document are those of the authors and should
not be interpreted as representing o�cial views or policies� ei�
ther expressed or implied� of the Defense Advanced Research
Projects Agency� the U�S� Government� or Hewlett�Packard�

tion� We also describe the implementation of OMOS�
an object
meta�object server which implements these
concepts as a process in the Unix� operating system�

Current technology for constructing programs from
modules is clumsy and lacks structure����� This clum�
siness results in ine�ciency which manifests as poor
use of programmer skills� poor locality of program ref�
erence� poor reuse of existing code� poor use of virtual
address space� and poor use of cpu time �i�e�� avoidable
recalculations	� This lack of structure is� of course�
not without reason� Historically� there has not been a
structure which seemed su�ciently comprehensive and
robust to encompass current techniques while provid�
ing the increased functionality of the object�oriented
paradigm� Also� the large investment in existing tech�
niques makes moving to an incompatible structure
costly�

We believe that object�oriented programming con�
cepts can be applied to existing techniques such that
many of these ine�ciencies can be overcome while still
taking advantage of existing technology� We begin the
discussion with a review of object concepts and how
they relate to programs and name binding� We then
discuss recent work which clari�es the relationship be�
tween modules and inheritance� After these prelimi�
naries we will describe the features an object server
must possess and a sample architecture� This discus�
sion is followed by a more detailed discussion of a pro�
totype implementation� Finally� we will review some
results and make some observations on the concept of
the OMOS system�

� Objects and modules

An object is a collection consisting of some member
data �called slots	 and some member functions oper�
ating on that data �called methods	� In this way an

�UNIX is a trademark of ATT�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


object forms a self referential recursive scope� This
scope can be seen by examiningmethods that use slots
without actually naming the object being referred to�
i�e�� these references are implicitly quali�ed by the ob�
ject �e�g�� self�	� Methods implicitly exist within the
scope of an object making such references unnecessary�
Objects are instances of classes which resemble struc�
ture declarations extended to include functions� Class
declarations describe the number and type of the slots
and the number and type signatures of the methods�
Classes can be combined through single or multiple
inheritance�

Modern programming language theory distin�
guishes between subtyping and inheritance� A type t�
is a subtype of t�� if t��s interface is compatible with
t��s� That is� it is legal to use an instance of t� wher�
ever an instance of type t� is required� Inheritance� on
the other hand� is an implementation technique which
allows the combining of classes� Subtyping is often
bundled with inheritance� blurring the distinction be�
tween the two concepts� In popular object�oriented
programming languages �OOPLs	 such as C������
public inheritance is the only mechanism available for
implementing subtyping� An instance of a derived
class can be used wherever an instance of a base class
is required� This relationship is commonly referred to
as an isA relationship�

The e�ect of �public	 inheritance is to merge the
data and method declarations of the participating
classes into a single new class� Often� the classes be�
ing combined with inheritance contain duplicate mem�
ber names� The treatment of member name collisions
varies in popular OOPLs� In the case of method name
collision in a single inheritance hierarchy� the de�ni�
tion in the most derived class is selected according to
the referenced type� For a multiple inheritance hierar�
chy either the language assumes a precedence ordering
or the programmer is called on to disambiguate each
method reference� Rede�ning a method in a derived
class is called method overriding� As an example� if an
object of a derived class has overridden a base class
method and we invoke the method we typically want
the version de�ned in the derived class� This can be ar�
ranged through dynamic binding of method calls and�
in C��� is achieved through virtual functions�

A library can be viewed as an object �or collection
of objects	 by recognizing that during execution there
exists some state and some set of operations on that
state� The analogy is clear since libraries typically
have local data and provide a collection of functions�
Libraries are combined in much the same fashion as in�
heritance by selecting the objects of interest and merg�

ing them in a common scope� The result of merging
libraries is a new executable image whose exported
interface represents the union of merged library com�
ponent interfaces� Sophisticated linkers allow method
overriding� renaming� and hiding� much as in modern
object�oriented languages�

One important di�erence between merging classes
using inheritance and merging executable code mod�
ules into a program is the linking requirements of code
modules� A sophisticated linker might be required to
deal with dozens of attributes when building executa�
bles� For instance� we would like to reuse existing li�
braries of non�position independent code �PIC	� along
with PIC code� or save the results of the dynamic res�
olution of a program linked with shared libraries� Of
course� we would like to avoid recomputing o�sets or
relocation information whenever possible� These de�
tails of linking constraints and code module character�
istics could be collected together into an object which
can be directly manipulated by an object server� If
the executables themselves are objects� then these ob�
ject descriptor objects are meta�objects� The use of
meta�objects within OMOS to describe and construct
object instances for clients will be discussed in detail
in Section ��

��� Module operations

An object server seeking to provide all the features
of existing linkers while extending those features into
an object�oriented framework must support the �ex�
ible combination of modules� Inheritance� as formu�
lated in particular programming languages� is inap�
propriate as a basis for module combination because
it is too burdened with linguistic constraints not di�
rectly related to modules� Fortunately� recent work
by Bracha��� �� and others ��� ��� ��� ��� ��� �� has
centered on formulating a theoretical basis for module
combination and manipulation independent of inheri�
tance� The work assumes that we have decoupled in�
heritance from subtyping and focuses on decomposing
inheritance into more basic module operators� These
operators are well de�ned and can be mapped onto
languages not directly supporting inheritance or �ex�
ible module combination�

In this new treatment of module combination� mod�
ules are regarded as mutually recursive scopes which
form a uniform space upon which operators �module
combinators	 act� Module operators accept modules
as arguments and return modules as results� In this
view a module is much like an abstract data type or
object supporting these operations� Modules may in�
clude both declarations and de�nitions of symbols� A

�



declaration gives the type of a symbol but no value
binding for it� The set of module operators� as de�
scribed by Bracha���� is small and well de�ned��

Merge� kg � m� kg m� yields the concatena�
tion of m� and m�� The modules must
not have any names in common�

Restrict� ng� mnga removes the attribute
named a from m� If a is not de�ned�
mnga � m�

Project� �g� m�gA projects the module m

on the names in A� The names in A

must be de�ned in m�

Select� �g� m�ga returns the value of the at�
tribute named a inm� The name amust
be de�ned in m�

Override� �g� m� �g m� produces a result
that has all the attributes of m� and
m�� If m� and m� have names in com�
mon� the result takes its values for the
common names from m��

Rename� �
�

�
�

�g� m�a � b�g renames the
attribute named a to b� The name a

must be de�ned in m� and b must not�

Freeze� m freeze a accepts a module and
an attribute and produces a module in
which all references to a are statically
bound�

Freeze all except� m freeze all except a is
the dual operation to freeze�

Hide� m hide a performs a freeze on the sym�
bol� then removes the declaration of the
symbol from the interface�

Show� m show a is the dual of hide and hides
all but a in m�

Copy�as� m copy a as b creates a copy of the
a de�nition under the symbol b�

The merge operator� a binary operator joining the
symbols in one module with the symbols in another�
subsumes simple concatenation of interfaces and forms
the basis of standard linking� When combining mod�
ules name con�icts are not allowed and produce an er�
ror when encountered� Other operators in the Bracha
suite are used to resolve name con�icts�

�In ���� Bracha develops a denotational semantics for module
operations based on the lambda calculus� This formal semantics
representsmodules as generators� which are functionswith a self

parameter which becomes bound upon module instantiation�
Hence� we use a subscript� g� on module operator names�

The restrict operator is used to eliminate the de��
nition of a symbol in a module� The symbol still has
a declaration and ultimately requires resolution� but
the resolution must come from some other module�
In a language like C�� this is analogous to making
a method pure virtual� �A pure virtual method is a
method for which there exists a declaration� but no
de�nition� Classes with pure virtual methods cannot
be instantiated� but are very useful for standardizing
interfaces to derived classes�	 Applying this operator
to a library would remove the de�nition of a symbol
and unbind any bound references to it� The project

operator is the dual of restrict� Instead of indicating
which symbol to remove we indicate which symbols to
retain�

The select operator simply returns the value associ�
ated with a symbol� �As de�ned� this operator is not
a proper module operator since it returns a value� but
is useful in an actual implementation�	

The override operator is a prioritized version of
merge� It concatenates its arguments� and in the event
of a name collision� selects the de�nition in the second
module� This operator forms the basis for traditional
inheritance in object�oriented languages�

The rename operator is a mechanism for resolving
name con�icts� If a name a is renamed to b in a module
it is as if all textual occurrences of a in the module are
changed to b� This allows modules with con�icting
names to be merged without loss of functionality�

The freeze and freeze all except operations are used
to statically bind the de�nition of a symbol to its use
in a module� This �xes its implementation making it
safe� to combine with other modules� In C�� termi�
nology� this corresponds to making a virtual function
non�virtual�

The hide and show operations take freeze and
freeze all except one step further� While freeze removes
all references to a symbol �by �xing them	 it does not
remove the declaration of the symbol from the module
interface� hide and show do remove the symbol decla�
ration� The corresponding C�� operation would in�
volve changing a public virtual function into a private
non�virtual function�

Finally� copy�as uses the select and merge opera�
tions to copy the de�nition of a symbol and rename
it� This is useful when implementing wrappers with
modules� If we wish to wrap� e�g�� printf we cannot
use rename to preserve the original function since all
references to that function will be renamed� Instead
we copy printf to a new symbol name� leaving ref�
erences intact� and substitute our own printf which
invokes the copied version�

�



These operators constitute a complete spectrum of
operations which are typically bundled into inheri�
tance in object�oriented languages� By decomposing
inheritance and making each operation distinct we re�
duce complexity and enhance �exibility� We use mod�
i�ed versions of these operators in OMOS�

� Server overview

The object
meta�object server is a repository of
objects and meta�objects� Under the OMOS view�
objects may be incomplete combinations of code and
data fragments� or complete programs� OMOS objects
all export and import sets of attributes and attribute
values�� Conceptually� these objects are treated as
modules under OMOS�

Meta�objects contain state and export methods
used to construct objects� Thus a meta�object� in
e�ect� contains a class declaration for the object it
describes� The class declaration embodied within an
OMOS meta�object is interpreted at run�time� These
are similar to the �rst�class objects used to repre�
sent classes within languages such as Smalltalk���� and
CLOS�����

OMOS uses module operations as a mechanism for
implementing class hierarchies� While elegant from
a language perspective� this framework also provides
the building blocks with which one can construct com�
plex object�based systems� A fundamental require�
ment of OMOS is that it �t well within the traditional
framework of programs and libraries� since there ex�
ists within this framework a large body of working
code we wish to reuse� The module operations OMOS
supports allow the interfaces exported by programs
and libraries to be rede�ned� re�ned� and modi�ed
to be more suitable for use within an object�oriented
context� Thus� OMOS can reasonably make use of
the large amounts of system code that currently ex�
ists in the form of programs and libraries� The fact
that this code was not necessarily written within an
object�oriented context presents little in the way of
new requirements for our system� OMOS can project
an object�oriented �modular	 framework onto a large
collection of independently developed programs and
libraries�

OMOS clients request object instantiation through
a remote procedure call interface� As a result of a re�
quest� the construct method of a meta�object is ex�

�The range of values an attribute can have is currently quite
limited� since most executable code formats allow only integer
values to be assigned to a given symbol� In a more complete
implementation attributes would also have an associated type�

ecuted producing an object� The client is then given
a handle through which it can invoke methods on the
object� The actual code and data of the instance typ�
ically reside within the client address space�

OMOS permits clients to create their own meta�
objects� as well as to request the creation of objects
from a given meta�object� Since the invocation mech�
anism is not lightweight� it is expected most OMOS
meta�objects will specify medium and heavy�weight
objects� Thus we do not envision OMOS as an object
construction server in the customary object�oriented
run�time system sense� OMOS is designed to support
clients running on microkernels such as Mach��� or
Chorus����� or on traditional monolithic kernels that
have adequate VM and IPC facilities�

��� Meta�objects

The primary function of OMOS is to produce
instances of the classes speci�ed by meta�objects�
OMOS meta�objects export a construct method
which can produce instances of the class� Instantiation
proceeds by �rst generating an executable graph of
module operations �known as anm�graph	 through the
decompose method� The execution of this m�graph
produces an object� the object consists of executable
code and data fragments �i�e�� modules	� Full instanti�
ation involves generating an m�graph� executing it to
produce a set of modules� assigning address values to
the names within a module� then mapping or writing
the result into a target address space� M�graphs are
a �exible representation of the object� using a graph
permits manipulation of the internal structure of the
object and its unbound symbols� For instance� they
may be used to produce modi�ed versions of the object
in other contexts� Meta�objects may cache intermedi�
ate results to avoid unnecessary recalculations�

The target address space is typically the address
space of the client that instantiates the object� It
could also be the address space of a third party to
which the client has been given appropriate access�

��� Dynamic meta�object modi�cation

As well as using other meta�objects as is�� a meta�
object may choose to create an enhanced version of one
of its operand meta�objects as part of the instantia�
tion process� It can do so by invoking the decompose

method of the operand meta�object and modifying the
resulting m�graph to produce new behaviors within
the operand�

For example� if we wish to extend a meta�object to
automatically collect run�time execution pro�le infor�

�



mation by linking in a special set of libraries� we derive
a pro�ling meta�object from the original meta�object�
The construct method of the pro�ling meta�object
�rst invokes decompose on the original meta�object�
obtaining the graph of module operations associated
with the original object� Next� construct traverses
the m�graph and replaces each library operand with
an alternate pro�led version� Then� it executes the
modi�ed m�graph to produce a pro�led instance of
the original object�

Obviously� many other forms of program trans�
formation can be performed by meta�objects in re�
sponse to various events or conditions� Once pro�l�
ing information has been collected� it might be used
to automatically produce an improved version of the
object����� Another use of dynamic meta�object mod�
i�cation might be to collect objects into sharable
groups� Clustering and sharing related objects have
well�known bene�ts in savings of physical resources�
as in the case of shared libraries����� Dynamic class
modi�cation permits the association of objects based
on dynamic and possibly changing requirements�

��� Adaptability and extensibility

OMOS is an active entity � i�e�� a program with
active threads� rather than a static container� such as
a �le � hence� it can perform its functions dynami�
cally� adapting to environmental conditions or explicit
client requests� For example� since OMOS returns ex�
ecutable code and data� it can modify the information
returned according to the architecture of the system
on which the target process resides� The server may
adapt its behavior according to the constraints im�
posed by the target address space�

OMOS itself is constructed in an object�oriented
fashion and is extensible� It is implemented from a set
of classes which can be extended with dynamic load�
ing� For example� the server can dynamically load
alternate classes to process foreign executable �le for�
mats� In this fashion� the server can process a wide va�
riety of �le formats� without requiring that all formats
be built into the server at the time it is constructed�

� OMOS architecture

OMOS consists of a set of persistent entities which
provide basic naming� class construction� and instan�
tiation services� The principal entities of OMOS are�

Directories� organize OMOS components
into a hierarchical tree structure�

Meta�objects� describe classes and export
methods which are used to produce ob�
jects of the class�

Fragments� contain the executable code
and data that make up an instantiated
object�

��� Server object naming

OMOS de�nes a naming scheme which it uses inter�
nally� Clients also use this naming scheme to identify
objects of interest� Object names are hierarchical� cor�
responding to the server directory structure and con�
sist of a series of name components� Server directories
have a lookup operation� which maps a name com�
ponent to a directory entry �another entity	� OMOS
separates name components by a slash character �
�	�
adopting the same convention as the Unix �le system�
The resolve operation converts a multi�component
path name into the object represented by the path�

��� Meta�objects

Meta�objects are the basic unit which OMOS uses
to describe programs and their construction� Meta�
objects de�ne three components� a descriptor for the
class they represent� the decompose method which
generates the m�graph of module operations� and the
construct method which produces mappable frag�
ments�

��� Fragments

Fragments are leaf nodes of the m�graph which con�
tain executable code and data� Fragments export and
import interfaces by means of a symbol table� Frag�
ment symbols may be bound to a value or may be un�
bound� �Depending on the available tools� fragments
may be constructed in position independent form� ren�
dering some aspects of symbol
value binding trivial�	

��� OMOS operations

Most operations de�ned within OMOS are analo�
gous to the pure module operations described previ�
ously�

Merge� binds the symbol de�nitions found in
one operand to the references found in
another� Multiple de�nitions of a sym�
bol constitutes an error�

�



Override� merges two operands� resolving
con�icting bindings �multiple de�ni�
tions	 in favor of the second operand�

Hide� removes a given set of symbol de��
nitions from the operand symbol ta�
ble� �xing any internal references to the
symbol in the process�

Show� hides all but a given set of symbol def�
initions�

Rename� systematically changes names in
the operand symbol table� The rename

module operation can optionally work
on either symbol references� symbol def�
initions� or both�

Copy� duplicates a symbol� The new symbol
has the original binding under a di�er�
ent name�

Restrict� erases the de�nition of a symbol
and adds the symbol as a pure virtual
to the object interface of the class�

Project� restricts all but a given set of sym�
bols�

List� associates two or more objects in a list�

Constrain� constrains the virtual address
ranges the operand�s	 may occupy�

Annotate� prints an informational message�

Source� produces a module from a source ob�
ject�

Most operations work on a variable length list of
operands� Operands are references to other nodes�
Operand nodes may be module operations� meta�
objects� or fragments� Upon execution� the majority
of these operations produce new modules�

The constrain operation forces its operand to reside
within given address space constraints� This opera�
tion can anchor its operand to a speci�c address� or
restrict it within a range� The constrain operation may
be overridden or re�ned by an enclosing constrain op�
eration�

Constrain operations are used to prevent code from
being placed at the same location as existing code�
and to allow library designers to segregate groups of
objects they wish to share among diverse programs�
The same physical copies of the read�only portions
of objects may be used by di�erent programs if they
share the same �symbol�value� bindings� The ad�
dress constraints will encourage di�erent clients to
make the same bindings� Since the constraints may
change and be recalculated dynamically� this scheme

does not have the traditional problems of in�exibil�
ity associated with binding shared objects to �xed
addresses� �

The source operation invokes a language translator
to convert a C��� C� or assembly source �le into a
fragment� The source �le may be provided by a user
or dynamically generated within OMOS�

��� User interface

OMOS exports an interface to clients that permits
them to instantiate objects and to create meta�objects
and fragments� To instantiate an object� the client in�
vokes OMOS through a remote procedure call��� and
presents the path name of a meta�object which is to
be executed� The user also provides a list of memory
regions �a memory constraint	 specifying where the
resulting object should be placed� A zero�length con�
straint vector means the object may be placed any�
where� The server returns a list of memory regions
occupied by the object and a handle to it �currently�
pointers to the entry point and translation table vec�
tors	� To construct a meta�object� the user provides
a meta�object speci�cation and a server path name to
which it is to be bound� To construct a fragment the
user speci�es the �le system path name of a relocat�
able executable and the server path name to which it
is to be bound�

We plan to support remote invocation of methods
on objects via an RPC mechanism� OMOS will es�
tablish a communication channel between the remote
and client processes� On instantiation� the capability
for a communication channel will be inserted in the
target process by OMOS� OMOS will start a thread
in the remote process to service invocation requests�
the other end of the communication capability will
be returned in the client handle� The communication
channel will be used to transmit remote method invo�
cation requests� arguments� and return values between
the client and remote tasks�

� Implementation

OMOS is implemented as a set of C�� classes�
Each of the entities described in Section � is repre�
sented by a class� These classes are made persistent
through a set of derived classes �one for each base

�If the objects are compiled using position�independent code�
there is an implicit level of indirection in �symbol�value� bind�
ings� which eliminates the possibility that a given object could
produce multiple bindings� use of PIC simpli�es this problem
at some performance cost and is in no way precluded�

�



�template�lib�libc�io�

�constrain ��� �x���������

�show ��open �close �read �write �ioctl�

�merge �ro�lib�libc�open	o

�ro�lib�libc�close	o

�ro�lib�libc�read	o

�ro�lib�libc�write	o

�ro�lib�libc�ioctl	o���

Figure �� Example Blueprint Language

class	 that is capable of saving instances on stable
storage� Class instances �or server objects	 are gener�
ally organized in trees� with active portions residing in
OMOS memory� References to server objects are con�
trolled and server objects are deleted when no longer
referenced�

��� Meta�objects

Internally� a meta�object maintains a blueprint�
which is a program that describes how to construct an
instance of the object� The construct method for in�
stantiating objects has several stages� the decompose

method produces the m�graph� the eval method is
then executed on the m�graph producing a list of frag�
ments� the fixmethod binds symbols to addresses us�
ing the address space constraints as a guide� �nally the
fragments are mapped into the client address space�
The m�graph is based on the contents of a blueprint�
A blueprint is a interpretable representation of a pro�
gram describing the operations necessary to produce
an OMOS module� The construct method may be
overridden to permit dynamic meta�object modi�ca�
tion� as described in Section ����

��� Blueprint language

Within OMOS meta�objects� the actual description
of how to construct an object instance is encoded in
a blueprint using a simple language� The blueprint
language uses a simple LISP�like syntax����� The lan�
guage includes operations corresponding to each of the
module operations described above� Each operation
takes a variable�sized list of arguments� arguments are
object names� strings� or other operation expressions�
Each operation produces an object as its output�

In the example shown in Figure �� a subset of the
C library is constructed� which exports � entry points
and is constrained to link at an address somewhere

above �������� hex� The path name at the top of the
�gure is used by OMOS to identify the blueprint�

��� Module operations

The compile method of the blueprint class trans�
lates a text representation of a blueprint program into
an m�graph� The compilation process resolves names
of server objects to references to those objects� Invo�
cation of the eval method on the m�graph results in
a list of fragments� Each operation recursively evals
its operands� then performs its own function on the
instantiated operands� returning the result�

����� Symbol modi�cation operations

A number of operations result in the modi�cation of
�symbol�value� bindings within a fragment� These
operations use Unix regular expressions to select or
modify symbol names� Some operations take as an
argument a further speci�cation of the symbol usage
�i�e�� reference� or de�nition�	� Symbol operations
result in new objects� although symbol objects that
provide di�erent views of the same underlying object
share references to a single underlying fragment�

����� Memory constraint operations

Memory constraints are used to restrict where objects
are placed in memory� Memory constraints are sets of
�address�size� pairs or speci�c addresses taken from
the domain of the machine address space� Speci�c ad�
dresses are used when an object must start at an exact
location� their use is discouraged� Memory constraints
may be combined via intersection� union� and comple�
mentation� The constraint on a given operand is the
intersection of its constraints and all other enclosing
constraint operations�

��� Class construction via meta�objects

The classes OMOS exports are represented by
OMOS meta�objects� OMOS module operations al�
low combination and inheritance from other OMOS
objects and meta�objects�

The graph operations merge� hide� show� override�
copy� and rename are composed to implement inheri�
tance between modules� For example� a class may be
formed by combining two fragments� If we take the
second class to be the base class� we would �rst show

all exported symbols� eliminating extraneous internal
symbols� We would then copy all symbols we wish to

�



�template�lib�libc�debug�

�hide �libc
	��

�merge

�rename �reference� ����	���� �libc
��

�ro�lib�libc�libc�debug	o�

�rename �definition� ����	���� �libc
��

�ro�lib�libc�libc	o��

Figure �� Debugging Interposition Example

be able to continue to access explicitly after inheri�
tance to new� module�speci�c names �as in packages
in LISP	� Next� we would override de�nitions from the
base class with de�nitions from the derived class� so
that con�icting de�nitions are resolved in favor of the
derived class� producing a class that represents the
combination of the two�

In the current version of the system� inheritance
is restricted to the manipulation of object methods�
and all data is treated as either global or static ob�
ject data� The information regarding slot accesses is
not available within fragments� If slot o�sets are ex�
ternalized and segregated �so as to be distinguishable
from static data	� the same module operations apply
equally well to member data� We plan� through minor
modi�cations to standard compilation tools� to allow
dynamic combination of C�� object data via module
operations�

All module operations generate a vector of method
addresses� which represents the total set of entry
points into the module� The address of this vector
is returned to the user on instantiation� along with a
table mapping method names to vector indices�

��� Interposition

Module operations can easily be used for interpos�
ing new routines within an executable� By invoking
rename on all de�nitions of a given set of symbols using
some well�known scheme �e�g�� prepending a package
name	� then using rename to change the name of any
references destined for the original de�nition� new val�
ues for the symbols in question can be inserted trans�
parently in the original application�

For example� in Figure �� we produce a version of
the C library� libc� where a debugging version of each
routine has been inserted to trap calls to the origi�
nal routine� References to native libc routines in the
debugging routine are preserved�

� Related work

Many other systems exist that support dynamic
creation of objects and invocation of methods on
those objects� The majority of the systems� such
as Argus����� Eden���� COOL����� CLOUDS�����
SOS����� and COMANDOS
Guide��� provide a more
comprehensive object model which dictate how ob�
ject distribution and migration are to be accom�
plished� They tend to use large�grained� active ob�
jects� Emerald��� provides a language model for both
active and passive objects� Argus places a special fo�
cus on reliability� providing transactional control of
operations on objects� CLOUDS has further re�ned
the notion of locality and de�ned its own extensions
to popular languages �notably Ei�el����� C��� and
LISP	� segregating its objects into those used locally
and those used remotely�

Relative to complete systems such as these� OMOS
provides simple� basic technology� OMOS concen�
trates on making existing objects available� and allow�
ing extensive combinations of existing objects� OMOS
does not seek to provide an all�encompassing object
model� but rather is intended to be a useful framework
in which one might be implemented� Furthermore�
OMOS is oriented towards integration with existing
operating system environments rather than rebuilding
the foundations of program structure�

Towards the other end of the spectrum� there are
a number of interesting shared library implementa�
tions���� which allow multiple clients to share code
and data� Most of these facilities are based on a prag�
matic� traditional view of programs� and do not pro�
vide the ability to dynamically load or recombine ob�
jects� Packages also exist to aid programmers in the
dynamic loading of code and data����� These packages
tend to have a procedural point of view� and provide
lower�level functionality than OMOS�

� The results

OMOS is in experimental use as an object server
running on top of the Mach operating system� act�
ing as an object and program repository and pro�
viding� indirectly� a shared library service� The ma�
jority of module operations have been implemented�
A port to BSD Unix���� is planned� OMOS has
been used to conduct experiments in automatically
generating locality�of�reference optimization in run�
ning systems����� The basic OMOS system comprises
����� lines of C�� code�

�



Tests show OMOS to be e�cient� OMOS meta�
objects cache intermediate results� allowing them to
avoid unnecessary recalculations� The Unix exec sys�
tem call� when implemented using OMOS facilities�
runs ��� faster than the standard Unix exec�� sys�
tem call on a ��� Mach system running the monolithic
BSD Unix server� A benchmark program which execs
itself ���� times� executes in �� seconds using the stan�
dard Unix exec� The same program executes in ��
seconds using the OMOS exec facilities�

� Conclusion

In this paper we described the OMOS system� an
object�oriented approach to program binding and ex�
ecution� This system is an attempt to apply the con�
cepts of object�oriented programming languages along
with new work in modularity and inheritance to the
problem of traditional program composition� One im�
portant goal of the work is that the current investment
in compilation� linking� and execution technology not
be lost as we move towards a more comprehensive
framework� As such� this work provides a incremental
migration path towards a more object�oriented envi�
ronment with incremental payo��

A prototype OMOS system is currently running
and has proven to be �exible enough to provide a tra�
ditional high quality program execution and shared li�
brary service while� at the same time� maintaining an
object�oriented framework� Module operations have
proven to be powerful enough to use as the basis for
class construction� and their successful use has opened
a number of promising avenues in the �elds of language
design and object�oriented programming�

In further work with OMOS we plan to focus on
more non�traditional aspects of program construction�
concentrating on dynamic interposition of modules�
a more distributed implementation� and support for
alternate implementations of modules to provide en�
hanced functionality�

Acknowledgements

We would like to thank Gary Lindstrom and Gilad
Bracha for the crucial insights and considerable time
spent reviewing this work� In addition� we would like
to thank Bob Kessler and Jay Lepreau who provided
valuable comments on early drafts of this paper�

References

��� Mike Accetta� Robert Baron� William Bolosky�
David Golub� Richard Rashid� Avadis Tevanian�
and Michael Young� Mach� A new kernel foun�
dation for UNIX development� In Proceedings of
the Summer �	
� USENIX Conference� pages ���
���� Atlanta� GA� June ����� ����� Usenix Asso�
ciation�

��� G� T� Almes� A� P� Black� E� D� Lazowska� and
J� D� Noe� The Eden system� A technical review�
IEEE Transactions on Software Engineering� SE�
����	������� January �����

��� R� Balter� J� Bernadat� D� Decouchant� A� Duda�
A� Freyssinet� S� Krakowiak� M� Meysembourg�
P� Le Dot� H� Nguyen Van� E� Paire� M� Riveill�
C� Roisin� X� Rousset de Pina� R� Scoiville� and
G� Vand ome� Architecture and implementation
of Guide� an object�oriented distributed system�
Computing Systems� ���	������� Winter �����

��� A� D� Birrell and B� J� Nelson� Implementing
remote procedure calls� ACM Transactions on
Computer Systems� ���	� February �����

��� A� P� Black� N� Huchinson� E� Jul� H� Levy� and
L� Carter� Distribution and abstract types in
Emerald� IEEE Trans on Software Engineering�
SE�����	������� �����

��� Gilad Bracha� The Programming Language Jig�

saw � Mixins� Modularity and Multiple Inheri�
tance� PhD thesis� University of Utah� March
����� ��� pp�

��� Gilad Bracha and Gary Lindstrom� Modularity
meets inheritance� In Proc� International Con�
ference on Computer Languages� pages ��������
San Francisco� CA� April ����� ����� IEEE Com�
puter Society�

��� L� Cardelli and J� C� Mitchell� Operations on
records� Technical Report Tech� Rep� ��� Digital
Equipment Corporation Systems Research Cen�
ter� August �����

��� W� Cook� W� Hill� and P� Canning� Inheritancee
is not subtyping� In Proceeding of the ACM Sym�
posium on Principles of Programming Languages�
pages �������� �����

���� Partha Dasgupta� R� Ananthanarayanan� Sathis
Menon� Ajay Mohindra� Mark Pearson� Raymond
Chen� and Christoper Wilkenloh� Language and

�



operating system support for distributed pro�
gramming in Clouds� In Proceedings of the Sym�
posium on Experiences with Distributed and Mul�
tiprocesor Systems �SEDMS II�� pages ��������
Atlanta� GA� March ������ ����� Usenix Associ�
ation�

���� Margaret A� Ellis and Bjarne Stroustrup� The
Annotated C Reference Manual� Addison�
Wesley� Reading� MA� �����

���� R� A� Gingell� M� Lee� X� T� Dang� and M� S�
Weeks� Shared libraries in SunOS� In Usenix
Conference Proceedings� pages �������� Phoenix�
AZ� Summer ����� USENIX�

���� A� Goldberg and D� Robson� Smalltalk�
�� The
Language and Its Implementation� Addison�
Wesley� �����

���� Sabine Habert� Laurence Mosseri� and Vadim
Abrossimov� COOL� Kernel support for object�
oriented environments� ACM SIGPLAN Notices�
����	��������� October �����

���� R� Harper and B� Pierce� A record calculus based
on symmetric concatenation� In Proceedings of
the ACM Symposium on Principles of Program�
ming Languages� pages �������� January �����

���� W� Ho and Wilson� DLD� A Dynamic
Link�Unlink Editor� Free Software Foundation�

���� R� E� Johnson and V� F� Russo� Reusing object�
oriented designs� Technical Report UIUCDCS
�������� University of Illinois at Urbana�
Champagne� May �����

���� W� N� Joy� R� S� Fabry� S� J� Le!er� and M� K�
McKusick� ��� BSD System Manual� Computer
Systems Research Group� Computer Science Di�
vision� University of California� Berkeley� CA�
�����

���� Barbara H� Liskov� Distributed Systems� Methods
and Tools for Speci�cations� chapter The Argus
Language and System� pages �������� Lecture
Notes in Computer Science no� ���� Springer�
Verlag� �����

���� B� Meyer� Ei�el� Programming for reusabil�
ity and extendability� SIGPLAN Notices� ����	�
February ����

���� Bertrand Meyer� Object�oriented Software Con�
struction� Prentice�Hall International� Hertfor�
shire� England� �����

���� J� Mitchell� S� Meldal� and N� Madhav� An ex�
tension of standard ML modules with subtyping
and inheritance� In Proceedings of the ACM Sym�
posium on Principles of Programming Languages�
pages �������� January �����

���� Douglas B� Orr� Robert W� Mecklenburg� Pete
Hoogenboom� and Jay Lepreau� Dynamic pro�
gram monitoring and transformation using the
OMOS object server� Submitted for publication�

���� D� M� Ritchie and K� Thompson� The UNIX
time�sharing system� The Bell System Technical
Journal� ����	����������� July
August �����

���� M� Rozier� V� Abrossimov� F� Armand� I� Boule�
M� Gien� M� Guillemont� F� Herrmann� C� Kaiser�
S� Langlois� P� L"eonard� and W� Neuhauser� The
Chorus distributed operating system� Computing
Systems� ���	��������� December �����

���� Donn Seeley� Shared libraries as objects� In Pro�
ceedings of the Summer �		� USENIX Confer�
ence� pages ����� Anaheim� California� June ���
��� ����� Usenix Association�

���� Marc Shapiro� Yvon Gourhant� Sabine Habert�
Laurence Mosseri� Michel Ru�n� and C"eline
Valot� SOS� An object�oriented operating
systems�assessment and perspectives� Comput�
ing Systems� ���	��������� Fall �����

���� Guy L� Steele Jr� Common Lisp� The Language�
Digital Press� second edition� �����

���� Alan Synder� Encapsulation and inheritance in
object�oriented programming languages� In Pro�
ceedings of the ACM Conf� on Object�Oriented
Programming� Systems� Languages and Applica�
tions� pages ������ �����

��


