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Abstract

The bencfits of object-oriented programming are
well known, but popular operating systems provide very
few object-oriented features to users, and few are im-
plemented using object-oriented techniques themselves.
In this paper we discuss a mechanism for apply-
g object-oriented programming concepts to program
binding (linking) and execution. We describe OMOS,
an object/meta-object server that embodies a flexible
object framework. The OMOS framework projects an
object-oriented structure onto programs and shared li-
braries that may not have been originally developed
for use within an object-oriented environment. This
framework provides natural facilities for inheritance,
interposition, and overloading of operations, as well
as development of classes with dynamically evolving
behavior.!

1 Introduction

In recent years object-oriented programming has
gained widespread support due to its facilities for
controlling modularity, division of responsibility, sup-
port for code reuse, and scalability[21]. We believe
these features can be profitably applied to the prob-
lem of program binding and execution to achieve a
more elegant solution than is currently available, while
also providing increased functionality. We present a
mechanism for applying object-oriented programming
concepts to program binding (linking) and execu-

1This research was sponsored by Hewlett-Packard’s Re-
search Grants Program and by the Defense Advanced Research
Projects Agency (DOD), monitored by the Department of the
Navy, Office of the Chief of Naval Research, under Grant num-
ber N00014-91-J-4046. The opinions and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing official views or policies, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency, the U.S. Government, or Hewlett-Packard.

tion. We also describe the implementation of OMOS,
an object/meta-object server which implements these
concepts as a process in the Unix? operating system.

Current technology for constructing programs from
modules is clumsy and lacks structure[24]. This clum-
siness results in inefficiency which manifests as poor
use of programmer skills, poor locality of program ref-
erence, poor reuse of existing code, poor use of virtual
address space, and poor use of cpu time (i.e., avoidable
recalculations). This lack of structure is, of course,
not without reason. Historically, there has not been a
structure which seemed sufficiently comprehensive and
robust to encompass current techniques while provid-
ing the increased functionality of the object-oriented
paradigm. Also, the large investment in existing tech-
niques makes moving to an incompatible structure
costly.

We believe that object-oriented programming con-
cepts can be applied to existing techniques such that
many of these inefficiencies can be overcome while still
taking advantage of existing technology. We begin the
discussion with a review of object concepts and how
they relate to programs and name binding. We then
discuss recent work which clarifies the relationship be-
tween modules and inheritance. After these prelimi-
naries we will describe the features an object server
must possess and a sample architecture. This discus-
sion 1s followed by a more detailed discussion of a pro-
totype implementation. Finally, we will review some
results and make some observations on the concept of

the OMOS system.

2 Objects and modules

An object is a collection consisting of some member
data (called slots) and some member functions oper-
ating on that data (called methods). In this way an

2UNIX is a trademark of AT&T.

Appears in identical form in Proc. 2nd International Workshop on Object
Orientation in Operating Systems, Paris, France, September 1992.
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object forms a self referential recursive scope. This
scope can be seen by examining methods that use slots
without actually naming the object being referred to,
1.e., these references are implicitly qualified by the ob-
ject (e.g., “self”). Methods implicitly exist within the
scope of an object making such references unnecessary.
Objects are instances of classes which resemble struc-
ture declarations extended to include functions. Class
declarations describe the number and type of the slots
and the number and type signatures of the methods.
Classes can be combined through single or multiple
inheritance.

Modern programming language theory distin-
guishes between subtyping and inheritance. A type ts
is a subtype of ¢y, if t5’s interface is compatible with
t1’s. That is, it is legal to use an instance of ¢ wher-
ever an instance of type t; is required. Inheritance, on
the other hand, is an implementation technique which
allows the combining of classes. Subtyping is often
bundled with inheritance, blurring the distinction be-
tween the two concepts. In popular object-oriented
programming languages (OOPLs) such as C++[11]
public inheritance is the only mechanism available for
implementing subtyping. An instance of a derived
class can be used wherever an instance of a base class
is required. This relationship is commonly referred to
as an 2sA relationship.

The effect of (public) inheritance is to merge the
data and method declarations of the participating
classes into a single new class. Often, the classes be-
ing combined with inheritance contain duplicate mem-
ber names. The treatment of member name collisions
varies in popular OOPLs. In the case of method name
collision in a single inheritance hierarchy, the defini-
tion in the most derived class is selected according to
the referenced type. For a multiple inheritance hierar-
chy either the language assumes a precedence ordering
or the programmer is called on to disambiguate each
method reference. Redefining a method in a derived
class is called method overriding. As an example, if an
object of a derived class has overridden a base class
method and we invoke the method we typically want
the version defined in the derived class. This can be ar-
ranged through dynamic binding of method calls and,
in C++4, is achieved through wvirtual functions.

A library can be viewed as an object (or collection
of objects) by recognizing that during execution there
exists some state and some set of operations on that
state. The analogy is clear since libraries typically
have local data and provide a collection of functions.
Libraries are combined in much the same fashion as in-
heritance by selecting the objects of interest and merg-

ing them in a common scope. The result of merging
libraries is a new executable image whose exported
interface represents the union of merged library com-
ponent interfaces. Sophisticated linkers allow method
overriding, renaming, and hiding, much as in modern
object-oriented languages.

One important difference between merging classes
using inheritance and merging executable code mod-
ules into a program is the linking requirements of code
modules. A sophisticated linker might be required to
deal with dozens of attributes when building executa-
bles. For instance, we would like to reuse existing li-
braries of non-position independent code (PIC), along
with PIC code, or save the results of the dynamic res-
olution of a program linked with shared libraries. Of
course, we would like to avoid recomputing offsets or
relocation information whenever possible. These de-
tails of linking constraints and code module character-
istics could be collected together into an object which
can be directly manipulated by an object server. If
the executables themselves are objects, then these ob-
ject descriptor objects are meta-objects. The use of
meta-objects within OMOS to describe and construct
object instances for clients will be discussed in detail
in Section 3.

2.1 Module operations

An object server seeking to provide all the features
of existing linkers while extending those features into
an object-oriented framework must support the flex-
ible combination of modules. Inheritance, as formu-
lated in particular programming languages, is inap-
propriate as a basis for module combination because
it 1s too burdened with linguistic constraints not di-
rectly related to modules. Fortunately, recent work
by Bracha[6, 7] and others [8, 15, 22, 29, 17, 9] has
centered on formulating a theoretical basis for module
combination and manipulation independent of inheri-
tance. The work assumes that we have decoupled in-
heritance from subtyping and focuses on decomposing
inheritance into more basic module operators. These
operators are well defined and can be mapped onto
languages not directly supporting inheritance or flex-
ible module combination.

In this new treatment of module combination, mod-
ules are regarded as mutually recursive scopes which
form a uniform space upon which operators (module
combinators) act. Module operators accept modules
as arguments and return modules as results. In this
view a module is much like an abstract data type or
object supporting these operations. Modules may in-
clude both declarations and definitions of symbols. A



declaration gives the type of a symbol but no value
binding for it. The set of module operators, as de-
scribed by Bracha[7], is small and well defined?:

Merge: ||;. mi ||; m2 ylelds the concatena-
tion of my; and ms. The modules must
not have any names in common.

Restrict: \,. m\gya removes the attribute
named a from m. If a is not defined,
m\ga = m.

Project: m,. mm, A projects the module m
on the names in A. The names in A
must be defined in m.

Select: .;. m.4a returns the value of the at-
tribute named @ in m. The name a must
be defined in m.

Override: «—,. mj <, my produces a result
that has all the attributes of m; and
mso. If m; and ms> have names in com-
mon, the result takes its values for the
common names from ms.

Rename: [_—_];. m[a — b], renames the
attribute named a to 5. The name a
must be defined in m, and b must not.

Freeze: m freeze a accepts a module and
an attribute and produces a module in
which all references to a are statically

bound.

Freeze_all_except: m freeze_all_except a is
the dual operation to freeze.

Hide: m hide a performs a freeze on the sym-
bol, then removes the declaration of the
symbol from the interface.

Show: m show a is the dual of hide and hides
all but ¢ in m.

Copy-as: m copy a as b creates a copy of the
a definition under the symbol b.

The merge operator, a binary operator joining the
symbols in one module with the symbols in another,
subsumes simple concatenation of interfaces and forms
the basis of standard linking. When combining mod-
ules name conflicts are not allowed and produce an er-
ror when encountered. Other operators in the Bracha
suite are used to resolve name conflicts.

3In [7], Bracha develops a denotational semantics for module
operations based on the lambda calculus. This formal semantics
represents modules as generators, which are functions with a self
parameter which becomes bound upon module instantiation.
Hence, we use a subscript, g, on module operator names.

The restrict operator is used to eliminate the defi-
nition of a symbol in a module. The symbol still has
a declaration and ultimately requires resolution, but
the resolution must come from some other module.
In a language like C++ this is analogous to making
a method pure virtual. (A pure virtual method is a
method for which there exists a declaration, but no
definition. Classes with pure virtual methods cannot
be instantiated, but are very useful for standardizing
interfaces to derived classes.) Applying this operator
to a library would remove the definition of a symbol
and unbind any bound references to it. The project
operator is the dual of restrict. Instead of indicating
which symbol to remove we indicate which symbols to
retain.

The select operator simply returns the value associ-
ated with a symbol. (As defined, this operator is not
a proper module operator since it returns a value, but
is useful in an actual implementation.)

The override operator is a prioritized version of
merge. It concatenates its arguments, and in the event
of a name collision, selects the definition in the second
module. This operator forms the basis for traditional
inheritance in object-oriented languages.

The rename operator is a mechanism for resolving
name conflicts. If a name a is renamed to b in a module
it is as if all textual occurrences of a in the module are
changed to b. This allows modules with conflicting
names to be merged without loss of functionality.

The freeze and freeze_all_except operations are used
to statically bind the definition of a symbol to its use
in a module. This fixes its implementation making it
“safe” to combine with other modules. In C++ termi-
nology, this corresponds to making a virtual function
non-virtual.

The hide and show operations take freeze and
freeze_all_except one step further. While freeze removes
all references to a symbol (by fixing them) it does not
remove the declaration of the symbol from the module
interface; hide and show do remove the symbol decla-
ration. The corresponding C++ operation would in-
volve changing a public virtual function into a private
non-virtual function.

Finally, copy-as uses the select and merge opera-
tions to copy the definition of a symbol and rename
it. This is useful when implementing wrappers with
modules. If we wish to wrap, e.g., printf we cannot
use rename to preserve the original function since all
references to that function will be renamed. Instead
we copy printf to a new symbol name, leaving ref-
erences intact, and substitute our own printf which
invokes the copied version.



These operators constitute a complete spectrum of
operations which are typically bundled into inheri-
tance in object-oriented languages. By decomposing
inheritance and making each operation distinct we re-
duce complexity and enhance flexibility. We use mod-
ified versions of these operators in OMOS.

3 Server overview

The object/meta-object server is a repository of
objects and meta-objects. Under the OMOS view,
objects may be incomplete combinations of code and
data fragments, or complete programs. OMOS objects
all export and import sets of attributes and attribute
values?. Conceptually, these objects are treated as
modules under OMOS.

Meta-objects contain state and export methods
used to construct objects. Thus a meta-object, in
effect, contains a class declaration for the object it
describes. The class declaration embodied within an
OMOS meta-object is interpreted at run-time. These
are similar to the first-class objects used to repre-
sent classes within languages such as Smalltalk[13] and
CLOS[23].

OMOS uses module operations as a mechanism for
implementing class hierarchies. While elegant from
a language perspective, this framework also provides
the building blocks with which one can construct com-
plex object-based systems. A fundamental require-
ment of OMOS is that it fit well within the traditional
framework of programs and libraries, since there ex-
ists within this framework a large body of working
code we wish to reuse. The module operations OMOS
supports allow the interfaces exported by programs
and libraries to be redefined, refined, and modified
to be more suitable for use within an object-oriented
context. Thus, OMOS can reasonably make use of
the large amounts of system code that currently ex-
ists in the form of programs and libraries. The fact
that this code was not necessarily written within an
object-oriented context presents little in the way of
new requirements for our system; OMOS can project
an object-oriented (modular) framework onto a large
collection of independently developed programs and
libraries.

OMOS clients request object instantiation through
a remote procedure call interface. As a result of a re-
quest, the construct method of a meta-object is ex-

4The range of values an attribute can have is currently quite
limited, since most executable code formats allow only integer
values to be assigned to a given symbol. In a more complete
implementation attributes would also have an associated type.

ecuted producing an object. The client is then given
a handle through which it can invoke methods on the
object. The actual code and data of the instance typ-
ically reside within the client address space.

OMOS permits clients to create their own meta-
objects, as well as to request the creation of objects
from a given meta-object. Since the invocation mech-
anism is not lightweight, it is expected most OMOS
meta-objects will specify medium and heavy-weight
objects. Thus we do not envision OMOS as an object
construction server in the customary object-oriented
run-time system sense. OMOS 1s designed to support
clients running on microkernels such as Mach[1] or
Chorus[25], or on traditional monolithic kernels that
have adequate VM and IPC facilities.

3.1 Meta-objects

The primary function of OMOS is to produce
instances of the classes specified by meta-objects.
OMOS meta-objects export a construct method
which can produce instances of the class. Instantiation
proceeds by first generating an executable graph of
module operations (known as an m-graph) through the
decompose method. The execution of this m-graph
produces an object; the object consists of executable
code and data fragments (i.e., modules). Full instanti-
ation involves generating an m-graph, executing it to
produce a set of modules, assigning address values to
the names within a module, then mapping or writing
the result into a target address space. M-graphs are
a flexible representation of the object; using a graph
permits manipulation of the internal structure of the
object and its unbound symbols. For instance, they
may be used to produce modified versions of the object
in other contexts. Meta-objects may cache intermedi-
ate results to avoid unnecessary recalculations.

The target address space is typically the address
space of the client that instantiates the object. It
could also be the address space of a third party to
which the client has been given appropriate access.

3.2 Dynamic meta-object modification

As well as using other meta-objects “as is,” a meta-
object may choose to create an enhanced version of one
of its operand meta-objects as part of the instantia-
tion process. It can do so by invoking the decompose
method of the operand meta-object and modifyingthe
resulting m-graph to produce new behaviors within
the operand.

For example, if we wish to extend a meta-object to
automatically collect run-time execution profile infor-



mation by linking in a special set of libraries, we derive
a profiling meta-object from the original meta-object.
The construct method of the profiling meta-object
first invokes decompose on the original meta-object,
obtaining the graph of module operations associated
with the original object. Next, construct traverses
the m-graph and replaces each library operand with
an alternate profiled version. Then, it executes the
modified m-graph to produce a profiled instance of
the original object.

Obviously, many other forms of program trans-
formation can be performed by meta-objects in re-
sponse to various events or conditions. Once profil-
ing information has been collected, it might be used
to automatically produce an improved version of the
object[23]. Another use of dynamic meta-object mod-
ification might be to collect objects into sharable
groups. Clustering and sharing related objects have
well-known benefits in savings of physical resources,
as in the case of shared libraries[26]. Dynamic class
modification permits the association of objects based
on dynamic and possibly changing requirements.

3.3 Adaptability and extensibility

OMOS is an active entity — i.e., a program with
active threads, rather than a static container, such as
a file — hence, 1t can perform its functions dynami-
cally, adapting to environmental conditions or explicit
client requests. For example, since OMOS returns ex-
ecutable code and data, it can modify the information
returned according to the architecture of the system
on which the target process resides. The server may
adapt its behavior according to the constraints im-
posed by the target address space.

OMOS 1itself is constructed in an object-oriented
fashion and is extensible. It is implemented from a set
of classes which can be extended with dynamic load-
ing. For example, the server can dynamically load
alternate classes to process foreign executable file for-
mats. In this fashion, the server can process a wide va-
riety of file formats, without requiring that all formats
be built into the server at the time it is constructed.

4 OMOS architecture

OMOS consists of a set of persistent entities which
provide basic naming, class construction, and instan-
tiation services. The principal entities of OMOS are:

Directories: organize OMOS components
into a hierarchical tree structure;

Meta-objects: describe classes and export
methods which are used to produce ob-
jects of the class;

Fragments: contain the executable code
and data that make up an instantiated
object.

4.1 Server object naming

OMOS defines a naming scheme which it uses inter-
nally. Clients also use this naming scheme to identify
objects of interest. Object names are hierarchical, cor-
responding to the server directory structure and con-
sist of a series of name components. Server directories
have a lookup operation, which maps a name com-
ponent to a directory entry (another entity). OMOS
separates name components by a slash character (“/”),
adopting the same convention as the Unix file system.
The resolve operation converts a multi-component
path name into the object represented by the path.

4.2 Meta-objects

Meta-objects are the basic unit which OMOS uses
to describe programs and their construction. Meta-
objects define three components: a descriptor for the
class they represent; the decompose method which
generates the m-graph of module operations; and the
construct method which produces mappable frag-
ments.

4.3 Fragments

Fragments are leaf nodes of the m-graph which con-
tain executable code and data. Fragments export and
import interfaces by means of a symbol table. Frag-
ment symbols may be bound to a value or may be un-
bound. (Depending on the available tools, fragments
may be constructed in position independent form, ren-
dering some aspects of symbol/value binding trivial.)

4.4 OMOS operations

Most operations defined within OMOS are analo-
gous to the pure module operations described previ-
ously:

Merge: binds the symbol definitions found in
one operand to the references found in
another. Multiple definitions of a sym-
bol constitutes an error.



Override: merges two operands, resolving
conflicting bindings (multiple defini-
tions) in favor of the second operand.

Hide: removes a given set of symbol defi-
nitions from the operand symbol ta-
ble, fixing any internal references to the
symbol in the process.

Show: hides all but a given set of symbol def-
initions.

Rename: systematically changes names in
the operand symbol table. The rename
module operation can optionally work
on either symbol references, symbol def-
initions, or both.

Copy: duplicates a symbol. The new symbol
has the original binding under a differ-
ent name.

Restrict: erases the definition of a symbol
and adds the symbol as a pure virtual
to the object interface of the class.

Project: restricts all but a given set of sym-

bols.
List: associates two or more objects in a list.

Constrain: constrains the virtual address
ranges the operand(s) may occupy.

Annotate: prints an informational message.

Source: produces a module from a source ob-
ject.

Most operations work on a variable length list of
operands. Operands are references to other nodes.
Operand nodes may be module operations, meta-
objects, or fragments. Upon execution, the majority
of these operations produce new modules.

The constrain operation forces its operand to reside
within given address space constraints. This opera-
tion can anchor its operand to a specific address, or
restrict it within a range. The constrain operation may
be overridden or refined by an enclosing constrain op-
eration.

Constrain operations are used to prevent code from
being placed at the same location as existing code,
and to allow library designers to segregate groups of
objects they wish to share among diverse programs.
The same physical copies of the read-only portions
of objects may be used by different programs if they
share the same <symbol,value> bindings. The ad-
dress constraints will encourage different clients to
make the same bindings. Since the constraints may
change and be recalculated dynamically, this scheme

does not have the traditional problems of inflexibil-
ity associated with binding shared objects to fixed
addresses®.

The source operation invokes a language translator
to convert a C++4, C, or assembly source file into a
fragment. The source file may be provided by a user

or dynamically generated within OMOS.
4.5 User interface

OMOS exports an interface to clients that permits
them to instantiate objects and to create meta-objects
and fragments. To instantiate an object, the client in-
vokes OMOS through a remote procedure call[4] and
presents the path name of a meta-object which is to
be executed. The user also provides a list of memory
regions (a memory constraint) specifying where the
resulting object should be placed. A zero-length con-
straint vector means the object may be placed any-
where. The server returns a list of memory regions
occupied by the object and a handle to it (currently,
pointers to the entry point and translation table vec-
tors). To construct a meta-object, the user provides
a meta-object specification and a server path name to
which it is to be bound. To construct a fragment the
user specifies the file system path name of a relocat-
able executable and the server path name to which it
is to be bound.

We plan to support remote invocation of methods
on objects via an RPC mechanism. OMOS will es-
tablish a communication channel between the remote
and client processes. On instantiation, the capability
for a communication channel will be inserted in the
target process by OMOS. OMOS will start a thread
in the remote process to service invocation requests;
the other end of the communication capability will
be returned in the client handle. The communication
channel will be used to transmit remote method invo-
cation requests, arguments, and return values between
the client and remote tasks.

5 Implementation

OMOS is implemented as a set of C4++4 classes.
Each of the entities described in Section 4 is repre-
sented by a class. These classes are made persistent
through a set of derived classes (one for each base

5If the objects are compiled using position-independent code,
there is an implicit level of indirection in <symbol,value> bind-
ings, which eliminates the possibility that a given object could
produce multiple bindings; use of PIC simplifies this problem
at some performance cost and is in no way precluded.



/template/lib/libc-io:

(constrain ’ (> 0x60000000)
(show "_open _close _read _write _ioctl"
(merge /ro/lib/libc/open.o
/ro/1lib/libc/close.o
/ro/lib/libc/read.o
/ro/lib/libc/write.o
/ro/1lib/libc/ioctl.o)))

Figure 1: Example Blueprint Language

class) that is capable of saving instances on stable
storage. Class instances (or server objects) are gener-
ally organized in trees, with active portions residing in
OMOS memory. References to server objects are con-
trolled and server objects are deleted when no longer
referenced.

5.1 Meta-objects

Internally, a meta-object maintains a blueprint,
which is a program that describes how to construct an
instance of the object. The construct method for in-
stantiating objects has several stages: the decompose
method produces the m-graph; the eval method is
then executed on the m-graph producing a list of frag-
ments; the £ix method binds symbols to addresses us-
ing the address space constraints as a guide; finally the
fragments are mapped into the client address space.
The m-graph is based on the contents of a blueprint.
A blueprint is a interpretable representation of a pro-
gram describing the operations necessary to produce
an OMOS module. The construct method may be
overridden to permit dynamic meta-object modifica-
tion, as described in Section 3.2.

5.2 Blueprint language

Within OMOS meta-objects, the actual description
of how to construct an object instance is encoded in
a blueprint using a simple language. The blueprint
language uses a simple LISP-like syntax[28]. The lan-
guage includes operations corresponding to each of the
module operations described above. Each operation
takes a variable-sized list of arguments; arguments are
object names, strings, or other operation expressions.
Each operation produces an object as its output.

In the example shown in Figure 1, a subset of the
C library is constructed, which exports 5 entry points
and is constrained to link at an address somewhere

above 60000000 hex. The path name at the top of the
figure is used by OMOS to identify the blueprint.

5.3 Module operations

The compile method of the blueprint class trans-
lates a text representation of a blueprint program into
an m-graph. The compilation process resolves names
of server objects to references to those objects. Invo-
cation of the eval method on the m-graph results in
a list of fragments. Each operation recursively evals
its operands, then performs its own function on the
instantiated operands, returning the result.

5.3.1 Symbol modification operations

A number of operations result in the modification of
<symbol,value> bindings within a fragment. These
operations use Unix regular expressions to select or
modify symbol names. Some operations take as an
argument a further specification of the symbol usage
(i.e., “reference” or “definition”). Symbol operations
result in new objects, although symbol objects that
provide different views of the same underlying object
share references to a single underlying fragment.

5.3.2 Memory constraint operations

Memory constraints are used to restrict where objects
are placed in memory. Memory constraints are sets of
<addresssize> pairs or specific addresses taken from
the domain of the machine address space. Specific ad-
dresses are used when an object must start at an exact
location; their use 1s discouraged. Memory constraints
may be combined via intersection, union, and comple-
mentation. The constraint on a given operand is the
intersection of its constraints and all other enclosing
constraint operations.

5.4 Class construction via meta-objects

The classes OMOS exports are represented by
OMOS meta-objects. OMOS module operations al-
low combination and inheritance from other OMOS
objects and meta-objects.

The graph operations merge, hide, show, override,
copy, and rename are composed to implement inheri-
tance between modules. For example, a class may be
formed by combining two fragments. If we take the
second class to be the base class, we would first show
all exported symbols, eliminating extraneous internal
symbols. We would then copy all symbols we wish to



Jtemplate/lib/libc-debug:

(hide "1libc¥%.*"
(merge
(rename "reference" "_\(.*\)" "libc%\1"
/ro/1ib/libc/libc-debug.o)
(rename "definition" "_\(.*\)'" "libc%\1"
/ro/1ib/1libc/libc.o))

Figure 2: Debugging Interposition Example

be able to continue to access explicitly after inheri-
tance to new, module-specific names (as in packages
in LISP). Next, we would override definitions from the
base class with definitions from the derived class, so
that conflicting definitions are resolved in favor of the
derived class, producing a class that represents the
combination of the two.

In the current version of the system, inheritance
is restricted to the manipulation of object methods,
and all data 1s treated as either global or static ob-
ject data. The information regarding slot accesses is
not available within fragments. If slot offsets are ex-
ternalized and segregated (so as to be distinguishable
from static data), the same module operations apply
equally well to member data. We plan, through minor
modifications to standard compilation tools, to allow
dynamic combination of C++ object data via module
operations.

All module operations generate a vector of method
addresses, which represents the total set of entry
points into the module. The address of this vector
is returned to the user on instantiation, along with a
table mapping method names to vector indices.

5.5 Interposition

Module operations can easily be used for interpos-
ing new routines within an executable. By invoking
rename on all definitions of a given set of symbols using
some well-known scheme (e.g., prepending a package
name), then using rename to change the name of any
references destined for the original definition, new val-
ues for the symbols in question can be inserted trans-
parently in the original application.

For example, in Figure 2, we produce a version of
the C library, libc, where a debugging version of each
routine has been inserted to trap calls to the origi-
nal routine. References to native libc routines in the
debugging routine are preserved.

6 Related work

Many other systems exist that support dynamic
creation of objects and invocation of methods on
those objects. The majority of the systems, such
as Argus[19], Eden[2], COOL[14], CLOUDSI10],
S0S[27], and COMANDOS/Guide[3] provide a more
comprehensive object model which dictate how ob-
ject distribution and migration are to be accom-
plished. They tend to use large-grained, active ob-
jects. Emerald[5] provides a language model for both
active and passive objects. Argus places a special fo-
cus on reliability, providing transactional control of
operations on objects. CLOUDS has further refined
the notion of locality and defined its own extensions
to popular languages (notably Eiffel[20], C++, and
LISP), segregating its objects into those used locally
and those used remotely.

Relative to complete systems such as these, OMOS
provides simple, basic technology. OMOS concen-
trates on making existing objects available, and allow-
ing extensive combinations of existing objects. OMOS
does not seek to provide an all-encompassing object
model, but rather is intended to be a useful framework
in which one might be implemented. Furthermore,
OMOS is oriented towards integration with existing
operating system environments rather than rebuilding
the foundations of program structure.

Towards the other end of the spectrum, there are
a number of interesting shared library implementa-
tions[12] which allow multiple clients to share code
and data. Most of these facilities are based on a prag-
matic, traditional view of programs, and do not pro-
vide the ability to dynamically load or recombine ob-
jects. Packages also exist to aid programmers in the
dynamic loading of code and data[16]. These packages
tend to have a procedural point of view, and provide
lower-level functionality than OMOS.

7 The results

OMOS is in experimental use as an object server
running on top of the Mach operating system, act-
ing as an object and program repository and pro-
viding, indirectly, a shared library service. The ma-
jority of module operations have been implemented.
A port to BSD Unix[18] is planned. OMOS has
been used to conduct experiments in automatically
generating locality-of-reference optimization in run-
ning systems[23]. The basic OMOS system comprises
7,100 lines of C4++ code.



Tests show OMOS to be efficient. OMOS meta-
objects cache intermediate results, allowing them to
avoid unnecessary recalculations. The Unix exec sys-
tem call, when implemented using OMOS facilities,
runs 33% faster than the standard Unix exec() sys-
tem call on a 3.0 Mach system running the monolithic
BSD Unix server. A benchmark program which execs
itself 5000 times, executes in 69 seconds using the stan-
dard Unix exec. The same program executes in 46
seconds using the OMOS exec facilities.

8 Conclusion

In this paper we described the OMOS system, an
object-oriented approach to program binding and ex-
ecution. This system 1s an attempt to apply the con-
cepts of object-oriented programming languages along
with new work in modularity and inheritance to the
problem of traditional program composition. One im-
portant goal of the work is that the current investment
in compilation, linking, and execution technology not
be lost as we move towards a more comprehensive
framework. As such, this work provides a incremental
migration path towards a more object-oriented envi-
ronment with incremental payoft.

A prototype OMOS system is currently running
and has proven to be flexible enough to provide a tra-
ditional high quality program execution and shared li-
brary service while, at the same time, maintaining an
object-oriented framework. Module operations have
proven to be powerful enough to use as the basis for
class construction, and their successful use has opened
anumber of promising avenues in the fields of language
design and object-oriented programming.

In further work with OMOS we plan to focus on
more non-traditional aspects of program construction,
concentrating on dynamic interposition of modules,
a more distributed implementation, and support for
alternate implementations of modules to provide en-
hanced functionality.
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