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Steps are known to affect the ordering phenomenon in GaInP; ☎110✆ steps assist ordering and ☎1̄10✆

steps retard ordering. However, the mechanism leading to this behavior has not been determined. In

this paper, the step spacing is used as a semiquantitative indicator of the attachment of adatoms at

the step edge for organometallic vapor phase epitaxial growth on singular ✂001✄ GaAs substrates.

The step spacing and degree of order in the epitaxial layers have been studied as a function of

temperature and the flow rate of the P precursor for both tertiarybutylphosphine ✂TBP✄ and

phosphine. As the flow rate of the P precursor is lowered beyond a certain critical point, both the

degree of order and the step spacing are seen to decrease together. The behavior is the same for TBP

and for PH3. Similarly, as the growth temperature is increased above a certain value, the step

spacing and order parameter decrease together. This suggests a relationship between adatom

attachment at steps and the ordering mechanism. Possible explanations for these phenomena are

explored. At low temperatures, the degree of order is reduced and the step spacing decreases

exponentially. The data suggest that the reduction in the surface diffusion coefficient with

decreasing temperature is the main factor acting to reduce both the step spacing and the degree of

order. However, the increasing adatom sticking coefficient at both step edges expected at low

temperatures will affect both phenomena as well. © 1998 American Institute of Physics.

☎S0021-8979✂98✄06007-1✆

INTRODUCTION

It was long assumed that the distribution of atoms in

semiconductor alloys was random. However, in the last de-

cade it has been discovered that ordering, a phenomenon first

observed for metal alloys,1 also occurs in semiconductors.2

In ordered alloys, the solid composition is modulated along a

particular crystallographic direction with a period of several

✂most often two✄ lattice spacings. The most commonly ob-

served structure for III/V alloys, with mixing on either the

group III or the group V sublattice, is the CuPt structure,

with ordering on ✝111✞ planes.2 This results in formation of

natural, monolayer superlattice structures. These materials

are no longer cubic, which alters the band structure and so

has important consequences for the optical and electrical

properties. For example, the band-gap energy of the disor-

dered GaInP lattice matched to GaAs has been observed to

shrink by 160 meV in ordered material, even though the

GaInP layer is only approximately 50% ordered.3

The driving force for formation of the CuPt structure

spontaneously during organometallic vapor phase epitaxial

✂OMVPE✄ growth is now generally accepted to be due to the

formation of a (2�4)-like reconstruction at the surface.4

The ☎110✆ rows of P dimers give subsurface strain fields that

favor formation of the CuPt structure with ordering on the

✂1̄11✄ and ✂11̄1✄ planes.5,6 However, the mechanism by which

ordering occurs remains unknown, although a number of

speculative models have been developed.6 In addition to the

role of surface reconstruction, it has been shown experimen-

tally that ☎110✆ steps assist the ordering process and ☎1̄10✆

steps retard ordering.7

Several experimental observations indicate that kinetic

factors are involved in ordering. These probably involve step

motion, since this is the last step in the process by which

adatoms are incorporated into the lattice. For example, high

growth rates lead to disordered material.8 This is thought to

be due to the adatoms having insufficient time to arrange

themselves into the lowest free-energy structure at the sur-

face during growth. Obviously, a higher growth rate results

in a reduction in the time during which the rearrangement

from a disordered into an ordered structure can occur. The

disappearance of order at low temperatures9,10 may be re-

lated to the same phenomenon, but in this case the reduction

in order would be due to the reduced adatom diffusion coef-

ficient on the surface.

The study of the kinetic processes occurring on the sur-

face and at the step edge during epitaxial growth is worth-

while, since control of the ordering process may be techno-

logically useful for a number of devices. For example,

heterostructures can be produced with a change of band gap

of 160 meV by simply controlling the degree of order in two

layers having exactly the same composition.3

In this paper, the step spacing, determined using atomic

force microscopy ✂AFM✄, was used to monitor processes oc-

curring on the surface and at the step edges. The step spacing

and degree of order were examined as a function of the key

growth parameters temperature and partial pressure of the P

precursor ☎for both tertiarybutylphosphine ✂TBP✄ and PH3✆.

Surprising similarities in the step spacing and order param-

eter were observed.a✁Electronic mail: stringfellow@ee.utah.edu
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EXPERIMENT

The GaInP layers described in this study were grown by

OMVPE in a horizontal, infrared-heated, atmospheric pres-

sure reactor using trimethylindium ✂TMIn✄, trimethylgallium

✂TMGa✄, and either TBP or PH3 on singular ✂001✄ semi-

insulating GaAs substrates. The carrier gas was Pd-diffused

hydrogen. The input partial pressure of the P precursor was

varied with a constant group III flow rate to vary the V/III

ratio. The growth temperature was varied from 570 to

720 °C. The growth rate was 0.5 ✟m/h and layer thicknesses

were 0.25 ✟m for all layers. Substrate preparation consisted

of degreasing followed by a 1 min etch in a

2HN4OH:12H2O:1H2O2 solution. Before beginning the

GaInP growth, a 0.15 ✟m GaAs buffer layer was deposited

to improve the quality of the GaInP layer. The substrates

were heated to the growth temperature in AsH3. After the

growth cycle was completed, the samples were cooled with

an initial cooling rate of approximately 70 °C/min.

The solid composition of the GaInP layers was deter-

mined using Vegard’s law, from x-ray diffraction measure-

ments using Cu K✠ radiation. Only results for lattice-

matched layers, with values of GaP concentration in the solid

of 0.515, are presented here. The 18 K photoluminescence

✂PL✄ was excited with the 488 nm line of an Ar� laser. The

emission was dispersed using a Spex Model 1870 monochro-

mator and detected using a Hamamatsu R1104 head-on pho-

tomultiplier tube. The low-temperature PL peak energy was

used to determine the degree of order S using the equation11

S☎✁✆2005✝PL peak energy at 20 K ✂in meV✄✞/471✡1/2.

The surface structure was characterized using a Nano-

scope III atomic force microscope in the tapping mode.

Etched single-crystalline Si tips were used with an end radius

of about 5 nm, with a sidewall angle of about 35°. Scan rates

of 1–2 lines per second were used and data were taken at

512 points/line and 512 lines per scan area. The samples

were measured in air, so were covered by a thin, conformal

oxide layer.

RESULTS AND DISCUSSION

The surfaces of all of the layers in this study, grown on

singular ✂001✄ substrates, have a wedding-cake-like morphol-

ogy composed of islands several atomic layers in height. The

edges of the islands are monolayer or bilayer steps with

nearly equal spacings.12,13 Both the wedding-cake morphol-

ogy and the equal step spacing ✂step ordering✄ are indicative

of step edge barriers hindering the attachment of adatoms at

down steps.14,15 Simple one-dimensional analysis of the

growth process indicates that the step spacing is determined

by the surface diffusion coefficient and the kinetic barrier to

incorporation at the step edge or, in other words, the adatom

sticking coefficient at the step edge.16 A decrease in either

the diffusion coefficient or the sticking coefficient at the step

edge will reduce the step spacing.

Figure 1 shows the AFM images for layers grown at

670 °C with increasing PH3 partial pressure in the sequence

✂a✄ 1.0 Torr, ✂d✄ 3.0 Torr, and ✂b✄ 6.0 Torr. A clear increase

in the island size is seen with increasing PH3 pressure. The

surface of a sample grown at 570 °C ✂3.0 Torr of PH3✄ is

seen in Fig. 1✂c✄. The step spacing is dramatically lower than

for the sample grown at 670 °C with the same PH3 partial

pressure. The average step spacing was obtained from a care-

ful counting along 10 1 ✟m AFM profiles. It is plotted versus

the partial pressure of the P precursor (pP) in Figs. 2✂a✄ and

2✂b✄ for both ☛110✞ and ☛1̄10✞ steps and for the two P precur-

sors TBP and PH3.

Figure 2✂a✄ is for a temperature of 670 °C. Several fea-

tures of the data are evident. The results for TBP and PH3 are

virtually identical, consistent with earlier reports,17 indicat-

ing that the pyrolysis is complete for both precursors. This is

consistent with surface photoabsorption ✂SPA✄ results show-

ing the same concentration of P dimers on the surface for

PH3 and TBP at 620 °C.18

The step spacing for both types of steps at 670 °C is

nearly constant at high values of pP and drops precipitously

as pP is decreased below a critical value of pP
* of approxi-

mately 3 Torr. By 1 Torr the step spacings have decreased by

more than a factor of 2. The ☛1̄10✞ step spacing is greater

than for the ☛110✞ steps. The difference is larger at the high

partial pressures where step spacing is nearly independent of

pP . At the lower partial pressures, the results are more nearly

equal.

The data in Fig. 2✂b✄ are for a growth temperature of

620 °C. The step spacings are smaller, particularly at the

high partial pressures, and, as for 670 °C, are always larger

for ☛1̄10✞ than for ☛110✞ steps. The temperature dependence

will be discussed below. Again, the step spacing is constant

at high values of pP and decreases below the critical value of

approximately 1–1.5 Torr. The value of pP
* is lower at 620

than at 670 °C.

In some ways, the data are similar to the results obtained

on larger, photolithographically produced, GaAs islands

FIG. 1. Atomic force microscopy images of GaInP layers grown at 0.5

☞m/h using PH3 as the P precursor. The growth temperature and PH3 partial

pressure for each run are: ✌a✍ 670 °C and 1.0 Torr, ✌b✍ 670 °C and 6.0 Torr,

✌c✍ 570 °C and 3.0 Torr, and ✌d✍ 670 °C and 3.0 Torr.
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grown by OMVPE on ✂001✄ substrates by Asai.19 ✂Note the

notation used for the step directions is reversed in this pa-

per.✄ At high values of AsH3 partial pressure, Asai found the

lateral growth rate in the ☎110✆ direction to be about twice

the ☎1̄10✆ growth rate. Both were constant at high group V

partial pressures. As the AsH3 pressure was decreased, the

☎1̄10✆ step spacing was observed to drop, while the ☎110✆ step

spacing was constant. This contrasts with the present data,

where the step propagation velocities, or step spacings, de-

crease together as the P partial pressure is decreased. Asai

explained his results in terms of the atomic configuration at

the step edge. At the ☎1̄10✆ step at high group V partial pres-

sures where the singly bonded group V atom sites at the step

edge are saturated, a group III adatom is able to make three

bonds. As the group V partial pressure decreases, the prob-

ability of finding these singly bonded As atoms decreases,

resulting in a decrease in the sticking coefficient of the group

III adatoms at the ☎1̄10✆ step edge. Of course, this explana-

tion ignores reconstruction of both the surface and the step

edge, so it must be viewed as merely schematic. The actual

step structure has not been determined. However, step recon-

struction is believed to occur in Si,20 and simple bonding

considerations indicate that it will probably also occur in

III/V semiconductors as well.

At the ☎110✆ step edge, the group III adatom is able to

make only two bonds, the same as on the flat ✂001✄ terraces.

This was the explanation for Asai’s observed independence

of the ☎110✆ lateral growth rate on the group V partial pres-

sure. For the results presented here, the drop in ☎110✆ step

spacing at low values of pP may be related to the sticking

coefficient at the kinks. In this case, the kinks have an over-

hanging, singly bonded group V atom site that would be

occupied at high group V partial pressures and vacant at low

group V partial pressures. If sticking at the ☎110✆ step is

postulated to occur at kink sites, this would explain the de-

crease in ☎110✆ step spacing as the value of pP is decreased.

The magnitude of the step spacing is much less than the

expected adatom diffusion length, indicating that the sticking

coefficient is small for all the growth conditions studied.21

The difference between the values of pP
* at the two tem-

peratures can be naturally explained using the same argu-

ment. At 670 °C a higher value of pP is required to assure

saturation of the singly bonded P sites than at 620 °C where

the P vapor pressure over GaInP is lower.

In Fig. 3, the degree of order, determined from the PL

peak energy, is plotted versus pP for the same samples used

to obtain the data in Fig. 2. The results for TBP and PH3 are,

again, nearly identical. The dependence of the order param-

eter on the P partial pressure is remarkably similar to that of

the step spacing seen in Figs. 2✂a✄ and 2✂b✄. At 670 °C the

degree of order begins to drop as the value of pP becomes

less than approximately 2–3 Torr. At 620 °C, this critical

value of pP is ✝1 Torr, again, lower than at 670 °C. The

decrease in order parameter at low values of P partial pres-

sure has been observed previously.11,22 It has been clearly

shown to correlate with the surface photoabsorption signal

due to ☎1̄10✆-oriented P dimers on the ✂001✄ surface.11 The

SPA and ordering data suggest that above the critical value

of pP a single (2�4) phase is formed that gives a large

FIG. 2. Step spacing vs the partial pressure of the group V precursor: ✁a✞
670 °C for ✟1̄10✠ ✁✡,☛✞ and ✟110✠ ✁☞,✌✞ steps. ✁b✞ 620 °C for ✟1̄10✠ ✁✍,✎✞

and ✟110✠ ✁✏,✑✞ steps. The P precursor was either TBP ✁filled data points✞

or PH3 ✁open data points✞.

FIG. 3. The degree of order from PL peak energy vs the partial pressure of

the group V precursor, either TBP or PH3, for growth at 670 ✁✍✞ and

620 °C ✁✑✞.
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driving force for formation of the CuPt structure. The SPA

signal is found to be strong for growth under these

conditions.23 The system is thermodynamically invariant and

the degree of order is independent of pP . Although the data

presented here indicate a constant degree of order at high

values of pP , several earlier studies have indicated a slight

decrease in the degree of order at high flow rates of the P

precursor.24,25 This has been attributed to various factors,

including the formation of a non-(2✂4), ‘‘excess phosphor-

us,’’ reconstruction at high P partial pressures. However, this

is somewhat problematic, since it would be inconsistent with

the high SPA signal due to ☎1̄10✆ P dimers observed.23

At lower values of pP the system apparently sequentially

changes between the various (2✂4) phases,26 with each suc-

cessive phase having a lower coverage of ☎1̄10✆ P dimers,

resulting in the sequential reduction in the CuPt order param-

eter and the SPA signal at 400 nm.23 This mechanism would

suggest that the change in order parameter with pP should

consist of a series of steps. However, the data are insufficient

to allow these to be observed. This interpretation of the data

is supported by the theoretical expectation that the driving

force for CuPt ordering should decrease as the concentration

of the ☎1̄10✆ P dimers decreases.5

Consideration of the step spacing and ordering data to-

gether presents somewhat of a dilemma. The similarity of the

pP dependence of the step spacing and the degree of order

would seem to indicate that the same mechanism controls

both. However, the variation in step spacing is attributed to

the atomic arrangement at the step �or kink✄ while the varia-

tion in the degree of order is attributed to the surface recon-

struction on the terraces. Naturally, the same trend is ex-

pected for both factors. However, the nearly identical values

of pP
* suggest that the step edge �or kink✄ structure changes

as the surface reconstruction of the terraces between steps

changes. For pressures greater than pP
* the surface recon-

struction, surface diffusion coefficient, and sticking coeffi-

cient at the step edge are postulated to be nearly independent

of pP .

Other interpretations of the data are: �i✄ It is actually the

atomic configuration at the step edge that controls ordering.

The concentration of singly bonded P atoms at the ☎1̄10✆ step

edge �or the kink on the ☎110✆ step✄ changes in qualitatively

the same way as the concentration of ☎1̄10✆ dimers on the

terraces with increasing pP , thus explaining the correlation

between the degree of order and the SPA data of Murata and

co-workers.11,27 This seems highly unlikely, since an in-

crease in the sticking coefficient at the step edge would be

expected to decrease, rather than increase, the degree of or-

der. A sticking coefficient of unity will obviously result in

completely disordered material. �ii✄ The step spacing is really

controlled by the surface reconstruction of the terraces be-

tween steps. This might be caused by changes in the surface

diffusion coefficient as the surface reconstruction is changed,

rather than changes in the sticking coefficient. The data are

insufficient to either prove or disprove this hypothesis.

The effects of growth temperature on the step spacing

are seen in Fig. 4. Data for ☎110✆ and ☎1̄10✆ steps are indi-

cated. Data obtained at 3.0 and 1.5 Torr �for both PH3 and

TBP✄ are shown in Figs. 4�a✄ and 4�b✄, respectively. Again,

data for PH3 and TBP are virtually identical and the ☎1̄10✆

step spacing is typically larger than the ☎110✆ spacing.

The temperature dependence of the data is complex. The

largest step spacing occurs for a temperature of approxi-

mately 670 °C. At lower temperatures, the step spacing drops

exponentially, as indicated by the straight lines on the semi-

log plots. The activation energies obtained from Fig. 4�a✄ are

approximately 1.2 eV for the ☎110✆ steps and 1.8 eV for the

☎1̄10✆ steps. The simplest interpretation of the low-

temperature behavior is that step spacing is reduced due to

the exponential decrease in the surface diffusion coefficient

with decreasing temperature. The ☎1̄10✆ step spacing is larger

due to the well-known asymmetry in diffusion along and

across the ☎110✆ P dimer rows.16,20 The difference in activa-

tion energies is more difficult to explain. One expects diffu-

sion across dimer rows to have a higher activation energy.

This problem is probably caused by the fact that the sticking

coefficients at the step edges are increasing as the tempera-

ture is decreased, even at these low temperatures. The behav-

ior is probably different for the two step directions. Thus,

this is probably not a completely reliable method for deter-

mining the activation energies for surface diffusion. Never-

FIG. 4. Log of step spacing vs 1/T for growth using either TBP or PH3 with

partial pressures of 3 Torr ✁a✝ and 1.5 Torr ✁b✝. ✞1̄10✟ steps ✁✠✝ and ✞110✟
steps ✁✡✝.
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theless, the activation energies are consistent with experi-

mental values of approximately 1.1 eV for ✂001✄ GaAs.16

Somewhat larger values would be expected for GaInP where

the bonds are stronger.

The step spacing also falls off as the temperature is in-

creased above 670 °C. This is clearly not due to surface dif-

fusion. However, the step spacing is known to be a function

of both the surface diffusion coefficient and the sticking co-

efficient at the step edge.16 Thus, the high-temperature be-

havior is attributed to a reduction in the sticking coefficient

at the step edge. Again, this is qualitatively similar to the

behavior observed by Asai for macroscopic islands.19 He

found the lateral growth rates in both the ☎110✆ and ☎1̄10✆

directions to be constant at low temperatures and to decrease

when the temperature was increased beyond a critical value.

This was, again, schematically attributed to the loss of the

singly bonded As at the ☎1̄10✆ step edge ✂or ☎110✆ kink✄ at

high temperatures.

The temperature dependence of the degree of order for

these samples is shown in Fig. 5. The data clearly show that

the degree of order has a maximum value at approximately

670 °C, with a rapid decrease as the temperature is increased

or decreased. This general behavior has been reported repeat-

edly in the literature.10,22,27,28

The high-temperature behavior has been attributed to the

loss of ☎1̄10✆ P dimers with increasing temperature.27 This is

presumed to be due to a progressive change between the

various (2�4) reconstructions, with the phase formed with

each increase in temperature having a lower concentration of

☎1̄10✆ P dimers. Consistent with the interpretation of the ef-

fect of pP , the change from the (2�4) phase with a high

concentration of ☎1̄10✆ P dimers at temperatures of 670 °C

and lower to the various (2�4) reconstructions having

lower P dimer concentrations at higher temperatures is pos-

tulated to coincide with a change in the configuration of the

steps leading to lower adatom sticking coefficients at the

☎1̄10✆ and ☎110✆ step edges. The alternative explanation that

the decrease in the sticking coefficient at the steps leads di-

rectly to the decrease in the order parameter is, again, con-

sidered unlikely.

Again, it would appear that a reasonable interpretation of

the low-temperature data is that the (2�4) phase with a high

concentration of ☎1̄10✆ P dimers is formed at temperatures

below 670 °C for a P partial pressure of 3.0 Torr, as sug-

gested by the SPA data for growth using similar conditions.23

The reduction in the surface diffusion coefficient, indicated

by the reduced step spacing, acts to reduce ordering as the

temperature is reduced. This kinetic explanation for the re-

duction in the order parameter is qualitatively consistent with

the reported decrease in the order parameter with increasing

growth rate.8 In addition, the expected increase in the stick-

ing coefficients at the step edges will act to reduce the degree

of order.

SUMMARY

Steps are known to affect CuPt ordering in GaInP. The

way in which this occurs is still undetermined. In this study,

the steps have been studied by examining the step spacing,

using atomic force microscopy, as a function of the growth

parameters temperature and TBP or PH3 partial pressure. The

step behavior has been compared to the order parameter in

the resulting epitaxial layers. A remarkable similarity in the

behavior of the steps and the order parameter has been ob-

served as the temperature and P partial pressure were

changed. As the P partial pressure is reduced below a certain

critical value, both the order parameter and the step spacing

are observed to decrease markedly. Similarly, as the tem-

perature is increased above a certain critical value both the

step spacing and the order parameter are seen to decrease.

The most likely explanation of this behavior is that at low

temperatures and high values of pP a (2�4) reconstruction

is formed having a high concentration of ☎1̄10✆ P dimers.

This surface fosters formation of the CuPt structure. Forma-

tion of this surface phase coincides with a step structure hav-

ing a relatively high group III adatom sticking coefficient. As

the temperature increases above the critical temperature or

pP decreases below the critical value, the surface reconstruc-

tion changes, forming (2�4) phases having fewer ☎1̄10✆ P

dimers. This coincides with a change in the step structure

resulting in a reduction in the adatom sticking coefficient. At

temperatures below the critical temperature both the ordering

and the step spacing are observed to decrease. This is inter-

preted as being mainly due to a decrease in the surface dif-

fusion coefficient. The sticking coefficients at the step edges

are expected to be increasing as well. This would lead to

smaller step spacings and a lower degree of order.
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