
Indexing Relations on the Web

Sergio Luis Sardi Mergen
Universidade Federal do Rio

Grande do Sul(UFRGS)
Av. Bento Gongalves,

9500,Porto Alegre
RS - Brasil

mergen@inf.ufrgs.br

Juliana Freire
School of Computing -

University of Utah
Salt Lake City, U.S

juliana@cs.utah.edu

Carlos Alberto Heuser
Universidade Federal do Rio

Grande do Sul(UFRGS)
Av. Bento Gongalves,

9500,Porto Alegre
RS - Brasil

heuser@inf.ufrgs.br

ABSTRACT
There has been a substantial increase in the volume of (semi)
structured data on the Web. This opens new opportuni
ties for exploring and querying these data that goes be
yond the keyword-based queries traditionally used on the
Web. But supporting queries over a very large number
of apparently disconnected Web sources is challenging. In
this paper we propose index methods tha t capture both
the structure of the sources and connections between them.
The indexes are designed for data that is represented as
relations, such as HTML tables, and support queries with
predicates. We show how associations between overlapping
sources are discovered, captured in the indexes, and used
to derive query rewritings that join multiple sources. We
demonstrate, through an experimental evaluation, tha t our
approach scales to a large number of sources.

Categories and Subject Descriptors
11.3.3 [Inform ation Storage and Retrieval]: Information
Search and Retrieval— Search process

General Terms
Algorithms

Keywords
Dataspaces, Indexing, Search Engines

1. INTRODUCTION
There is a very large volume of (semi) structured data on

the Web. A recent study reports that there are over 144
million relations published as HTML tables in Google’s in
dex [3]. Other sources of structured information include Web
services and online databases. Whereas Web documents
have been traditionally modeled as bag of words and queried
through simple keyword-based interfaces, having structured

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22-26. 2010. Lausanne. Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

information opens up new opportunities for exploring and
querying these data. By leveraging the structure, more pre
cise queries can be posed which in turn lead to higher-quality
answers. Furthermore, answers to queries can correlate in
formation from multiple sources, enabling on-the-fly integra
tion at an unprecedented scale.

But supporting structured queries over a very large num
ber of data sources creates new challenges [1]. A practical
solution must deal with the scale as well as with the dynamic
nature of the Web, where new data sources are constantly
added and existing data sources updated. In addition, the
m etadata associated with the data sources is often scarce.
For example, for Web tables, usually, only the attribute
names can be automatically extracted—no information is
provided about attribute types or integrity constraints.

Dataspaces have been proposed as a new paradigm for
managing structured Web sources [9]. Dataspace systems
aim to support large networks of interconnected data sources
with (an implicit or explicit) structure. These systems must
address several problems, from supporting large volumes of
heterogeneous data (in different formats) from autonomous
data sources, to providing an integrated means for searching
and querying the information.

In this paper, we focus on the problem of supporting struc
tured queries in dataspaces. Our underlying model is based
on three interconnected entities: relations, attributes and
values. The relationships between these entities are cap
tured in specialized indexes. In addition, the indexes cap
ture relationships across relations, i.e., relations that share
attributes and values.

By treating each individual data source as a relation, we
propose a new querying mechanism which is scalable, i.e.,
able to handle a very large number of structured Web sources;
and tha t supports simple, yet expressive queries that exploit
the structure inherent in the data. Our goal is to let users
declare queries with attributes, and to optionally specify se
lection predicates. Furthermore, if required, answers may
join information from multiple sources.

We have performed an experimental evaluation of our in
dexes using a large set of HTML tables automatically gath
ered from the Web. Our results show tha t using our ap
proach, queries can be answered efficiently. We also posi
tion our work against related work, through a comparison
of different features, specially considering memory cost.

The remainder of the paper is organized as follows. Re
lated work is discussed in Section 2. In Section 3, we present
the basic concepts underlying our model and the problem
definition. Section 4 describes the indexing mechanism we

430

mailto:mergen@inf.ufrgs.br
mailto:juliana@cs.utah.edu
mailto:heuser@inf.ufrgs.br

have proposed. Section 5 gives a detailed description of the
search algorithms we use to find possible ways to answer
user queries. In Section 6 we present the experimental re
sults. In Section 7, we present a real application based on
our solution, which allows interesting queries to be posed
against information gathered from multiple relations. Sec
tion 8 presents our concluding remarks.

2. RELATED WORK
The problem of providing seamless access to structure

data on the Web have already been addressed by a num
ber of different works. Salles et al. [18] classifies these works
into two different categories: schema first approach (SFA)
and no schema approach (NSA).

SFA assumes the sources of information are already in
tegrated into a global schema. This integration is mate
rialized as mappings between the source schemas and the
global schema. Classical solutions include global-as-view
(GAV[17]) and local-as-view(LAV[10]), whose main differ
ence is the direction of the mappings. Nevertheless, they all
serve the same purpose: support query rewriting, in which
a query posed to the global schema must be broken down
into queries tha t conform to the local schemas[5].

Creating mappings and maintaining them as sources evolve
and the global schema changes can be expensive and time
consuming. This effort is required and justified for appli
cations that are mostly static, cater to well-defined infor
mation needs, and integrate a relatively small number of
sources. However, for exploring and integrating information
sources on the Web, expecting the existence of a pre-defined
global schema is not practical. To define a global schema,
one first needs to know about which sources are available.
And on the Web, there are too many of them. Besides, a
single global schema is unlikely to be sufficient to fulfill the
information needs of all users. Even if it is possible to model
a very large global schema that contains constructs for com
prehensive set of concepts, the effort spend on defining the
mappings to the sources would become unfeasible, not to
mention that Web sources are too volatile, which would re
quire the mappings to be constantly updated.

In the other direction, NSA assumes tha t a global schema
is not available. In such scenario, the goal is to match the
user desire, expressed in a query language, to the set of
sources available. To make matters worst, this process needs
to be done on the fly.

In most NSA works, the user expresses queries as key
words, given the simplicity of the language and its proven
success on search engines for unstructured data. Addition
ally, at some extent, NSA approaches tend to look at the
sources as if they were collection of tuples (a.k.a. relations).

Following this direction, some works propose keyword search
over relational databases. Such approaches model the solu
tion as graphs whose nodes are connected based on foreign
key relationships. Two possibilities emerge: instance-level
graph[14] and schema-level graph[2, 13]. In the instance-
level graph, the nodes are tuples of the database. Given a
query, keywords are mapped to nodes in the graph. Each
subset of the graph tha t links all of the selected tuples be
come individual answers. Results are then presented as
nested information, according to the connections between
the tuples. In the schema-level graph, the nodes refer to
elements of the database schema. Like the instance level
counterpart, keywords of a query map to nodes in the graph.

Then, each subset of the graph that links all of the selected
nodes derives a query tha t contains some answers.

Originally designed to relational databases(in the close-
world-assumption sense), these approaches could be extended
to Web information. However, it is not clear if and how
they would be suitable to the large amount of information
available on the Web, specially considering tha t foreign key
relationships are unknown.

The structured universal relation (SUR) was also pro
posed as a way to query multiple structured Web sources
using a simple keyword based interface [6]. Generally speak
ing, a database is virtually flattened as a single relation with
a large number of attributes, so the user is free from having
to provide join information. SUR requires an expert to spec
ify compatibility constraints for relations as well as concept
hierarchies for attributes.

To support queries over Web tables, Cafarella et al. [3]
proposed an inverted list tha t links cells to the tables in
which they appear. The horizontal and vertical offsets of the
cell inside the table are also mapped. Similarly to the pre
viously presented works, queries are expressed by keywords.
The result of the search are pages whose inner tables contain
terms tha t appear as keywords in the query. In order to ef
fectively find the most relevant information first, the results
are ranked according to a set of features. For instance, tables
whose keywords appear as part of the header are deemed
more relevant than tables whose keywords appear as part
of a record. As a drawback of this approach, structure is
not taken into account for the purpose of answering struc
tured queries. As a consequence, selection predicates are not
allowed, and the results are limited to information encoun
tered on single tables.

Dong and Halevy [7] take a step forward with a solution
tha t is able to perform queries with structure. The indexing
schema they propose is based on keywords tha t points to a
list of instances where they can be found. The index can
be enriched with hierarchical information (terms that can
substitute a keyword) and association labels, so that infor
mation from multiple sources can be joined. This solution
is the first attem pt to provide means for the user to express
queries with selection predicates, even though predicates are
restricted to the equality operator, unlike our approach that
supports more types of comparison operators.

There are also pay-as-you-go approaches tha t lie in-between
the SFA and the NSA. Works of this kind start with few
mapping information and evolve over time, taking user feed
back into account. Madhavant et al [15] states some archi
tectural issues that need to be addressed in such a scenario.
Salles et al. [18] provides a concrete framework that sup
ports dataspace enhancing by adding relationships among
the data.

3. BACKGROUND
In order to query structured Web data, we envision struc

tured search engines that support simple, yet expressive queries
which explore the underlying structure of the data.

Figure 1 shows a high-level overview of our architecture.
Relevant relations are extracted from the Web and fed into
the Indexer. Given a structured query, our goal is to find all
possible ways to answer this query using relations found in
the Index, i.e., all possible rewritings [10].

The Rewriter is composed by search algorithms tha t ac
cess the indexes in order to derive rewritings for user queries.

431

Each rewriting can then be individually processed (by re
trieving the current version of the relations from the Web or
using cached relations), and its resulting tuples returned to
the user.

The indexes (along with the search algorithms) we pro
pose in this paper are important building blocks for these
search engines, as they not only improve the performance
for finding the rewritings, but also aid in the selection of
relevant relations.

Figure 1: Architecture Overview

Data Model. We treat Web sources as relations. Relations
provide a natural model for a significant number of struc
tured Web sources, in particular, HTML Tables. We assume
that the schema (i.e ., attribute names) and instances can be
automatically extracted from the Web sources [4].

Figure 2 shows excerpts of (real) HTML tables whose re
lational structure was automatically extracted. Relation T\
brings a list of movies starred by Leonardo DiCaprio, T2

brings a ranked list of the best movies ever, T3 brings a
ranked list of movie scores and T4 brings a list of movies
from Martin Scorsese. These relations are used throughout
the paper in order to exemplify how the querying process
works.

Query Language. Our query language extends the tra
ditional keyword-based interfaces with structural semantics.
A query is defined as a list of attributes, followed by a (op
tional) list of selection predicates.

Example 1: Find the title and year o f movies released
after 1990. Qi —> title year [year > 1990]

The bold sentence in Example 1 shows how to express a
user request in the proposed query language. The attributes
involved in brackets are the (optional) selection predicates,
whereas the remaining attributes are projection predicates
(attributes that need to be returned as part of the answer).

The user needs not to specify the sources (i.e., the un
derlying relations). Instead, a search algorithm selects the
relevant sources and derives queries that retrieve data from
these relations. If the specified attributes span multiple re
lations, queries are derived that join these relations.

Rewritings. In our work, a rewriting is a conjunctive query
where each subgoal refers to a relation. In traditional ap
proaches for query rewriting[ll], the answer to a query is
presented as a union of rewritings (maximally contained
rewriting). Instead of computing this union, we present to
the user each local rewriting in isolation. Several reasons
motivate this decision:

1. Depending on the size of the data set, the cost for
computing all answers becomes prohibitive. Besides,
the user would normally focus on the first results only.

2. It is easier to relate the resulting tuples to their respec
tive sources. Knowing the provenance of the tuples

T3

RANK TITLE COMPOSER

1 Star Wars IV John Williams

2 Gone With the Wind Max Steiner

3 Lawrence of Arabia Maurice Jarre

T1

TITLE GENRE YEAR

Titanic Romance 1997

The Aviator Biography 2004

The Departed Crime 2006

T4

TITLE YEAR NOMINATIONS OSCARS

Casino 1995 1 1

GoodFellas 1990 6 1

The Aviator 2004 11 5

T2

RANK TITLE

1 Citizen Kane

2 Casablanca

3 Titanic

Figure 2: Source Relations

helps to identify the best sources of information.

3. It is possible to associate a specific rewriting to an
swers understood as irrelevant by a user and ignore all
answers that come from this rewriting.

4. It is possible to conceive a feedback mechanism, where
the user is able to inform that the answers of a specific
rewriting are not correct. Based on this information,
the system could adapt the rewriting in order to en
hance accuracy.

Figure 3 shows examples of queries/rewritings based on
the relations of Figure 2 . Although in our implementation
rewritings are internally expressed in a simplified version
of SQL, for clarity, here we show them using Datalog (at
tributes are described in the abbreviated form).

Rewritings that extract data from a single relation are
called single-relation rewritings. An example of this kind of
rewriting is given in R x\. Conversely, rewritings that extract
data from more than one relation are called multi-relation
rewritings. An example of this kind of rewriting is given in
Ryi. The relations of this rewriting are joined by the shared
variable t i t l e .

Query Possible Rewriting

Q x
Q y

title year
title genre oscar

R x i(t,y) :- T i(t, g, y)
Ryi(t,g,o) :- T i(t,g ,y l),T 4(t,y2,n,o)

Figure 3: Example of Rewritings

4. INDEXING
Information from Web relations are kept into two index

structures: ATaVa and AVaTa.
ATaVa is a tree based index that allows navigation in the

following direction: attribute —> relations —> values. Fig
ure 4 shows some of the relations from Figure 2, indexed
in the ATaVa (the remaining sources are not shown for the
sake of space). This index is implemented as a tree, and for
presentation reasons, they are visually presented as a table.

At the root level, the attributes are linked to their re
spective relations. Additionally, each pair attribute/relation
(a, r) is associated with a data type and the list of values
of a that appear in tuples of the relation r. Each value is
enriched with the tuple ID that contains the value.

The data type of an attribute is normally not defined in
Web data, but it can be easily discovered through a template
based approach. For instance, FOCIH also has a library

432

AVaTa Index

A ttribu te Values Relation

RANK

1 T 2 J3

2 T2,T3

3 T2,T3

TITLE

The Aviator T1,T4

Titanic T1,T2

YEAR

2004 T1,T4

ATaVa Index

A ttr ibu te Relation Data Type Values

GENRE

T 1 TEXT Biography[2], Crime[3], Romance[1]

RANK

T2 INT 1[1],2[2],3[3]

TITLE

T 1 TEXT The Aviator[2], The Departed[3], Titanic[1]

T2 TEXT Casablanca[2], Citizen Kane[1], Titanic[3]

YEAR

T1 INT 1997[1], 2004[2], 2006[3]

F ig u re 4 : E x a m p le s o f th e A T aV a / A V aT A In d exes

of regular-expression recognizers for values in common for-
mat.s[8].

Tlie goal of the ATaVa index is to provide the location of
the relations th a t contain the query attribu tes. Additionally,
the data type and the list of values are used to verify if a
relation satisfies the query predicates.

A simplified version of this index is obtained by remov
ing the values level. In this case we call it the ATa index.
W hile ATa reduces the storage requirem ents; it does not
support queries with predicates. The experiments of Sec
tion 6.1 shows the behavior of these indexes 011 real Web
data.

Similarly to ATaVa, AVaTa is also a tree based index.
However, it allows navigation in the following direction: a t
tribu te —► values —► relations. Figure 4 shows the relations
from Figure 2 indexed in the AVaTa. The structure resem
bles the one used in the ATaVa, bu t the order between the
values and the relations is inverted, and 110 tuple ID is kept.

This index is populated only with a ttribu tes th a t appear
in more than one relation, and only when there is a t least one
value in common as content of these attributes. A ttributes
th a t appear in AVaTa are called jo in attributes. Join a t
tributes act as links between otherwise disconnected rela
tions.

The goal of the AVaTa index is to provide the location
of the relations th a t contain com plem entary data , which is
useful for discovering m ulti-relation rewritings.

5. QUERY REWRITING
In w hat follows, we present a series of examples th a t illus

tra te the proposed rewriting algorithms. Special attention
is dedicated to the process of finding m ulti-relation rew rit
ings, where we s ta rt w ith a nai'vo solution and continue with
more scalable approaches. It is also shown how the AVaTa
is able to reduce the search space required to find relations
th a t contain com plem entary data.

E x a m p le 2: Find the title and year of movies. QL>: title
year

Algorithm 5.1 describes how the relations th a t provide an
swers for Q -2 are located. The ATaVa index is scanned for
each of the query attribu tes a,-. The function locateRelations(aj)
returns the corresponding relations of a; from the ATaVa
(the relations th a t contain a definition for ct ;) .

The list of relations from each a ttr ib u te are intersected,
and the result of the intersection are the relations th a t can

provide tuples th a t cover all attribu tes. Each of these be
come the single-relation rewritings 7-L>i(t.,y):-Ti(t.,g,y) and
r-i 2(t,y):-Ii(t,y ,n ,o).

findCompleteRelations(Query Q) returns C

1 //list, of relations th a t contain all query attributes.
2 C <— { } //In itia lly empty
3 for every a ttr ib u te ct; of Q do
4 intersectRelations(ci; ,C)
5 end for

intersectRelations(ci; ,C)
1 if (i = = 0) th en
2 C <— locateRelations(ai)
3 else
4 C f - C n locateRelations(ai)
5 end if

A lg o rith m 5 .1 : The algorithm th a t finds relations th a t
contain all query a ttribu tes

E x a m p le 3: Find movies released after 2005. Q;i: title
[year > 2005]

This case involves a query w ith a selection predicate ([year
> 2005]). Similarly to the previous example, the index is
scanned for each of the query attribu tes. However, if ct; is a
selection variable, the function locateRelations(ai) returns
only the relations th a t satisfy the selection predicate.

The list of values of the ATaVa index are t.raversered in or
der to find out if a relation satisfies a predicate or not. The
d a ta type indicates the semantic of the comparison predi
cates. For example, y e a r is a numeric value in the index, so
it should be com pared as such. Since the values are ordered
in alphabetic order, this operation can be done in logarith
mic time.

The lookup for the y e a r attr ib u te in Q-A returns relation
Ti (this is the only relation th a t satisfies the predicate over
y e a r). As a result., only a single rewriting is produced:
rXi(t ,y) : -T i(t ,y ,y) ,y > 2005.

E x a m p le 4 : Find romance movies released after 2000.
Q i: title [year > 2000] [genre = rom ance]

Example 4 is more restrictive than example 3, as the pred
icates show. The only relation th a t covers all a ttribu tes of

433

query Qa is T\. However, in order for this relation to fully
satisfy the selection predicates of the query, both predicates
should be satisfied for the same tuples. In this case, no tu
ple of relation T\ satisfies predicates genre = Romance and
year> 2000 at the same time, since there is no overlap be
tween the tuples that satisfy the first predicate (tuple one)
and the tuples that satisfy the second predicate (tuples two
and three).

Given the tuple ID of the ATaVa, it is possible to obtain,
for each table, the list of tuples tha t satisfy a specific se
lection predicate. W ith these lists, it is possible to discover
whether a rewriting is able to return any answers at all.
Section 5.5 gives more details about how this verification is
performed.

Exam ple 5: Find the title, year and director o f movies.
Q5: title year director

In this example, there is no source relation that covers all
attributes of the query. For instance, relation T% covers only
t i t l e and year, and relation T -2 covers only t i t l e . These
relations, called incomplete, produce incomplete rewritings,
where one or more attributes of the query are absent, such
as r 5i(t ,y ,d) :-T i(t ,g ,y) and r 52{t,g ,y):-T 2{r,t).

Algorithm 5.2 shows how to find the list of incomplete re
lations. This list contains relations tha t cover at least one
of the attributes (D), except those that cover all attributes
(C). Moreover, the selection attributes (if any) always need
to be covered (S). This last condition is required to prevent
the generation of answers that may not be contained in the
query. For instance, in Example 3, it is not possible to as
sure that the rewriting rz2 {t,y)'.-T2 (r,t) is contained in the
query Q$, because it is unknown whether all movies from T -2
were released after 2005.

Exam ple 6: Find the title, director and genre o f movies.
Qg: title director genre.
For this example only, consider the following data sources:
T5(t,g), Tg(t,d), Tr(t,g) and Ts (t.,g).

Again, every source relation is incomplete with respect
to the query. However, it is possible to find combinations
of these relations that cover all query attributes (and that
joined together may produce the query result).

The first step is to separate the incomplete relations into
join lists (JLs). A JL is a list that clusters together rela
tions tha t cover the same join attribute. Recall that a join
attribute is an attribute that appear in the AVaTa index.
From the attributes of Qg, just t i t l e is a join attribute, so
there is a single JL.

Given a JL, the goal is to find all combinations of relations
tha t form valid multi-relation rewritings - i.e. rewritings
tha t are both complete and minimal.

A minimal rewriting is one tha t produces different results
if any of its subgoals are removed (non minimal rewritings
are more time consuming since the number of relations that
need to be joined is larger). Thus, a combination cannot
form a multi-relation rewriting if one or more relations could
be removed from it and it still covers all attributes of the
query.

A complete rewriting is one that covers all query attributes.
It is semantically equivalent to the AND operator of tradi
tional keyword-based query languages. Thus, a combination
cannot form a valid rewriting if its relations do not cover all
attributes of the query. This restriction simplifies the pro
cess of finding the combinations. The support for incomplete
multi-relation rewriting is left for future work.

The JL created from query Qg is composed by {T s [d],
Te[g], TV[d], T s [d]} . The attributes inside the square brack
ets represent the complement of each relation (the attributes
of the query that are not covered by the relation). In the
running example, relations T5,T7 and Tg do not cover at
tribute d ire c to r and relation Tg does not cover attribute
genre.

In what follows we present different strategies to scan the
relations in the JL in order to form the valid combinations.

5.1 Naive Algorithm
The naive algorithm finds valid combinations using a sim

ple search strategy1. Algorithm 5.3 shows how this strategy
works. The entries of the JL are processed sequentially, and
every possible combination of entries is performed. For each
combination, the complements of the combined relations are
intersected. The complement of a relation t,; is returned by
the function getC om p(ti).

Figure 5(a) shows all combinations viewed as a tree. It is
important to remark that this tree does not reside in mem
ory, since the paths are built and consumed as the JL is
processed. The path from a leaf to the root forms a combi
nation.

Paths that lead to a valid combination can be tested by
intersecting the complements of the nodes tha t belong to
the path. An empty intersection means tha t all attributes
of the query are covered.

In the example, three valid paths emerge(/T5/Te, /Tg/Tr,
/Tg/Ts), which generate the following rewritings: rei(t,g,d):-
T5(t,g), T6(t,d), r 6 2 (t,g,d):-Tg(t,d), T7(t,g) and r63 (t,g,d):-
Te(t,d), Ts(t,g). Note that the join attribute of the JL be
comes the join attribute of the rewritings.

1The naive algorithm is introduced just to simplify the pre
sentation of the algorithms we are actually proposing.

findIncompleteRelations(Query Q) returns D

1 //relations that contain all query attributes.
2 C7 — {} //Initially empty
3 //relations tha t contain only some of the query at

tributes.
4 D «— {} //Initially empty
5 //relations that contain all of the selection attributes.
6 S <— {} //Initially empty
7 for every attribute a; of Q do
8 intersectRelations (a*, C)
9 D DU (locateR elation s(ai))

10 if (a; is a selection attribute) then
11 intersectRelations(a; ,S)
12 end if
13 end for
14 if (query contains selection predicates) then
15 D i - (S - C)
16 else
17 D ^ (D ^ C)
18 end if
Algorithm 5.2: The algorithm tha t finds relations that
contain all (C) and some (D) of the query attributes

434

T5[d] T6[g] T7[d] T8[d]

T6[g] T7[d] T8[d] T7[d] T8[d] T8[d]

✓OC t X
T7[d] T8[d]

I
T8[d] T8[d]

I
T8[d]

A)
F ig u re 5: T rees o f P ossib le C om b in ation s. T h e tre e s p resen ted in a) an d b) show resp ectively th e com b in ations
found w hen th e S tre a m -D riv e n a lg o rith m an d th e T em p late -D riv en alg o rith m s a re used.

f i n d V a l i d P a t h s -2 (JL .x . MA)
1: for every relation ti of JL . where i > x do
2: MAa.ux <— MA D getComp(ti)
3: if (MAallI = = { }) th en
4: //v a lid path
5: else if (MA — MAaUx = = { }) th en
6: / /p a th does not. reduce intersection(not minimal)
7: else
8: / /o n ly in this case the sub-paths are processed
9: f indV afidP aths-2(J L , i, MAaUx)

10: end if
11: end for

f i n d V a l i d P a t h s i (J L)
1 for every relation ti of JL do
2 MA <— yetC om p(tj)
3 f in d V a lid P a th H 2 (ih .i .y iK)
4 end for

f i n d V a f i d P a t h s -2(JL ,x , MA)
1 for every relation ti of JL , where i > x do
2 MAa,ux «— M A fl yetC om p(t;)
3 if (MAa,ux = = { }) th en
4 this is a valid path
5 end if
6 f i n d V a l i d P a t h s2(J L , i, MAaUx)
7 end for

A lg o rith m 5 .3 : The algorithm th a t finds valid paths,
i.e. paths whose corresponding relations form valid m ulti
relation rewritings

5.2 Stream-Driven Algorithm
The Naive Algorithm is based on a brute-force backtrack

ing approach. As a consequence, is accesses branches of
the tree th a t cannot form valid combinations (e.g., the path
/Tj/Ty/Tx is not. complete and the path jT-,/Ta/T7/T* is
not minimal). The Stream-Driven Algorithm reduces the
num ber of node visits by removing some of the invalid paths
(see the cuts depicted in Figure 5A)), which prevents the
subtree underneath the removed path from being processed.

Given a path p = { iu ,}. a node n.j+1 (n ;+ i being a
node th a t succeeds t i ; in the JL) is not traversed if:

• the intersection of the complements of p is already
em pty (e.g., the path /T ;,/T 0). This means th a t the
path traversed so far is already a complete rewriting,
and it makes no sense to continue along this path.

• the intersection of Tii to «.;+i is the same as the inter
section of n i to ti;. In other words, the last node of
the path does not reduce the intersection, (e.g., the
path /T:,/Tj). This means th a t one of the nodes along
the path leads to a lion-minimal rewriting.

Algorithm 5.4 overrides the function findV alidP aths-i of
A lgorithm 5.3 by adding the cutting rules.

5.3 Template-Driven Algorithm
Observe from the previous example th a t some entries in

the JL have the same signature (their complements are equal).

A lg o rith m 5 .4 : The algorithm th a t finds valid paths and
cuts the invalid ones

In order to find valid rewritings, entries w ith the same sig
nature cannot be part of the same combination, since they
would lead to lion-minimal rewritings.

In the tem plate-driven algorithm, relations w ith the same
complement are grouped w ithin a single entry. In other
words, there will be no more than one entry with the ex
act same complement. In this case, the size of the JL tends
to be small, since it is no longer related to the num ber of
relations, bu t to the num ber of possible different comple
ments.

Equation 1 shows how to com pute the num ber of possible
different complements for a query w ith n + 1 attribu tes. For
instance, having a query w ith five attribu tes (one a ttr ib u te
th a t is fixed (the join a ttribu te) and four other attribu tes),
in the worst case there would be 24 entries (combination of
one,two,three or four attribu tes).

71 •
x ^ Tl.M a x im u m # o f com plem ents = ^ (1)

After the JL is generated, a tem plate tree is build. This
tree contains only paths th a t lead to valid combinations.
Algorithm 5.4 serves as a base to produce the tem plate tree
from the JL (line 4 would have to be replace by a routine
th a t reads the selected path and adds it to the tem plate
tree).

The tem plate tree for example 6 is described in Figure 5(b).
The valid combinations are formed by traversing the tree in
a left-to-riglit, breatli-first. strategy, as described in Algo
rithm 5.5. The path from the leaf to the root, leads to a
group of combinations, where each combination comes from
the cartesian product, of the list, of relations that, are part, of

435

each node.
Conversely to the previous algorithms, this tree is built in

memory. However, it is considerably smaller then the naive
/stream ed tree, as the example shows. Another positive
aspect of the Template-Driven approach is that the number
of validity checks (check if complete and minimal) that need
to be performed can be greatly reduced, when dealing with
a large number of relations.

Algorithm 5 .5 : The algorithm tha t finds valid combina
tions from a template tree

5.4 Using the AVaTa Index
The AVaTa index is use to optimize the process of finding

multi-relation rewritings. Instead of a single large JL for
each join attribute, several small JLs are created for the
same join attribute. These small JLs only contain relations
tha t share at least one value for the join attribute.

Exam ple 7 : Find the title, rank and year o f movies. Qi-.
title rank year.

Example 7 is a case that would require relations to be
joined. W ithout the information from the AVaTa, and con
sidering t i t l e as a join attribute, the JL would be (Ti, T-2 ,
T z , T a) . However, the AVaTa tells us tha t only (T i ,T a) and
(Ti,T2) have overlapping movies. Thus, the large JL is split
into the smaller JLs (Ti,T2) and (Ti,T4). In the experiments,
the benefits from using smaller JLs become more evident, in
cases where the number of relations is higher.

An indirect benefit of this index is that it prunes rewrit
ings that would not produce any valid answers. For in
stance, without the AVaTa, one of the possible rewritings
of Q i would be r n (t yry y):-T-2 (ry t),T<4 (t, j/,n, o). However,
this rewriting would bring no answers, since movies from
the involved relations do not overlap.

5.5 Emptiness Check
It is possible tha t some of the produced rewritings re

turn empty sets as answers. These are called empty rewrit
ings. These may happen when the relations involved do not
provide tuples tha t satisfy the selection and / or the join
predicates, specially when there is a multitude of relations
available.

To prevent empty rewritings from being presented to the
user, the emptiness check verifies if a given tuple provides
the necessary information tha t is required by a user query.

Exam ple 8: Find the title, genre and oscars o f movies
released after 2000. Qs'- title genre oscars [year>2000].

Since no source relation contains all attributes of the query
Qs, the rewritings would necessarily contain join predicates,
as well a selection predicate for the year attribute.

Given the tuple ID of the ATaVa, it is possible to obtain,
for each relation of a rewriting, a list of the tuples that
satisfy a specific predicate that involves the relation. Given
a selection predicate over a relation r, the list would contain
the instances of r tha t satisfy this predicate. Likewise, each
join predicate generates two lists, one for each attribute of
the join. These lists contain the tuples that are able to
satisfy the join.

All lists of instances tha t refer to the same relation are
intersected. If the intersection is not empty, it means that
at least one tuple of the relation satisfies all predicates.

For consistency sake, the lists of the selection predicates
are intersected first. This measure prevents dangling tuples,
from instances that were joined before the selection predi
cate had the chance to remove them.

Note that, in special cases, the predicates can be applied
sooner if the process of rewriting discovery, and the empti
ness check becomes unnecessary. Two situations are pos
sible: 1) when the rewriting contains a selection predicate,
and no join predicate. In this case, the relations filtering
occurs inside the locateR elQ function, before any rewriting
is produced. This verification can be processed in this early
stage even if more than one selection predicate is provided,
as long as they refer to the same attribute (e.g. ”year>1995
year< 2 0 0 0 ”). 2) when the rewriting contains join predicates
and no selection predicate. Under these circumstances, the
emptiness check is irrelevant, as long as the AVaTa is used
during query rewriting. This index assures tha t all involved
relations in a rewriting share at least one value for the join
attribute.

Interestingly, it is possible to answer a query using only
information from the indexes, without ever accessing the real
sources. This computation is rather similar as the one used
to perform the emptiness check. Given the tuple IDs that
satisfy the predicates, the values from the satisfying tuples
can be retrieved from the indexes.

6. EXPERIMENTAL EVALUATION

6.1 Combination Cost
In this section we discuss how variations of the search

strategies affect the cost to find multi-relation rewritings.
The data set used in this experiment contains 195 Web

Pages extracted from Wikipedia sites related to movies. From
these sources, we apply a template extraction to find HTML
tables that contain information about movies. A table matches
a template if it contains one of the following attributes:
film , movie and t i t l e . A total of 671 tables were indexed.
By manually analyzing 10% of the indexed tables, we esti
mate tha t 95% of them are indeed part of the movie domain.
This data set is intended to show how our approach scales
for relations that are part of the same domain.

Four different settings are compared, as Figure 6 shows.
First, the template-driven(TD) and the stream-driven(SD)

findCombinations(TREE)
1 for every root node m of the template tree T R E E do
2 for every relation t e n ; do
3 T a u x ̂ t
4 fin dC om bin ation s(rn , T a u x)
5 end for
6 end for

findCombinations(node, T)
1 if (node is a l e a f node) then
2 / / T is a valid combination
3 end if
4 for every child node n; of node do
5 for every relation t e n ; do
6 T a u x T Ut
7 fin d C om bin ation s(n i, T a u x)
8 end for
9 end for

436

AVaTa -i AVaTa
Stream-Driven(SD) SD+ SD
Template-Driven(TD) TD + TD

Figure 6: Settings Used to M easure Com bination
Cost

algorithms are executed in isolation. Then, for each algo
rithm, the AVaTa index is used to split the JL into smaller
lists.

Figure 7 shows the number of nodes visits required to
find valid combinations(a) and the time required to find
the combinations (b). The number of node visits indicates
the number of times a node of a JL had to be accessed in
order to find the rewritings. These results correspond to
the query t i t l e year d ire c to r c a s t genre ro le . Other
queries showed similar results, so we omit them here.

Approaches tha t use the AVaTa index are clearly better—
they stand at the bottom part of the graph. The reason is
tha t only a small fraction of the rewritings are not empty,
and this index assures that only this small fraction is pro
cessed.

Also note that there is a reduction in the number of visits
when the TD algorithm is used (a). This clearly shows that,
for practical cases, the template tree is indeed much more
compact than the streamed tree.

On the other hand, the time difference between TD and
SD is almost irrelevant (b), which indicates that the time
required to traverse the nodes is smaller than the time re
quired to perform the other operations, such as the empti
ness check.

Interestingly, the TD approach is worse than the SD ap
proach when the AVaTa is used (b). The reason is tha t the
AVaTa creates small JLs (the size of the larger one was 13),
and the cost of computing template trees becomes the most
expensive operation when the JLs are too small. In the fu
ture, we intend to investigate how to automatically choose
the best strategy for each case. One possible tuning would
be to use the template tree only when a JL is larger than a
pre-defined threshold.

6.2 Cost of the Emptiness Check
We also evaluated the benefits from having the emptiness

check performed by the search engine, as opposed to leaving
it up to the user to find it out by himself.

Figure 8 shows the query workload we have used. The first
three queries differ in the number of attributes required. No
source relation covers all query attributes, so all rewritings
of these queries need to perform joins. The last two queries
show variations in the selection predicate for the attribute
year.

Query T ype of P redicate

Q l: tit le year director cast genre notes
Q2: tit le genre director year cast
Q3: tit le cast role
Q4: tit le year [year = 2000]
Q5: tit le year [year < 1995]

Jo in P redicate
Jo in P redicate
Jo in P redicate
Selection Predicate
Selection Predicate

Figure 8: Q uery W orkload

Table 1 shows the results achieved. Column cl refers to
the total number of rewritings found and column c2 refers
to the number of rewritings tha t are not empty.

The comparison between cl and c2 shows that only a small

part of the total number of rewritings actually return some
information. Also, note that the number of rewritings is
very large for the first three queries.

Column c3 refers to the number of empty rewritings the
user would have to open until 1 0 non empty rewritings are
found (if no emptiness check is applied). This column indi
cates the level of effort the user is submitted to when reading
the answers of a query. For instance, in the best case sce
nario, only 2 empty rewritings would have to be opened (for
query Q5 and having a data set of 101 source relations).
However, in other cases, this number can grow to the order
or thousands (Q1 and Q2).

6.3 Comparison with Related Work
The work of Dong and Halevy [7] is pretty much similar

to ours in nature, in that the ultimate goal is to seamlessly
query a large corpus of structured information available on
the Web. In what follows we present a list of topics related to
this goal, in which we compare the main differences between
these two index mechanisms.

M em o ry C ost: In order to evaluate memory cost, we
collect data from the WT10G data set. This collection con
tains over 1.5M web pages crawled from the Web (h t tp : / /
ir .d c s .g la .a c .u k /te s t_ c o lle c tio n s /w tlO g .h tm l) . From
these sources, we apply a more general template extraction
than the one used in the movie data set. A table matches
a template if it contains one of the following attributes:
a r t i s t , c i ty , company, country, name, product and t i
t l e . In the end, a total of 3471 tables were indexed (out of
2845 pages).

From the work of Dong and Halevy [7], we have evaluated
two index variations: ATIL and AAIL. The ATIL is a list of
keywords, where each keyword corresponds to the concate
nation of a value and a column. Each keyword contains a in
verted list of tuple instances. For example, 2004//year:[Tl-
2, T4-3] indicates tha t the column year contains the value
2004 in two different tuples: Tl-2, represents the second row
of table T1 and T4-3 represents the third row of table T3.

The AAIL is a variation of ATIL tha t supports associa
tions. An association is a role between two related tuples.
Consider Figure 2 as an example. There is an association
between the second row of T\ (Tl-2) and the third row of
Ta (T4-3), since they expose information about the same
movie.

Associations are bi-directional, and each direction is given
a role name. This name makes it possible to store the as
sociations in the index. For instance, consider awarded is
the role name for the directional association T l-2 to T4-
3. This association is stored in the AAIL with a number
of keywords, one for each column of T4-3, where the value
of the column is the prefix (e.g. The Aviator//awarded,
2004//awarded, ll//aw ard ed and 5//awarded). Additional
keywords are needed to represent the other side of the rela
tionship as well.

Our approach has no support to identifying associations
as proposed in [7]. Instead, we updated AAIL with the
associations we were able to find automatically, for tuple
instances tha t share the same column name and value. The
name of the association became the name of column prefixed
with the word same. For instance, if the column name is
title, the name of the association becomes same t i t l e , in
both directions.

All indexes are represented as Java primitive data types.

437

F ig u re 7: C ost for F in d in g R ew ritin g s

=#=t.ables Q1 Q2 Q3 Q4 Q5
cl c2 c3 cl c2 c3 cl c2 c3 cl c2 c3 cl c2 c3

101 529 23 346 529 23 346 231 0 231 7 1 6 7 5 2
208 3780 40 1246 3780 40 1239 1755 14 570 28 8 20 28 19 5
313 6496 78 624 6496 78 628 3016 51 288 28 8 20 28 19 5
412 9212 102 1513 9212 102 1520 4277 74 719 28 8 20 28 19 5
501 12494 128 289 12006 130 269 5796 100 269 29 9 20 29 20 5
605 18469 161 829 17272 163 907 7620 116 832 34 10 24 34 22 5
679 23560 205 403 20340 207 391 9605 157 391 36 12 24 36 24 5

T able 1: S ta tis tics ab o u t th e Q ueries

tables

Ata ATaVa ATaVa + AVaTa ATIL —jK—Aa Il |

F ig u re 9: M em o ry C on su m p tion for th e W T 1 0 G
D a ta Set

Plus, the required inverted lists are structured as primi
tive arrays. The size of an index is com puted as the to
tal am ount of bytes the index occupies. It is im portant to
rem ark that, we care about, optimizing memory consump
tion. for all evaluated indexes. To accomplish this, we pre
vent. duplications of objet.s - unique objects are represented
only once. The data used in the experiments as well as the
source code that, com putes the memory cost, are available at.
h t t p : / /s m r . i n f .u f r g s .b r /~ h e u s e r /a ta v a .z ip .

The size of all indexes grows linearly with respect, to the
num ber of tables, as Figure 9 shows.

At. the very low part, of Figure 9 is the ATa index. Despite
its low memory consumption, it. does not. provide enough
inform ation to perform the emptiness check. On the other
hand, the ATaVa can perform the em ptiness check, but. it.

takes a considerably higher amount, of memory.
ATaVa is slightly better than ATIL. These indexes are

analogous, in the sense they do not. store associations but.
allow queries with selection predicates.

We also compare the associat.ions-aware indexes ATaVa +
AVaTa and AAIL.

The memory cost, in ATaVa + AVaTa is lower that, its
analogous AAIL. The reason is the overhead involved when
adding an association in AAIL. Adding an association to an
instance w ith n columns, implies in adding n new keywords
(except, when the keyword already exists - in this case it. is
represented only once).

Int.erest.ingly, adding the AVaTa to the ATaVa hardly in
creases the memory consumption. Recall that, the AVaTa
only keeps inform ation about, the join attribu tes. Naturally,
the size of this index varies according to the to ta l num ber of
join attribu tes. However, we have found that, only a small
part, of the whole data set. needs to be stored in this index,
even considering all existing attributes. Our statistics (con
sidering bo th movie and wt.lOg d a ta sets) indicate that. 73%
of the table values are unique, 22% of them appear in dif
ferent. relations, but. for a ttribu tes with different, names, and
only 5% appear in different, relations for a ttribu tes with the
same name.

A b ility to answ er queries w ith ou t co m p ariso n p red
ica tes : ATIL was designed with the purpose of answering
selection predicate queries, and not. to merely define the a t
tributes of interest.. In order to find out. which tuples con
ta in inform ation about, a specific a ttribu te , a full scan in
the index is required, since the a ttr ib u te part, of the indexed
keywords is hidden behind the value part.. One possible
overcome would be to index additional keywords, using only
a ttr ib u te names. We did implemented a variation of the
ATIL that, adds these new keywords. The results are posi

438

tive, and indicate tha t this variation does not have a severe
impact on the index.

In our approach, this type of query can be answered using
information from the ATaVa. In fact, the ATa index proves
to be enough, since the values level is not required.

Ability to answer queries with com parison predi
cates: ATIL does not easily support queries with compari
son predicates other than equality. The index would have to
be scanned considering only the value part of the keyword.
Prom the several keywords tha t may match the predicate,
only those that correspond to the correct attributes should
be considered. Furthermore, the index does not smoothly
accommodate data types, which are required in order to un
derstand the semantics of a comparison predicate.

In the ATaVa, given a selection predicate, the correct col
um n/data type is directly identified. Additionally, since the
values in the ATaVa are stored in alphabetic order, selection
predicates can be answered efficiently.

Index D istribution: The ATaVa/AVaTa indexes can
be distributed in several nodes, creating partitions at the
attribute level. Given a query, only a few nodes need to be
accessed (the ones that define the query columns).

Partitions in the ATIL would have to be created at the
values level, since the keywords are prefixed by the value.
Queries without comparison predicates, such as "fin d t i
t l e , year and d ire c to r" would have to access all parti
tions.

Ability to find associations am ong relations: AAIL
supports a general kind of association. An association is
a role between two tuples, and its not conditioned to the
equality of column names. However, automatically finding
associations between tuples and defining their role names is
a complex process, and probably would have to be manually
consolidated. In [7], it is not clear how this information is
discovered.

Associations in our approach are restricted to tuples whose
information share the same column name and value. This
reduces the number of associations found, but it is a process
tha t can performed automatically. Of course, this comes
with a price of lower precision / recall rates, when false pos
itive/negatives are identified, specially when mixing infor
mation from multiple domains into a single index.

Nevertheless, in the context of exploratory search, this
behavior is acceptable, and sometimes, can even produce
interesting answers. For instance, given the movie source
(t i t l e , d ire c to r) and the book source (t i t l e , year),
the query t i t l e d ire c to r year would return the title and
director of a movie, along with the year in which a homony
mous book was released.

Despite the benefits, there is a caveat in our solution. In
order to find associations tha t provide answers to a query, it
is required that the query contains a join attribute (an at
tribute that acts as a link between tuples). In the examples
demonstrated in this paper, all queries contained the join
attribute t i t l e , even when the title itself was not necessary
as part of the answer. If the provided columns of the query
are not good join attributes, the relevant associations may
not be found.

We intend to leverage this limitation by artificially adding
join attributes to the query. Given a query, we intend to use
schema-completion techniques [3] to discover which lacking
attributes best match the schema of the query, and try to
use these as join attributes.

Query

1. city [state = UT]
2. city [zipcode > 53701]
3. zipcode [city = madison]
4. product [company = ibm]
5. restaurant telephone- [city = malibu]
6. company location ticker
7. country country_code monetary _unit

Figure 10: Exam ple of A rb itrary Queries

Ability to answer keyword queries: Keyword queries
(where no metadata information is provided) are easily an
swered with the ATIL, since all indexed keywords are pre
fixed by the value. In our approach, it would be too cum
bersome to perform this type of query.

7. APPLICATION
In this section we create an application tha t demonstrates

how the search engine behaves on real data retrieved from
the Web. As data set, we used the tables extracted from the
WT10G collection. This data set is much larger than the
movie data set and the universe of discourse is much more
diverse.

Interestingly, from the seven join attributes used in the
extraction template, several different domains could be re
trieved, such as restaurants, industry and politics. There
fore, this data set is particularly interesting for wide purpose
queries, such as the ones asked in a horizontal search engine.

Figure 10 shows a list of arbitrary queries posed to our
search engine. Queries from one to five are answered us
ing single sources of information (a single Web table). The
emptiness check assures that only sources that satisfy the
predicates are selected. For instance, one of the rewritings
for the first query returns a list of 16 cities of Utah.

Queries six and seven are answered using multiple sources
of information, having company and country as join at
tributes, respectively. Some of the results obtained for query
seven are shown in Figure 11.

It is important to notice that the number of relations from
the WT10G data set that belong to the same domain is very
small. Despite the size of the collection, there are only few
relations that contain the same or similar schema. We did
try to perform scalability experiments with this collection,
but the limited amount of information that overlaps did not
give us enough data to draw conclusions. However, we do ex
pect that scalability results using larger overlapping schemas
would be similar to the ones provided for the movie data set.

8. CONCLUSIONS
We propose a new model for querying and correlating in

formation from multiple structured Web data, where the
data sources are treated as relations. This model allows
users to pose keyword queries that contain attribute names
and predicates over these attributes.

So tha t these queries can be effectively and efficiently
translated into queries over the underlying relations, we de
signed an indexing mechanism and a set of algorithms. Be
sides supporting predicate queries, these algorithms also en
able the derivation of rewritings tha t join multiple data
sources tha t contain complementary data. Our experimen-

439

Repository - Suggestions

W eid os - Table Search : country country_cod8 monetary_unit [Submit |

K eyw ords:

Rewriting 1
Hide data

C O U N T R Y _ C O D E C O U N T R Y C O U N T R Y M Q N E T A R Y U N 1 T

au australia australia dollar

at austria austria schilling

be belgium belgium franc

ca Canada Canada dollar

dk denmark denmark krone

fi finland finland m arkka

fr franc e franc e franc

F ig u re 11 : Som e R esu lts for th e Q u ery ’’co u n try
co u n try co d e m o n e ta ry u n it”

t.al results are promising and indicate that, our approach is
bo th scalable and efficient..

For future work, we intend to leverage the way associa
tions between different, relations are discovered. Currently,
associations are created between relations that, cover the
same a ttribu te , which becomes the join a ttr ib u te of the as
sociation. However, such approach may lead to incorrect,
associations, such as cases where an improbable a ttr ib u te is
chosen as a join at.t.ribut.e(e.g.year). Additionally, schema
m atching techniques will be investigated in order to allow
associations to be created between a ttribu tes whose names
are different. [12, 16].

Furtherm ore, there is a need to rank the rewriting so
that, the most, relevant, results appears first.. The number
of a ttribu tes covered and the estim ated num ber of tuples re
tu rned are possible features that, may be used, and that, are
easily extracted from the indexes.

9. ACKNOWLEDGMENTS
This paper was supported by CNPq(project.s CT-INFO -

550891/2007-2, Universal - 481055/2007-0, scholarship) and
C APES (scholarship).

10. REFERENCES
[1] R. Agrawal and et. al. The claremont. report, on

database research. SIGMOD Rec., 37(3):9 19, 2008.
[2] S. Agrawal, S. Cliaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational
databases. In International Conference on Data
Engineering (ICDE), pages 5 16, W ashington, DC,
USA, 2002. IEEE Com puter Society.

[3] M. J. Cafarella, A. Halevy, D. Wang, E. Wu, and
Y. Zhang. Webt.ables: exploring the power of tables on
the web. VLDB E ndow m ent 1(1):538 549, 2008.

[4] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang,
and E. W. 0002. Uncovering the relational web. In
International Workshop on the Web and Databases
(WebDB), 2008.

[5] S. Chawat.lie, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonst.ant.inou, J. D. Ullman, and
J. Widom. The TSIMMIS project.: Integration of
heterogeneous inform ation sources. In 16th Meeting of
the Information Processing Society o f Japan, pages
7 18, Tokyo, Japan, 1994.

[6] H. Davulcu, J. Freire, M. Kifer, and I. V.
Ramakrislman. A layered architecture for querying
dynamic web content.. In SIGMOD international
conference on Management of data, pages 491 502,
New York, NY, USA, 1999. ACM Press.

[7] X. Dong and A. Halevy. Indexing dat.aspaces. In AC M
SIGMOD international conference on Management of
data., pages 43 54, New York, NY, USA, 2007. ACM.'

[8] D. W. Embley, D. Campbell, Y. Jiang, S. Liddle,
D. Lonsdale, Y. k. Ng, and R. Smith.
Concept.ual-model-based d a ta extraction from
m ultiple-record web pages. Data & Knowledge
Engineering, 31:227 251, 1999.

[9] M. Franklin, A. Halevy, and D. Maier. From databases
to dat.aspaces: a new abstraction for inform ation
management.. SIGMOD Rec., 34(4):27 33, 2005.

[10] A. Y. Halevy. Theory of answering queries using
views. SIGMOD Record (AC M Special Interest Group
on Management of Data), 29(4):40 47, 2000.

[11] A. Y. Halevy. Answering queries using views: A
survey. VLDB Journal, 10(4):270 294, 2001.

[12] B. He and K. C.-C. Chang. S tatistical schema
matching across web query interfaces. In Sigmod,
pages 217 228, 2003.

[13] V. Hrist.idis and Y. Papakonst.ant.inou. Discover:
keyword search in relational databases. In
International conference on Very Large Data Bases
(VLD B), pages 670 681. VLDB Endowment., 2002.

[14] A. Hulgeri and C. Naklie. Keyword searching and
browsing in databases using banks. In International
Conference on Data Engineering (ICDE), pages
431 440, 2002.

[15] J. Madliavan, S. Cohen, X. L. Dong, A. Y. Halevy,
S. R. Jeffery, D. Ko, and C. Yu. Web-scale data
integration: You can afford to pay as you go. In
CIDR, pages 342 350. www.crdrdb.org, 2007.

[16] E. Ralim and P. A. Bernstein. A survey of approaches
to autom atic schema matching. VLDB Journal,
10(4):334 350, 2001.

[17] J. D. Ullman. Inform ation integration using logical
views. Theoretical Computer Science, 239(2):189 210,
2000.

[18] M. A. Vaz Salles, J.-P. Dit.trich, S. K. Karakasliian,
O. R. G irard, and L. Blunsclii. it.rails: pay-as-you-go
inform ation integration in dat.aspaces. In VLDB '07:
Proceedings o f the 33rd international conference on
Very large data bases, pages 663 674. VLDB
Endowment., 2007.

440

http://www.crdrdb.org

