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The effects of a strong magnetic field on superconducting Nb and MoGe nanowircs with diameter
— 10 nm have been studied. Wc have found that the Langcr-Ambcgaokar-McCumbcr-Halpcrin (LAMH) 
theory of thermally activated phase slips is applicable in a wide range of magnetic fields and describes 
well the temperature dependence of the wire resistance, over 11 orders of magnitude. The field 
dependence of the critical temperature. Tc. extracted from the LAMH fits is in good quantitative 
agreement with the theory of pair-breaking perturbations that takes into account both spin and orbital 
contributions. The extracted spin-orbit scattering time agrees with an estimate r hA1 = T { h c / Z e 2)4. where t  
is the clastic scattering time and Z is the atomic number.
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The problem of superconductivity in one-dimensional 
(ID ) systems attracts much attentions since it involves 
such fundam ental phenomena as macroscopic quantum 
tunneling, quantum phase transitions, and environmental 
effects [ 1-71. It is expected that a strong magnetic field can 
be used to control these phenomena. Indeed, the m icro
scopic theory predicts that a magnetic field, acting on a 
superconducting condensate, lifts the time reversal sym 
metry of the spin and orbital states of paired electrons and 
suppresses the critical temperature, Tc [8,91. A strong 
enough field destroys superconductivity. The magnetic 
field pair-breaking effects were studied in depth in two- 
and zero-dimensional systems, i.e., thin films [101 and 
nanograins [111. However, an experimental verification 
of the pair-breaking effects in ID  superconductors is long 
overdue.

A distinct feature of ID  superconductors is the absence 
of the phase coherence. Because of fluctuations the am pli
tude of the order parameter has a finite probability to reach 
zero at some point along the wire, allowing the phase of 
the order parameter to slip by 277 [121. The theory of 
thermally activated phase slips was developed by Langer, 
Ambegaokar, M cCumber, and Halperin (LAMH) [131. 
However, the effect of the magnetic field on the phase 
slippage process is not established. It is also unknown 
whether the magnetic field can change the relative contri
butions of quantum and thermally activated phase slips in 
thin wires [3,41.

In this Letter we study the effects of the magnetic field 
on the phase slippage rate and the critical temperature of 
thin wires. It is found that the LAM H provides a good 
description for ID  superconductors in magnetic fields up to
11 T. The dependence of the critical temperature on the 
magnetic field, TC(B), agrees well with the theory of pair- 
breaking perturbations that takes into account both spin 
and orbital contributions [8,91. This is our main result. No

significant contribution o f quantum phase slips has been 
detected in the studied samples.

The samples were made by sputter coating of suspended 
fluorinated carbon nanotubes with N b or M o79Ge2i. 
Transport m easurements were performed in a He-3 cryo- 
stat, as described previously [2,4,51. The magnetic field 
was oriented perpendicular to the wire and parallel to the 
thin film electrodes connected in series with the wire.

A series of resistance versus temperature R(T) curves 
m easured at different magnetic fields is shown in Fig. 1. 
For each curve, a resistance drop at higher temperature 
corresponds to a superconducting transition in the film 
electrodes. The resistance value immediately below the 
drop is taken as the wire normal resistance RN. The second 
resistive transition corresponds to the development of
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FIG. 1. Resistance versus temperature dependence for a Nb 
nanowirc (the thickness is 8 nm. the normal resistance is R N =  
700 IL  and the length is L =  120 nm). Each R(T)  curve is 
measured in a fixed magnetic field; some fields arc indicated. 
Solid lines show the fits to the LAMH theory.
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superconductivity in the wire. W ith increasing magnetic 
field, both transitions shift to lower temperatures.

To analyze these data we employ the LAM H expression 
for zero-bias resistance:

^t,amh(7’) =  ~ ->, T e  AF l̂llT, (1)2 e-kT

where A F  =  (8v/2 /3 ) ( / /£2/8 tt)A ^  is the energy barrier, 
f l  =  (L /£ )(A F /& b7’)1/,2( 1 / t g l ) is the attem pt frequency, 
and t Gl  =  \.Trh/%kB(Tc -  T)\ is the Ginzburg-Landau 
(GL) relaxation time, L is the length o f the wire, A is its 
cross-sectional area, and $  is the GL coherence length. 
Following Ref. [31 we express the energy barrier as

A F(T)  ~  0 .8 3 [L /£ (0 )](V /? /v )* BTf ( l “  T / T c)i/2 . (2)

where Rq =  h /A e 2 =  6.45 k f l  is the resistance quantum 
for Cooper pairs and £(0) is defined by ${T)  =  £(0)(1 -  
T / T cy xf2. Taking into account the contribution of quasi
particles, the total resistance is given as R =  {R ^] +  
/?t7amh)_1- our fitting procedure we use two adjustable 
parameters, Tc and £(0).

The LAM H fits are shown as solid lines in Fig. 1, for 
various magnetic fields. Although the LAM H theory is 
derived for B =  0, we find that the resistance agrees with 
the LAM H fits very well, for both Nb and M oGe samples, 
even in high fields up to ~  11 T.

Our extension o f the LAM H theory to high magnetic 
fields requires an explanation: For a phase slip to occur in a 
wire, the system needs to overcome an energy barrier that 
is a product o f the condensation energy density ( H i / 877)  in 
a volume o f a phase slip A $.  It can be shown within the GL 
theory that in magnetic field the condensation energy 
density goes to zero as [1 -  T / T C(B)]2, where TC(B) is 
the field-dependent critical temperature. The coherence 
length varies as £(0, /?)[! -  T / T V{ B ) Y X̂ 2 and diverges at 
TC{B). Because the temperature dependence of both the 
condensation energy and the coherence length has the 
same form  as in zero field, we expect Eqs. (1) and (2) to 
be applicable in magnetic fields also. The observed agree
m ent with the experiment suggests that the mechanism of 
the phase slippage in 1D wires is not changed by magnetic 
field.

To test the LAM H theory in a nonlinear regime, we 
performed measurements of the voltage-current V{I)  de
pendencies at high bias currents for some M oGe wires 
[Fig. 2(a)l. We observe that at high currents the wires 
undergo a transition into the resistive state. This transition 
is smooth at high temperatures and it is jum p wise, with 
some hysteresis, at low temperatures [4,14] [Fig. 2(a)]. A 
closer inspection o f the data revealed that even at low 
temperatures there exists a small nonlinear voltage varia
tion at currents slightly lower than the switching current 
[Fig. 2(b)]. The V{[) curves rem ain qualitatively un
changed in magnetic field.
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FIG. 2. (a) Voltage versus current dependence at indicated 
temperatures for a MoGe nanowirc (thickness 7 nm, R N =  
4.3 kO , and L =  190 nm) at B =  0. The curves arc vertically 
shifted by 1 mV for clarity, (b) The same data at a magnified 
scalc.

In order to investigate in more detail the resistive tails 
observed slightly below the switching current we measured 
the differential resistance d V /c lI  versus bias current I as 
shown in Fig. 3. It is clear that at all temperatures the 
d V / d l  versus I data follow exponential dependence, which 
is expected from the LAM H expression d V / d l  =  R{T) X 
co sh (///o ), where R{T) is the zero-bias resistance given by 
Eq. (1) and f0 =  4 e k T /h .  We fit the data with the above 
expression and extract two adjustable parameters R{T) and 
f0. Experim ental values of f0 are close to the theoretical 
value T0 =  A ekT /h  (Fig. 4, inset). We speculate that the 
observed small upward deviation of I0 m ight be due to the 
fact that some fraction o f the bias current is carried by 
nonequilibrium quasiparticles. Such quasiparticles are

KnA)

FIG. 3. Differential resistance versus bias current at indicated 
temperatures for the MoGe nanowirc (thickness 7 nm, R N =  
3.9 kO , and L =  150 nm) in a fixed magnetic field B =  9 T. 
Solid lines arc fits to the LAMH expression d V / d l  =  R(T)  X 

cosh(// /(j).
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FIG. 4 . Rcsistancc versus temperature for the MoGe nanowirc 
(same as in Fig. 3) in magnetic fields 0 and 9 T. Open circles 
represent zero-bias-current measurements and black squares 
indicate the rcsistancc values obtained from the fit o f the non
linear portion of c lV /d l curves (Fig. 3). Solid lines arc the fits to 
the LAMH theory [Eq. (1)]. Extracted fitting parameters Tc and 
£(0) arc indicated. The inset shows the experimental dependence 
of the parameter / 0 on temperature (solid and open symbols) and 
the theoretical value / 0 =  4ek T / h  (solid line).

generated by the phase slips and are not taken into account 
within the LAM H. A detailed theoretical analysis is needed 
for further understanding of the f0(T) behavior.

In Fig. 4 we superimpose the zero-bias resistance data 
and the resistance data obtained from the fits to the non
linear portion of d V / d l  vs I curves. These two sets o f data 
appear mutually consistent. The LAM H fit (solid lines in 
Fig. 4) gives an excellent description of all resistance data 
in a range o f / / orders o f  magnitude. We also find good 
agreement with the LAM H for data taken in magnetic field 
B =  9 T (Fig. 4). It is therefore concluded that the resist
ance in studied nanowires is determined by thermally 
activated phase slips even in high magnetic fields.

In Fig. 5 we plot the extracted parameters TC(B) and 
£(0, B) versus magnetic field. The coherence length in
creases very slowly in low fields and starts to grow more 
rapidly at B >  8 T. We consider now the critical tempera
ture TC(B), which is the main focus o f this work. Although 
the initial decrease of Tc agrees with the variation predicted 
by the GL theory [Fig. 5(a)], it is clear that the GL 
phenomenology is not sufficient to account for the ob
served TC(B) dependence. One possible reason is that the 
GL theory does not take into account the spin pair-breaking 
effect and the coefficients o f the GL theory can change in 
the high field regime. Thus we have to use the exact theory 
of pair breaking [8]. In both Nb and M oGe nanowires 
superconductivity persists to magnetic fields that are larger 
than the paramagnetic limit, B p [T] =  1.847V [K] [9], 
(10.6 T for Nb and 8.1 T for M oGe). Since the super
conductivity is not fully suppressed at such fields, we 
conclude that the effect o f magnetic field on the spin part
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FIG. 5. Adjustable parameters used in Eq. ( I ) for the LAMH 
fits o f the type shown in Fig. I. (a) The critical temperature 
versus magnetic field TC(B) is shown for the Nb wire (same as in 
Fig. I ) and for a MoGe wire, (b) The GL coherence length versus 
magnetic field. The parameters o f the MoGe wire arc that 
thickness is 9 nm, R N =  7.5 kO , and L =  460 nm. The theo
retical Ginzburg-Landau dependence is indicated by dashed 
lines.

of the Cooper pair is reduced by the spin-orbit scattering, 
as expected for materials with high atomic numbers. If the 
spin-orbit scattering is sufficiently strong, the transition 
into the normal sate is continuous. This allows us to take 
into account both the spin and the orbital effects on Tc in an 
implicit relation of the theory of pair-breaking perturba
tions [9]

TAB)
V t.( 0)

a 0 + a s

+  2 tTkBTc(B))'
(3)

where t/Az) is the digamma function and a 0 =  
2 D e 2{A )/Hc2 and a s ~  t s u e 2FiB2/ 2 m 2c 2 are the orbital 
and the spin pair-breaker strength parameters, D is the 
diffusion coefficient, and t su is the spin-orbit scattering 
time. To find the vector potential averaged over the cross
sectional area of a wire, ( /\2), we use the expression for a 
cylinder in perpendicular magnetic field, ( /\2) =  B 2d 2/ 16, 
where d  is the diameter o f the wire.

By solving Eq. (3) numerically the theoretical depen
dence of the normalized critical temperature versus the 
normalized magnetic field is obtained. I11 Fig. 6 this de
pendence is compared to the experimental values of 
TC( B ) /T C(0) [same data as in Fig. 5(a)]. Since both pair 
breakers, a 0 and a s, have a quadratic dependence 011 B, 
only one adjustable parameter is required, which is the 
critical field of the wire at zero temperature, B cw. The best 
fits are obtained by choosing B cw =  11.7 T for Nb and 
16.5 T for M oGe (Fig. 6).

To compare orbital and spin pair-breaking contributions 
we introduce an orbital critical field (Bcu) and a spin 
critical field (Bcs), defined as fields needed to suppress 
superconductivity if  only one of the two pair-breaking 
mechanisms is present. These fields are obtained from
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FIG. 6. Normalized critical temperature versus normalized 
magnetic field for the Nb and MoGe wires. Critical magnetic 
fields (ficw) for both wires are indicated. The solid line is a fit to 
the theory of pair-breaking perturbation [Eq. (3)].

equations 2a () =  2 a s =  L 16kT c(Q) [9]. The total critical 
field is then Bcw =  (S ro2 +  5 c7s2r 1/2. Using BCS and GL 
relations the orbital critical field can be written as B c0 =
0.53<I>o/d£(0), where cE>0 is the flux quantum. The value of 
the coherence length £(0) is known from the LAM H fit in 
zero field (7.1 nm for Nb and 7.7 nm for MoGe). Taking as 
d  the thickness o f the deposited material (corrected for 
oxidation for the M oGe wire [5]) we estimate Bc0 ~  22 T 
for both wires. From B c0 and experimental total critical 
field 5 CW we determine the spin critical fields, B cs ~  14 T 
for Nb and Bcs ~  25 T for MoGe. Thus the spin and orbital 
pair breakers have comparable strengths.

From the Bcs we estimate the spin-orbit scattering time 
a s  T s.o. =  2.3 ±  0.5 X 1 0 - 13 s for the Nb wire and t s0 =  

5 ± 3  X 10-14 s for the M oGe wire. The M oGe result is 
considerably different from the value t s0 =* 1.3 X 10-12 s 
obtained for thin M oGe films from weak localization mea
surements [15]. W ith such a t s0 value the superconduc
tivity in the M oGe wire would be completely suppressed at 
Bcs =* 5 T, contrary to our observation. On the other hand, 
we can use the formula t s0 =* T {B c /Z e2)4 given in 
Ref. [16]. W ith elastic scattering time r ^ 6 x  10-16 s
[15] this gives a shorter spin-orbit scattering time 8 X 
10 14 s, that agrees with our result. The latter estimate 
also works well for the Nb nanowire. Here we have elastic 
time t  =  € / v F ^  1.9 X 10-15 s ( v F =  0.62 X 10-8 cm /s
[17], € =  1.2 nm  [4]), and so r s0 =* 2.4 X 10-13 s, again in 
agreement with the experimental value. Thus we conclude 
that the pair-breaking theory combining spin and orbital 
contributions gives an accurate quantitative prediction for 
the suppression o f the critical temperature of homogeneous 
ID  superconducting wires.
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