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ABSTRACT

This paper presents a review of polynomial filter­
ing and, in particular, of the truncated Volterra 
filters. Following the introduction of the general 
properties of such filters, issues such as efficient 
realizations, design, adaptive algorithms and sta­
bility are discussed.

1 INTRODUCTION

Volterra filters are discrete nonlinear time- 
invariant systems with memory described by the 
discrete Volterra series expansion

OO

y(n) = h0 + ^ 2  /»„[*■(»)] (1)
p=i

where

=  52m, =o ••• 53m,=o hp(m i> •••> mf>)'
x(n  — — m p)

. . . .  (2)since the discrete independent variables m i,...,
m p are usually defined on a causal support. Here 
ho is an offset term, /ti(;« i) is the impulse re­
sponse of a digital IIR filter, and hp( m i, 
can be considered as a generalized p-th order im­
pulse response characterizing the nonlinear be­
haviour of the filter. The upper limit in the sum­
mations in (1) given as infinity indicates infinite 
memory of the system. As in the linear case, one 
can obtain practical realizations of the system by 
devising recursive models of finite order involving 
delayed output terms or by truncating equation
(1) and the included summations so that it has 
only a finite number of terms. In the latter case 
/»i(mi) represents an FIR filter, and the effect of 
the nonlinearity on the output depends only on 
the input values. These filters have been exten­
sively studied because of their relative simplicity.

It is worth noting that the Volterra series ex­
pansion can be in fact considered as a Taylor se­
ries with memory. Thus, like the Taylor series, it 
can not perform well in presence of discontinuities 
or saturation effects in the system description.

Two important aspects of the Volterra series 
expansion are evident from its definition in (1) 
and (2): i) the filter output is linear with re­
spect to the elements of the Volterra kernels (this 
property is the basis of various developments de­
scribed in the next sections); ii) the function­
als /(,,[x(n)] can be interpreted as multidimen­
sional convolutions, and thus Volterra filters can 
be represented by means of multidimensional lin­
ear transforms, since their input-output relations 
are expressed by sums of multidimensional con­
volutions. Let us consider, as an example, the 
relation defining the quadratic term

y{n) =  h2[x(n)] =

E m 1= o E m J=o h2( m u m 2)x(n  -  m ,)j;(n -  m2).
. . (3)It can be considered as a particular form of a 2-D 

convolution

w { n i , n 2 )  -

E m ,= 0  £ m a= o M m i,m 2M n i -  m 1,n 2 -  m2)
(4)

for v(ni  — m i,  n2 — m 2) x(n  — m i) x ( n  — m 2) 
and ni — n 2 — n, so that y(n) =  w (n ,n )  [14, 
19]. It is possible to use, instead of the kernel 
h2(n i i , m2), its 2-D z-transform I I2{ z i , z 2) or its 
Fourier transform / / 2(e-?'a'*, eJW-) and then make 
use of the properties of these 2-D operators for the 
characterization of the quadratic kernel. So, for 
example, by using the 2-D Fourier transform, we 
can derive the expression for y(n)  in the double 
integral harmonic representation

y(n) = ^ f I j : „ H 2( e ^ , e ^ ) .

X(u>i)X(ui2)ej(Wl+UJ2)ndu)idu)2

where Ar(w) is the Fourier transform of x(n).  It 
is worth noting that if the input is a monochro­
matic signal at angular frequency w„, i.e., X ( l j )  — 
auo(w — w„) , the output given by (5) is y(n) = 
a2H 2(e^Ua, ej “a)ej2a,,,n which is still a monochro­
matic signal but with angular frequency 2u>a.
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These considerations, easily extended to the 
higher kernels of the Volterra series expansion, 
show one of the peculiarities of the nonlinear be­
haviour of a Volterra filter: new frequencies ap­
pear in the output signal that are not present in 
the input signal.

2 EFFICIENT REALIZATIONS 
OF VOLTERRA FILTERS

Two effective realizations for the Volterra fil­
ters defined on a finite support have been pre­
sented in the past: the first one based on mar 
trix decompositions [12, 1], and the second one 
based on the distributed arithmetic technique 
[17]. Both realizations exhibit properties of mod­
ularity and regularity very suitable for VLSI im­
plementations, and permit computational and 
hardware advantages.

The first structure, valid only for a quadratic 
filter, can be obtained by applying a matrix de­
composition technique to the matrix H in the fol­
lowing equation

/i2[a:(n)] =  X TH X  (6)
Here X  is the vector of the TV most recent in­
put samples, and the matrix H is composed of 
the elements of /»2 (m j,m 2 ). Furthermore, H is 
symmetric since the quadratic kernel can be con­
sidered, without loss of generality, as a symmet­
ric function of its arguments. One of the most 
useful matrix decompositions is the so-called LU 
(Lower-Upper) decomposition. Using an LU de­
composition, the matrix H can be written in the 
form

r

H =  ^ d , L , L f  (7)
t=i

where r  =  ranfc[H] < N ,  d ,’s are real numbers 
and the L,- are TV x 1 vectors having i — 1 leading 
zeros [1], The substitution of (7) in (6) results in 
the equation

r

y(n) = d,[XTL,][LfX] =  diy?(n) (8) 
t=i

where yi(n) =  X TL,■ =  L fX  represents a lin­
ear, finite-support filter. Hence the overall output 
y(n)  is computed by combining r linear FIR fil­
ters, each followed by a squaring operation. Since 
the FIR filters of the parallel channels have an 
increasing number of zero elements for i ranging 
from 1 to r, a set of sequential square-in add- 
out operations can be applied to reduce the data 
throughput delay and the computational require­
ments. Moreover, a preliminary SV decomposi­
tion allows us to obtain an approximate expan­
sion by truncation of the exact expression for the 
matrix H  to the first p  terms (p < r  < TV). In this 
case, the number of parallel channels required by 
the subsequent LU decomposition is reduced to

p, and thus substantial savings in hardware can 
be achieved.

While the above vector-matrix representation 
is valid only for a quadratic filter, an alterna­
tive practical description can be used for all the 
Volterra kernels. This description is based on a 
whole vector notation

/,p[*(n)] =  X jH p (9)

where the vector Xp is defined by the recursive 
rule X„ =  X i <g) X p_ i. Here Xx =  X, and the 
symbol <g> indicates the Kronecker product of vec­
tors. The execution of the Kronecker product im­
plies a well-defined ordering for the elements in 
X p which in turn leads to a corresponding order 
in the vector H p . The number of the elements in 
X p and H p is equal to N p: when the symmetry of 
the Volterra kernels is exploited, the length of the 
vectors X p and Hp can be accordingly reduced.

Efficient realizations can now be derived by 
employing the so-called distributed arithmetic: 
this technique directly suggests both combinato­
rial structures based on logical operations at the 
bit level and memory oriented realizations which 
use suitable function values stored in ROM’s or 
RAM’s [17, 18]. The operator hp is decomposed 
in the form

hp[x(n)] = P jQ jH p  (10)

where Q„ =  Qi <g> Qp_ i, P p =  P i  ® P p- i ,  
X i =  Q iP i, and X p =  QpP p. The matrix Q i is 
the input vector X i subdivided in its B compo­
nent bits, and P i  is the vector of the correspond­
ing B binary weights. Combinatorial structures 
can be easily derived for quadratic filters from 
equation (13). Memory-oriented structures are 
obtained by using the rows of Q j  as addresses to 
the memory in which all the possible binary sums 
of the elements of Hp are stored. These values 
are summed up according to the weights in P pto 
calculate the output values. The complexity of 
this structure (i.e. the number of memory cells), 
which exponentially increases with TV, can be ac­
cordingly reduced by using address-compression 
and split-address techniques [17],[18].

Two important comments can be made now:
i) The above results can be applied to the M­
D finite-support Volterra filters also by arrang­
ing the values of the input array and the filter 
coefficients in vectors and matrices, respectively, 
according to some mapping function $  which cor­
responds to an ordered scanning of the M-D data
[12]. Therefore, in the case of the matrix de­
composition of quadratic filters, equation (6) still 
holds. On the other hand, when exploiting the 
full vector approach, a suitable nesting of the or­
dering rule generated by the Kronecker product 
with the one imposed by the mapping function $  
is required.
ii) The efficient structures here considered can 
be made adaptive by using for example the well- 
known LMS algorithm. The structures based on 
matrix decompositions require the updating of
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the vectors L; and of the scalar values d; [9], 
while in memory oriented-realizations the content 
of the memory has to be directly updated. For 
this, the relevant equations can be found in [18].

3 D ESIG N  OF VOLTERRA  
FILTERS

One of the most important aspects of Volterra 
filtering is the demand for efficient design tech­
niques. Indeed, only a few results have been re­
ported in the literature up to now and they are 
limited to quadratic filters. In particular, two 
design techniques have been recently proposed, 
both working in the data domain: the first tech­
nique [15] is based on an optimization approach, 
and the second one [16] exploits a set of responses 
of the quadratic component to couples of suitably 
located impulses (the “bi-impulse responses”).

In the optimization approach the filter struc­
ture is considered already fixed and the filter co­
efficients are assumed as variables. In order to 
reduce the number of independent design vari­
ables some constraints can be added, as symme­
try conditions, preservation of the input level in 
a uniform zone and 90° isotropy in the 2-D case. 
In general, the objective function to be minimized 
is formulated as the difference between an ideal 
desired filter output y° and the actual output y 
obtained from a noisy input x'  resulting as the 
superposition of a noise n to a reference input x. 
In order to get a manageable objective function, 
simple schematic reference inputs x  are used, such 
as unit steps and impulses, on windows of limited 
amplitude. Then the deviation measure used is 
the sum of the squared differences on all the sam­
ples of the reference window [15].

The second approach is more formal since it is 
based on the fact that a complete quadratic filter 
is uniquely defined once the impulse response of 
its linear components as well as a set of responses 
of its quadratic component to couples of suit­
ably located impulses (the so-called bi-impulse 
response) are determined. Let us suppose that 
the input of a 1-D system is obtained as the sum 
of two components x(n)  = x a(n) + Xb(n). By 
substitution in the 1-D input-output relation

y(n) — fti[x(n)] +  /t2[x(ra)] (11)
we obtain

y(n) =  ya(n) + yb(n) +  2h2[xa(n), 2 |,(n)] (12)

where ya(n) and yb(n) are the outputs of the 
quadratic filter when the input x(n)  is equal to 
x a(n) or Xb(n), respectively, and

ft2[a-‘a(ra),a:6(n)] =  ^  /i2(i, j ) x a( n - i ) x b( n - j ) .
* 3

(13)
If x a(n) and x/,(n) are two unitary impulses, 
uo(n) and «o(n — m),  respectively at the origin

and at a distance m from the origin, by substitu­
tion in (13), it can be seen that the expression
(13) determines a coefficient of the bi-impulse 
(couple of impulses) response of the quadratic op­
erator

^ 2 [uo(ro), uo(n — m)] =  /t2(0, m). (14)

As a consequence, a 1-D operator having a sup­
port of TV samples is uniquely defined by TV bi­
impulse responses (plus 1 impulse response for 
the linear component); its quadratic part has 
(when the kernel symmetry is taken into account) 
TV(TV +  l) /2  independent coefficients, TV of which 
are related to the response to a couple of impulses 
in the origin, TV — 1 to impulses having distance
1, TV — 2 to impulses having distance 2, ... , 1 to 
impulses having distance TV — 1.

The extension to the 2-D case is not straight­
forward and has been presented in detail in [16]. 
In summary, a 3x3 quadratic filter is formed by 
81 independent coefficients; by considering the 
kernel symmetry, 45 coefficients remain indepen­
dent. Each of these 45 coefficients is involved in 
one of the 13 independent responses to suitably 
located couples of impulses. When the isotropy 
constraints are added, the independent responses 
are reduced to 6 and the independent coefficients 
to 11. The 6 bi-impulse responses are then clas­
sified according to a measure of the distance be­
tween the corresponding input impulses. There­
fore, we can refer to responses of the type 0, 
1 or 2 for impulse distances of 0, 1 or 2 pix­
els, respectively. This classification greatly sim­
plify the subsequent design procedure. The sug­
gested method consists in fixing the coefficients of 
the linear part of the filter, according to various 
problem-dependent choices, and then fixing the 
quadratic coefficients in order to enhance, smooth 
or cancel the effects of well-defined bi-impulse re­
sponses [16]. This procedure can be extended by 
considering more precise subdivisions of the bi­
impulse responses, as shown for example in an­
other paper in these Proceedings [3].

The extension of these two design techniques 
to higher-order kernels is in principle feasible, 
even though quite complex to derive in practice.

4 A D A PT IV E  ALGORITHM S

As mentioned earlier, one of the biggest advan­
tages of using polynomial models is the fact that 
the system output is linear in some polynomial 
functions of the input and output signals. Con­
sequently, many linear filtering concepts can be 
extended to the polynomial case. Much of the 
work in adaptive nonlinear filtering makes use 
of this approach. While the ideas discussed in 
this section are generally applicable, we will re­
strict ourselves to the quadratic model for pedo- 
gogic simplicity. Two of the most commonly em­
ployed classes of algorithms for adaptive filtering 
are gradient search algorithms and recursive least 
squares algorithms.



Least M ean Square (LMS) 
Quadratic Filters

Consider the problem of adaptively estimating 
a desired response signal d(n) as a quadratic ex­
pansion in the most recent N samples of the input 
signal x(n), i.e., we want to estimate d(n) as

<*(") =  E m ,= 0  E m ,= mi h2(m 1, m 2;n)-
x (n  — m i) x ( n  — m 2)

(15)

where h2{m \ , m 2 ; n) for different values of m i and 
m2 are the coefficients of the adaptive filter at 
time n. The objective of the LMS quadratic fil­
ters is to iteratively adjust the coefficients of the 
adaptive filler so as to reduce

e2(n) =  (</(n) — d(n)^j (16)

at each iteration. The coefficient adjustment is 
done as

/i2(m i, m2; n +  1) =
/»2 (mx, m2 ; n) -(- pe(n)x{n  — m i)i'(n  — m2)

(17)
where // is a small positive constant that con­
trols the speed of convergence and the steady- 
state tracking capabilities.

The LMS quadratic filter can be analyzed in 
a manner similar to the analysis of LMS linear 
filters. Let

H(n) =
[/12(C),0; n), /i2(0 ,1; n ) , . . . ,  h2(0, N  -  1;»), 

/i2( l , l ; n ) ......... h2(N  -  1 ,JV - l;n )]T .

denote the coefficient vector for the adaptive filter 
at time n. Similarly, define the input vector at a 
time n as

X (n)

=  [a:2(n), x (n )x (n  — 1 ) , . . . ,  *(n)i,(n — A" -I- 1),

x2(ra — 1 ) , . . . ,  x2(n — N  +  1)]^
.  . . (19)Then, one can show, using several simplifying as­

sumptions commonly employed in the analysis of 
adaptive filters, that the adaptive filter will con­
verge in the mean squared sense if

3<rRocx
(20)

where tr (•) denotes the trace of the matrix (•) 
and R xx is the statistical autocorrelation matrix 
of the input vector X(n). The above result as­
sumes stationarity of the input signal. One can

also show that the speed of convergence is con­
trolled by the eigenvalue spread of the autocorre­
lation matrix.

The dependence of the adaptive filter on the 
statistics of the input signal is one major problem 
associated with LMS adaptive filters. This prob­
lem is even greater for the nonlinear case than 
for the linear case. This is because the eigen­
value spread of the autocorrelation matrix will in 
general be much larger for the nonlinear filtering 
problem than for the linear case. There are sev­
eral approaches that have been employed in the 
past for partially or completely overcoming the 
dependence of the quadratic filters on the input 
signal statistics. We will briefly discuss some of 
these approaches now.

Variable Step-Size Algorithm s [11]
The most common approach for improving the 

performance of the LMS adaptive filters is that 
of employing a time-varying convergence factor. 
Several heuristic algorithms are available in the 
literature. We now discuss an algorithm that is 
derived based on more rigorous and systematic 
considerations. In this approach, the step-size 
is changed so that the change is guaranteed to 
bring about a reduction in the squared error. The 
algorithm can be implemented using the following 
equations:

e(n) =  d(n) — H r̂ '(n)X(n)

/»(» +  1) (21) 
=  ft(n) -f pe(»t)x '^ '(n)x(n — l)e(?i — 1 )

and

H (n +  1) =  H (n) +  /i(n)X(n)e(;i). (22)

In the above equations, p is a small positive 
constant that controls the rate of change of the 
step-size. Experimental results have indicated 
much faster convergence behavior for the above 
adaptive step-size algorithm than the basic LMS 
algorithm.

Recursive Least Squares (RLS) 
Quadratic Filters

Most least squares adaptive filters attempt to 
find the exact solution to the problem of minimiz­
ing a deterministic function of the squared error 
values. For example, the exponentially weighted 
RLS quadratic filter minimizes the cost function

J(n)  =  J 2  \ " ~ k (d(k-) -  H T (n )X (k ))2 (23) 
k=0

at each time. A11 interative solution to the prob­
lem is given in Table 1. The basic derivation is 
given in [4].
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Table 1: The RLS Adaptive Quadratic Filter

In itia liza tio n

H(0) =  [ 0 , 0 , ,  0]T

R - 1 (0) =  6~l I  
S =  a small positive constant

A lgorithm

k(n) =  ____A~‘,?'~1(n~1)X(n)
i +a->XT (n )R -l(n - l)X (n )

e(n) =  d(n) — H ^ (n  — l)X (n )
H (n) =  H (n — 1) +  k(n)e(n)

R ~ l(n )  =  A_1R _ ^(n  — 1)—

A - 'k ^ x T f i i j R - ^ n  -  1)

e(n) =  d(n) — H ^(n )X (n )

The performance of the adaptive RLS Volterra 
filters have been analyzed in [7]. The analysis 
has shown that the convergence behavior and the 
steady-state properties of the adaptive filter are 
independent of the signal statistics. Furthermore, 
experimental comparisons with gradient search 
and other competing algorithms have demon­
strated that the RLS algorithm enjoys many su­
periorities over them in its capabilities.

One big drawback of the RLS adaptive 
quadratic filter in Table 1 over its LMS counter­
parts is that the RLS algorithm requires an or­
der of magnitude more computational complexity 
than the LMS algorithms. More efficient algo­
rithms have been developed in the recent past. 
Derivations and performance evaluations can be 
found in [7].

The fast Volterra filter derivations transform 
the nonlinear filtering problem into an equiva­
lent multi-channel, but linear filtering problem 
and then makes use of the theory of fast multi­
channel filters. The resultant algorithms require 
0 ( N 3) arithmetic operations per sample to im­
plement an adaptive RLS quadratic filter with N- 
sample memory in the system model. This com­
pares with the 0 ( N 4) operations required by the 
algorithm in Table 1. It should also be pointed 
out that LMS quadratic filters and its variations 
require only 0 ( N 2) operations per sample. The 
increased computational complexity even for the 
most efficient algorithm is the price we pay for 
the superior performance capabilities of the RLS 
Volterra filters.

The early versions of the fast RLS Volterra fil­
ters utilized a direct form structure for the system 
model and had relatively poor numerical prop­
erties. Very recently, fast algorithms involving

lattice and other non-direct form structures have 
been developed [20, 21]. Particularly notewor­
thy is the fact that some of these algorithms 
are implemented solely using numerically robust 
Givens’ rotations. Extensive experimental results 
involving finite precision (fixed-point) implemen­
tation of these filters have been presented in [20],
[21].

5 N O N LIN EA R  LATTICE  
FILTERS

Lattice filter structures enjoy several advan­
tages over direct form structures. One of the 
advantages is that lattice filters in general have 
better numerical properties than direct form fil­
ters. They also possess good modularity and 
parallelizeability. Consequently, such structures 
are attractive from an implementational point of 
view. In the context of adaptive filters, if the co­
efficients of a lattice predictor are appropriately 
chosen, the predictor performs a Gram-Schmidt 
orthogonalization of the input signal. This would 
enable design of gradient-search adaptive filters 
with better convergence properties than direct 
form structures. Computationally stable and nu­
merically efficient RLS algorithms can also be de­
veloped using lattice filter structures.

A block diagram of a lattice filter structure for 
a second order Volterra system model with input- 
output relationship

<*(«) = Em7=o h i ( m i)x ( n  -  m i)+

£ m rio E m r= roiM mi>m2). (25)
x (n  — m i)x (n  — m2)

is shown in Figure 1. A tutorial derivation of 
this structure is given in [10]. The key idea in 
the derivation is that the number of input sig­
nals to any stage is one more than the number 
of input signals to the previous stage. In the fig­
ure, the number of lines going into and out of a 
system component indicates the number of input 
and output signals, respectively, of that compo­
nent. If the coefficient matrices K { , K[, K ^ ,  K%, 
etc. are appropriately chosen, the error vectors 
h.o(n)>ki{n )>kr>{n ), etc. will be orthogonal to each 
other. Since the number of signals at each stage 
increases by one, there are a few computations 
that must be done outside the basic lattice. These 
computations are also shown in the figure.

Since the error vectors are orthogonal to each 
other (their elements also span the space spanned 
by the elements of the original input vector) 
we can estimate a desired response signal d(n) 
as a linear combination of the error vectors 
bo{n),bi(n), . . .  ,bpf-i(n).  The coefficient matri­
ces can be individually adapted in an adaptive 
filter and consequently a gradient adaptive lat­
tice algorithm will have much better convergence 
behavior than its direct form counterpart. The



structure in Figure 1 is also the basis of several 
computationally efficient RLS adaptive Volterra 
filters [20J, [21].

One disadvantage of the nonlinear lattice fil­
ter structure in Figure 1 is that it is an overpa­
rameterized system, i.e., a system that can be de­
scribed using 0 ( N 2) coefficients using direct form 
methods require 0 ( N 3) coefficients in the lattice 
parameterization. No general, exactly parame­
terized lattice structure is currently available for 
the Volterra system model. However, such a sys­
tem is indeed available for Gaussian input signals
[5],

6 R E C U R SIV E  N O N L IN E A R  
SYSTEM S

Perhaps the biggest disadvantage associated 
with truncated Volterra series modeling of non­
linear systems is the extremely large number of 
coefficients such models require. Note that a 
very general Volterra system model involving P- 
th order nonlinearity and N-sample memory re­
quires 0 ( N P ) coefficients. Even for moderately 
large values of N and P, the number of coeffi­
cients can become unreasonably large. One ap­
proach to dealing with this problem is to look 
for sparse Volterra filter approximations. Some 
of the recent developments in this area have been 
reviewed in Section 2. We now briefly discuss 
an alternate approach to dealing with the large 
number of coefficients associated with truncated 
Volterra system models. This involves the use of 
recursive nonlinear system models.

The input-output relationship of a general 
polynomial system model with N-sample mem­
ory and up to P-th order nonlinear terms can be 
described using the following nonlinear difference 
equation:

2/(») =  Ef=o p i (j/(» -  i) . v(n -  2 ) , . . . ,  (26)
y(n -  N  + 1), x ( n ) , . . .  (n -  N  +  1)}

Here, Pi(-) denotes polynomial involving only i- 
th order of terms in the signal samples within the 
brackets. The simplest of such recursive nonlin­
ear system models is the bilinear system model 
whose input-output relationship is given by

2/(?I) =  E f t i 1 biy(n ~  0  +  Ej^To1 “jz fa  ~  i )

+  E i l l 1 EfzTo1 Cijx(n -  j ) y ( n  -  i)
(27)

It is known that bilinear system models can ap­
proximate a very large class of nonlinear systems 
with arbitrary precision. Much like linear IIR 
filters can approximate a large number of linear 
systems with great parsimony in the use of co­
efficients, bilinear and other recursive nonlinear 
models can also approximate a large number of 
nonlinear systems with good efficiency. Conse­
quently, there has been a fair amount of recent

effort to model nonlinear systems with polyno­
mial models. We will not go into the details here, 
but will instead discuss the very important issue 
of stability of recursive nonlinear systems.
Stability  o f R ecursive System s

One of the biggest problems associated with 
recursive nonlinear systems is that almost all such 
systems are inherently unstable. To see this more 
clearly, let us rewrite the input-output relation­
ship for a bilinear system as

N-1  j N-1

y(n) = £  { bi + £  Ci)x(n ~ •>) 
i=l [ j=0

N-1
y(n  -  i ) +  ^ 2  a j x { n -  j )  (28) 

j= o

It is relatively straightforward to infer from the 
above equation that one can almost always find 
bounded input signals that can cause the output 
of the system to diverge. However, there is also 
a class of signals for which a given recursive non­
linear system may produce very useful outputs. 
It is such class of signals and any associated con­
ditions for input-dependent stability that we are 
interested in.

We will now describe a sufficient condition for 
guaranteeing that the output of a bilinear system 
described in (27) whenever the input signals are 
bounded by some fixed constant M x .

T heorem  [8] For the bilinear system 
model represented by (27), let p i, p2 , . . . ,  
and p n — i denote the zeros of the polynomial
qN -l  ^1 — . Given a real, positive
number M x ,

|p,-1 <  1, f o r  i =  1, 2, , N  — 1, and  
N -1 N -1  N-1

£ k , l <  n u - N )  (29) 
£=0 j=l i=l

constitute a sufficient condition for  every x(n)  
bounded by M x , i.e., |x(n)| < M x , to produce a 
bounded output y(n).

It should be noted that when there is no 
nonlinearity in the system, the above theorem 
reduces to the well-known necessary and suf­
ficient condition for the resultant linear time- 
invariant system to be stable in the bounded- 
input, bounded-output sense. A detailed deriva­
tion of the theorem is available in [6].

A daptive Bilinear Filters
Adaptive systems to track bilinear or other re­

cursive nonlinear system models can be devised 
in a relatively straightforward manner. For a tu­
torial overview of such filters, the reader is re­
ferred to [10]. The biggest issue associated with 
such systems is that of stability. When develop­
ing and using such filters, one must make sure
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that the system model produced by the adap­
tive filter is guaranteed to be stable, or if this 
cannot be achieved, one must equip the adaptive 
filters with continuous stability monitoring mech­
anisms. We will now briefly review some of the 
recent results in this area of nonlinear filtering 
research.

Extended least squares adaptive polynomial 
filters are guaranteed to be stable in the sense 
that the time averaged value of the squared esti­
mation error is always bounded by a finite quan­
tity [8]. However, this result does not imply 
that the adaptive filter coefficients will not fluc­
tuate wildly for certain type of signals. Varia­
tions of exact least squares adaptive filters and 
gradient search algorithms do not share the prop­
erty of bounded average squared error value. In
[2], this problem has been overcome by append­
ing a Kalman filter to the basic adaptive filter to 
monitor the stability of the overall system. The 
Kalman filter senses the onset of instability and 
modifies the behavior of the basic adaptive filter 
in such situations. Gradient search adaptive bi­
linear filters equipped with a projection facility 
can also be developed. Such systems will contin­
uously check the adaptive filter coefficients to en­
sure that the conditions of the theorem described 
earlier are satisfied. If the coefficients do not sat­
isfy the above conditions, the projection mecha­
nism projects the coefficients back into the space 
of parameters that satisfy the conditions of the 
theorem and thus avoids instability problems.

All the above-described results are of prelimi­
nary nature and much work in the way of perfor­
mance evaluation and system development needs 
to be still done.

7 FINAL REM ARK S

The trends in the research on Volterra filters are 
related to the studies on possible simplifications 
of the general model which is often too complex to 
deal with. On the other hand, interesting results 
have been already obtained, especially in 2-D and 
3-D applications, with filters having a very lim­
ited support, at least for quadratic operators. In 
this context, the study of sparse Volterra filters is 
thus very important, and the realizations based 
on matrix decompositions are effective since the 
SV decomposition can be usefully applied.

With reference to the design problem, again it 
is important to consider simple operators whose 
behaviour is defined according to a proper classi­
fication: an example of this kind of work can be 
found in these Proceedings [3]. Moreover, exten­
sions of the mentioned design techniques to sparse 
higher-order operators become then feasible.

Another trend in an effort to obtain practical 
realizations of nonlinear system modeling is that 
of using recursive system models. In this context, 
the biggest problem is that of maintaining the 
stability properties of the realized system. Some 
exciting results have been obtained in the recent 
past, but much needs to be still done.

Adaptive algorithms with nonlinear system 
models have attracted enormous attention in the 
last decade or so. Many breakthroughs have been 
achieved, especially in the areas of bringing down 
the computational complexity and devising nu­
merically stable algorithms. Development of al­
ternate structures for realizing polynomial sys­
tem models has played a big role in these de­
velopment. Further reduction in computational 
complexity is a desired and perhaps even neces­
sary goal for making the adaptive Volterra fil­
ters feasible in a large class of applications. One 
way in which the authors believe this can be 
achieved is by developing exactly parameterized 
lattice structures for polynomial system models.
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