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We demonstrate that forward electron-electron scattering due to Coulomb interaction in a two-dimensional

ballistic electron-gas leads to the (T ln T)✷1 temperature dependence of the thermal conductivity, which is

logarithmically suppressed compared to the usual Fermi-liquid behavior.
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Ballistic two-dimensional electron system with Coulomb
interaction being a Fermi liquid still reveals some singulari-
ties �albeit weak✁ in a number of quasiparticle and collective
phenomena, namely, in the quasiparticle lifetime,1–9 tunnel-
ing density of states10,11 and drag resistance.12 In particular,
at zero temperature the tunneling density of states has a cusp
at the Fermi surface, ♥(❥)✺♥0❅1✂(✉❥✉/4❡F)★ , here ❥

✺(p2/2m)✄❡F is the distance from the Fermi energy, and
♥0✺m/♣ is the thermodynamic density of states counting
both spin directions. Inverse quasiparticle lifetime contains
the extra �compared to the three-dimensional case✁ logarith-
mic factor,
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The numerical coefficient in this expression was subject to
some confusion in the earlier works before finally being cor-
rectly established in Refs. 5 and 6. The logarithm in Eq. �1✁
is a signature of the singularity in the probability for forward,
q✳0, electron-electron scattering. Forward scattering is
dominant in the high-density limit, rs☎1, here rs✺k0 /kF ,
and k0✺2♣e2♥0 is the inverse static screening length. This
range is known to be well described by the random-phase
approximation �RPA✁. The probability of the backward scat-
tering, q✳2kF , is enhanced as well. It has been shown9 that
under the assumption of low-density rs✆1, backward-
scattering contributes to the lifetime as much as the forward
scattering does and doubles the coefficient in Eq. �1✁ pro-
vided that RPA is still used for the electron-electron interac-
tion. The latter assumption, however, is difficult to explain
since RPA becomes not a reliable approximation at rs❀1
when correlation corrections to the ‘‘bubble’’ approximation
are significant. Attempts have been made to modify RPA to
incorporate these corrections �see Ref. 5✁, but the low-
density case is yet to be well understood. Moreover, the ex-
change effects in the electron-electron scattering as well,
should provide essential corrections to ‘‘golden rule’’ result
�1✁ for rs❃1. The importance of the exchange corrections
was stressed in Refs. 7–8. One expects, however, only the
coefficient in the lifetime to be likely to change but not the
energy dependence.

It is important to investigate the effect of the electron-

electron interaction singularities on the transport phenomena.

Electrical resistance being related to the momentum transfer

is not affected by the electron-electron interaction conserving

the total momentum of scattering particles. This restriction is

relaxed in a setup of two conductors spatially separated by

the distance d, in which only the total momentum of carriers

has to be conserved during a scattering event but not the

momentum of carriers in each conductor. Cross-resistance

appears as the result of the electron-electron interaction be-

tween carriers in different conductors, the phenomenon

known as the Coulomb drag effect. It has been shown12–14

that the singularity related to the forward interlayer scatter-

ing is suppressed by the factor 1✄cos❢❀q2/kF
2
☎1 arising in

the transport cross section for the low-angle ❢ scattering.
Therefore, the drag resistance at high-densities 1/d☎kF
�when the backward interlayer scattering is exponentially
suppressed✁ does not contain a singularity, Rd⑥T

2. Back-
ward scattering is reported to enhance the Coulomb drag
effect in the low-density limit 1/d❃kF when it prevails over
the forward scattering.12

Here we consider a different transport coefficient of a
two-dimensional �2D✁ degenerate ballistic electron system,
namely, the thermal conductivity of a single 2D layer. As the
thermal transport is not related to the macroscopic current
the conservation of momentum by the electron-electron in-
teraction does not impose such a restriction as in the case of
the charge transport �conductivity✁. One can, therefore, ex-
pect the thermal conductivity to be reflective on features of
the electron interaction. We capitalize on the high-density
limit rs✱1 to make use of the RPA approximation where it is
established to be a good one. We demonstrate that the
forward-scattering singularity survives and leads to the fol-
lowing result for the thermal conductivity,
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The above argument of Refs. 12–14 about the suppression of
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the low-q singularity does not apply in this case due to the
fact that the heat transport is controlled by the factor 1
✷cos ✉ containing the angle ✉ between the momenta of col-
lided particles15 rather that the scattering angle ❢ . This fac-
tor does not, however, posess any smallness for low-❢ scat-
tering and therefore, cannot remove the singularity.

Now we derive this result using the Boltzmann equation
for the electron-electron scattering. The thermal conductivity
being the coefficient between the energy flow ✯dp v❥p f p and
the temperature gradient ❪T/❪x ⑦applied along the x axis✦,

❦✺✷
1

2
✈F
2♥0 d❥ p❥ p

❪np

❪❥p
❝�❥p✁, ⑦3✦

is determined by the nonequilibrium deviation of the distri-
bution function f p from the Fermi-Dirac value np✺n(❥p),

f p✺np✶
❪np

❪❥ p
①p , ①p✺✈Fcos❛p

❪T

❪x
❝�❥p✁, ⑦4✦

where ❛p is the angle between the electron momentum p and
the x axis. The function ❝(❥ p)✺✷❝(✷❥ p) is the odd func-

tion of the electron energy ❅more rigorously, the even part of
this function ❝ s(❥p) is nonzero and has to be found from the
condition of the absence of macroscopic current16 yielding
❝ s❀❝T/❡F✂❝ , see also the discussion after Eq. ⑦8✦✄. To
find the function ❝(❥p), we have to solve the linearized Bolt-
zmann equation15 that within the required approximation
takes the form,

✷✈Fcos❛ p

❪np

❪❥p
❥p
❪T

❪x
✺2np dkdqw�☎ ,q ✁nk�1✷np✆q✁�1✷nk✝q✁❞�❥p✶❥k✷❥p✆q✷❥k✝q✁�①p✶①k✷①p✆q✷①k✝q✁,

⑦5✦

here dk✺d2k/(2♣)2, the coefficient 2 accounts for the spin

degeneracy, w(☎ ,q) is the probability of scattering with the

transferred momentum q and the transferred energy ☎

✺❥p✆q✷❥ p , respectively ❅in what follows we use the units:

❭✺kB✺1]. The scattering probability in the golden rule ap-

proximation, w(☎ ,q)✺2♣✞U(☎ ,q)✞2, is determined by the

matrix element of the dynamically screened Coulomb inter-

action which within the RPA scheme is given by U(☎ ,q)

✺2♣e2/✟q ➠(☎ ,q)★ , with the dielectric function,

➠�☎ ,q ✁✺1✷
4♣e2

q
dp

np✷np✆q

☎✶❥ p✷❥p✆q✶i❤
. ⑦6✦

In writing Eq. ⑦5✦ we have neglected the exchange effects for

the scattering between electrons with the same spin direction.

This assumption is justified as the dominant contribution

comes from small transferred momenta q✂k0, while the

exchange interaction generally involves large transfers

q❀kF✳k0.

To proceed with the right-hand side of Eq. ⑦5✦ we choose

the energy ❥k , the angle ✉ between vectors k and p, the
magnitude of the transferred momentum q and the trans-
ferred energy ☎ ❅satisfying ✷q✈F✱☎✱q✈F] for the new
variables,

dkdq✺
♥0qd❥kd✉dqd☎

16♣3❆q2✈F
2✷☎2

.

The angle between vectors p and q, see Fig. 1, is expressed

in these variables as cos❢✺☎/q✈F . With the help of Eq. ⑦6✦

we can write for the scattering probability w(☎ ,q)

✺2♣ sin2❢/♥0
2, in the range of interest.17 It is convenient to

eliminate the ❞ function by integrating first over the angle ✉

using the following identity, which is easy to verify,

❞�☎✷❥k✶❥k✝q✁✺
❞�✉✷2✇✁✶❞�✉ ✁

❆q2✈F
2✷☎2

.

Note that the scattering cross section w(☎ ,q)❞(☎✷❥k
✶❥k✝q)dkdq⑥dq/q has a logarithmic singularity at small

transferred momenta.

The angles of scattered particles in the direction depen-

dence of distribution function ⑦4✦ can be approximated with:

cos❛p✆q✠ cos❛p , and cos❛k✝q✠ cos❛k✺cos✟❛p✶✉★, ne-

glecting small corrections of order q/kF . The integration
over dq that follows the angle integration is very simple and
yields for the right-hand side of Eq. ⑦5✦,

FIG. 1. Electron momenta prior p, k and after p✡q, k☛q a

collision. The collision angle between incident momenta p and k is

denoted by ☞ , and the scattering angle ✌between p and q) is denoted

by ✍ . The angle between p and the direction of the temperature

gradient ✌the x axis✎ is denoted by ✏p .
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cos❛p

❪T
❪x

n⑦❥p✦
♥0✈F

d❥kd�
2♣2

n⑦❥k✦❅1✷n⑦❥p✶�✦★❅1✷n⑦❥k✷�✦★ ❅❝⑦❥ p✦✷❝⑦❥p✶�✦★ ln ❡F2
�2

✶❝⑦❥k✦✷❝⑦❥k✷�✦ ,

here the logarithmic integral has the upper cutoff at q❀kF .
Evaluating one energy integral and using the antisymmetry
property of ❝(❥p) we obtain the integral equation for this
function,

❡F❥p
T

✺ ✁❵
❵ d�
2♣ K⑦� ,❥ p✦❍ ln❋

❡F
✉�✉●❝⑦❥ p✦

✷❙ ln❋
❡F
✉�✉●✶1 ❉ ❝⑦❥p✶�✦❏ , ✂7✄

with the kernel function given by

K⑦� ,❥ p✦✺
�

e☎/T✷1

1✷n⑦❥p✶�✦
1✷n⑦❥p✦ .

The Eq. ✂7✄ can be solved by noting that the logarithms
are slowly varying functions of the frequency � compared to
the kernel K(� ,❥ p), and therefore may be assumed to be

❀ ln
❡F
T
, taken approximately as constants at the characteristic

frequency of the integral equation that is simply given by the
temperature ❀T . In addition, with the logarithmic accuracy,
one can disregard the unity compared to the large logarithm
in the second line of Eq. ✂7✄. The resulting integral equation
is of the type studied in Ref. 18 with respect to the thermal
conductivity of a 3D Fermi liquid. It is solved by Fourier
transforming integral equation ✂7✄ into the second-order dif-
ferential equation allowing an exact solution in terms of Ja-
coby polynomials. We obtain

❝⑦❥p✦✺
2❡Fcosh❋

❥p
2T

●

T2ln
❡F
T

✭
n✆0

❵ 2n✶ 5

2

❙ n✶
1

2
❉ ⑦n✶2 ✦⑦n✶1 ✦

✸
0

❵
dz

sin❋ z
❥p
T
●sinh❅♣z★

cosh2❅♣z★

✸Pn
[1,(1/2)] 1✷ 2

cosh2❅♣z★ . ✂8✄

Substituting this solution into the expression for thermal con-
ductivity ✂3✄ and evaluating first the integral over d❥p , then
over dz and finally calculating the sum over n we obtain
Eq. ✂2✄.

Note that despite the fact that the even part of the distri-
bution function is small compared to its odd part, ❝s

❀❝T/❡F , making a negligible contribution to the thermal

conductivity ❀T2/❡F2 ✝as readily seen from Eq. ✂3✄✞, the non-
zero value of ❝s is crucial for the steadiness of the obtained

solution. The presence of only the temperature gradient

makes the stationary solution of the Boltzmann equation im-

possible as the total momentum of electrons grows indefi-

nitely. To get a zero macroscopic current a small compensat-

ing electric field ✂of the order of ❀T➇T/e❡F) has to be

applied. This condition leads to another equation16 for the

even part of the distribution function ❝s . Qualitatively, the

physical picture could be understood as follows. In a relevant

experimental setup of a finite-size two-dimensional layer the

electric current starts to flow upon the application of a tem-

perature gradient. The current leads to the accumulation of

the electric charges at the contacts until the required value of

the compensating electric field is reached. The thermal con-

ductivity is then determined in a standard way from the en-

ergy flow in the absence of macroscopic current.19

The thermal conductivity of a two-dimensional electron

gas with Coulomb interaction is suppressed by the large

logarithmic factor compared to what might be expected for

the Fermi liquid. This logarithm is a signature of a pro-

nounced role played by the forward (q✟0) electron-electron

scattering. The reason for not suppressing this singularity lies

in the nonelasticity nature of the electron-electron collisions.

Because of that the energy flows (p/m)❥p f p before and after

a collision are not likely to cancel despite a smallness of the

transferred momentum q✠kF as the electron energies expe-

rience a significant change ❀T . In addition, the distribution

function of colliding electrons ✝see Eqs. ✂4,8✄✞ rapidly

changes at the same scale too. Therefore, the incident and

scattered energy flows are in general quite different, the scat-

tering becomes ‘‘more effective’’ thus suppressing heat trans-

fer, and the thermal conductivity decreases.

The experimental observation of temperature-dependence

✂2✄ is likely to be accomplished in high-quality GaAs/
AlGaAs or AlGaN/GaN heterojunctions. The typical 2D
electron densities ❀1012 cm✁2, however, correspond to the
low-density limit rs❃1. Still it would be interesting to ana-
lize possible deviations from prediction ✂2✄ that would pro-
vide further insights on the relative importance of the for-
ward and backward scattering in 2D interacting electron
systems. One should keep in mind that the phonon contribu-
tion to the thermal conductivity could easily become large
✂or even dominant✄ at low temperatures.19 The easiest way to
extract electron contribution ✂2✄ would be to control the 2D
electron density ✂and hence the Fermi energy✄ by electro-
static gating. The phonon contribution being independent of
the electron density could then be separated from the
strongly density-dependent electron contribution.
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