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ABSTRACT

We develop a method of 3-D magnetic anomaly inver­
sion based on traditional Tikhonov regularization the­
ory. We use a minimum support stabilizing functional to 
generate a sharp, focused inverse image. An iterative in­
version process is constructed in the space of weighted 
model parameters that accelerates the convergence and 
robustness of the method. The weighting functions are 
selected based on sensitivity analysis. To speed up the 
computations and to decrease the size of memory re­
quired, we use a compression technique based on cubic 
interpolation.

Our method is designed for inversion of total mag­
netic anomalies, assuming the anomalous field is caused 
by induced magnetization only. The method is applied to 
synthetic data for typical models of magnetic anomalies 
and is tested on real airborne data provided by Exxon­
Mobil Upstream Research Company.

INTRODUCTION

Interpretation of 3-D magnetic data over inhomogeneous 
geological structures is a challenging problem in exploration 
geophysics. Despite significant progress made over the last 
decade, inversion of magnetic survey data still has many prac­
tical difficulties. The major difficulty is related to theoretical 
nonuniqueness of the magnetic inverse problem. It is well 
known that there exist magnetic mass distributions generating 
zero external fields. These nonradiating masses cause equiva­
lence in inverse problem solution, which can be overcome only 
by introducing a priori information about the geological struc­
tures. Several methods have been developed for dealing with 
the nonuniqueness problem. Most of these methods are based 
on the parametric inversion, where the geometric parameters 
of the model are fixed and the parameters inverted for are the 
magnetic susceptibilities on the grid within the given geometry 
(e.g., Bhattacharyya, 1980; Rao and Babu, 1991).

Another approach to the solution of this problem was taken 
by Li and Oldenburg (1996). They applied the powerful tool 
of a general inversion method to solve the underdetermined 
problem, with the number of cells significantly larger than the 
amount of data available. Li and Oldenburg used a priori in­
formation to select the desired geological model from a class 
of possible solutions. This goal was reached by constructing a 
model objective function with appropriate weighting functions. 
The parameters of the weighting functions were selected em­
pirically, based on numerical modeling and qualitative analysis 
of typical magnetic anomalies. Note that the objective func­
tion introduced in Li and Oldenburg (1996) has the flexibility 
to construct many different models that generate practically 
the same data.

We develop an inversion method based on traditional 
Tikhonov regularization theory. The objective function (the 
Tikhonov parametric functional) consists of two terms: a mis­
fit functional and a stabilizing functional. The misfit functional 
is responsible for fitting the observed data with synthetic data 
predicted for the given model. The stabilizing functional in­
corporates information about the basic properties of the type 
of models used in the inversion. We suggest using the mini­
mum support stabilizing functional, similar to the one intro­
duced by Last and Kubic (1983), for compact 2-D inversion of 
gravity data. This functional helps generate a sharp, focused in­
verse image similar to the 3-D gravity inversion considered in 
Portniaguine and Zhdanov (1999a). The main difference be­
tween our approach and the one discussed by Last and Kubic 
(1983) is in constructing an iterative inversion process in the 
space of the weighted model parameters. The weighting func­
tions are selected based on sensitivity analysis. They provide 
equal sensitivity of the observed data to the cells located at 
different depths and at different horizontal positions. Thus, 
our weighting functions automatically introduce appropriate 
corrections for the vertical and horizontal distribution of the 
anomalous susceptibility. This is one of the main differences 
between our approach and the one developed by Li and 
Oldenburg (1996).

Another difficulty in magnetic inverse problems is related 
to the enormous areal coverage of modern magnetic surveys.
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especially in airborne magnetic exploration. Processing a large 
amount ol' data collected in an airborne survey requires access 
to a huge data tile stored on a hard drive, which slows the in­
version process. To speed the computations and to decrease 
the amount of memory required, we use the compression tech­
nique we outlined earlier in Portniaguine and Zhdanov (1999b) 
and Portniaguine (1999). We now consider a method with a 
higher compression factor, based on using cubic polynomials 
in the compression algorithm.

Our inversion method is designed to invert any component 
of the anomalous magnetic field, including the total magnetic 
anomaly, under the assumption that the anomalous (ield is 
caused by induced magnetization only.

The code is applied to synthetic data for typical models of 
magnetic anomalies. It is also tested on real airborne magnetic 
data, provided by ExxonMobil Upstream Research Company.

FO RW A R D  M O D ELIN G  O F M A G N ETIC A N O M A LIES

We divide the lower hall'-space into small rectangular cells, 
each tilled by magnetic masses with intensity of magnetization 
I(r), which is given as a product of the magnetic susceptibility 
x(r), the strength of the inducing geomagnetic (ield Hn, and its 
direction, given by a vector 1 of unit length.

We denote the coordinates of the cell center as 
rk = (xk, yk, zk), where k = 1 , . . . ,  Nm, and the cell sides as dx,  
dy, dz. Also, we have a discrete number of observation points 
t'n = (x'n, y'n, 0), where n = l , . . . ,  Nd. The field at point n from a 

k
fnk) is equal to

0 1" 3(1 • r )2 1 "| d x d y  dz
-  I (I)

where r = — rk is the vector between the observation point 
and the cell center. The magnetized small cubic cell is approx­
imated by a dipole located at its center.

The discrete forward modeling operator for total (ield mag­
netic anomalies produced by the arbitrary distribution of sus­
ceptibility can be expressed in matrix notation as

Fin (2)

Here, m is a vector of model parameters (each component of 
that vector is the magnetic susceptibility x of the corresponding

Nm
Nd Nd Nm
the corresponding magnetic field kernels [equation (1)].

C O M PR ESSIO N  IN SOLVIN G IN V ER SE  P R O B L E M S

Expression (2) becomes a matrix equation if the data d are 
given and m is unknown. The matrix F of equation (2) is a 
full matrix. In the 3-D case, the size of F is large. To store 
it efficiently, we represent it as a product of sparse matrices. 
This also speeds the algorithm as a result of the use of sparse 
arithmetic.

Nd
Nm

applying compression to the model side of F. That produces 
incomplete factorization of F:

where f  denotes matrix transposition, Fmc is a compressed ma­
trix of the forward operator,

(4)threshold{py^Tmc,e) ,

and Wmc and Wm3 are the model compression and restoration
Nm Nm

g is a threshold level (in percent) that determines the accuracy 
of restoration. In actual applications, we set 6 equal to the noise 
level in the data.

Substituting equation (3) into equation (2), we obtain

fmc m3 (5)

Formula (5) provides the compressed form of the inverse prob­
lem equation.

The greater the amount of information under compression, 
the higher the compression factor, which is determined as a ra­
tio of the total number of elements of the matrix to the number 
of nonzero elements. Model side compression not only allows 
the use of a fine model grid in the lateral direction (without 
running out of memory to store a huge full matrix), but it also 
makes it possible to use regular small cells at every depth in 
the model. This significantly simplifies optimal mesh genera­
tion and also streamlines handling and representing the results. 
The basic principles of the compression technique are outlined 
in Appendices A and B.

R E G U L A R IZ E D  SO LU TIO N  O F TH E  M A G N ETIC IN V ER SE  
P R O B L E M  IN T IIE  C O M P R E SSE D  FO RM

In this section we apply the conjugate gradient method for 
solving a 3-D magnetic inverse problem. We first describe 
the conventional conjugate gradient method. Remarkably, this 
method is very versatile. Applied to an overdetermined linear 
problem, the conjugate gradient method produces the least- 
squares solution. Applied to an underdetermined linear prob­
lem, the method converges to the minimum norm solution. We 
also demonstrate that the linear problem with Tikhonov reg­
ularization can be reformulated easily as a conjugate gradient 
for the overdetermined problem. In this approach, the reg­
ularization parameter must be chosen iteratively. Finally, we 
consider the basic principles of focusing inversion and intro­
duce a reweighted optimization algorithm for a stable focusing 
solution of the magnetic inverse problem.

Conjugate gradient method for linear inverse problem solution

The solution of compressed inverse problem (5) is found 
iteratively according to the following formulas (Fletcher, 1981):

fmc m3 (3)

Compressed version Uncompressed version

II m3 m
f

ci i T* {a) li =  F ^ i_ ! h

Si= l,f li b
h; =  I,- +  h i- i jp j c

fi =  tmc(V/ f A*i) 
t f t i

i _

d

e

fi =  Fhi ( 0

i 1
mi =  mi_i -  kihi f
i i k i i g

(6)

Downloaded 26 May 2010 to 155.97.11.183. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

http://segdl.org/


1534 Portniaguine and Zhdanov

where i is the iteration number, r is the residual vector, 1 is 
the gradient vector, s is its length, h is the conjugate direction 
vcctor in the spacc of models, f is its projection in the space of 
data, and k is the step length, a scalar. The starting values (for 
i

mo =  0 (a)

r0 =  Fm0 — d =  —d (b) . 
So =  1 (c)

(7)

Note that in equation (6) the matrix-to-vector multiplica­
tions in items (a) and (d) take the most computer time. An 
uncompressed version of the algorithm is produced by sub­
stituting items (h) and (i) for (a) and (d), respectively. Two 
sparse multiplications in (a) and (d) are much faster than one 
multiplication by a full matrix in (i) and (h). That is why the 
compression method speeds up the algorithm.

If the number of parameters in vector m, which we denote 
as Nm, is not equal to the number of data points in vector d (de­
noted as Nd), then F is rectangular. Interestingly, the conjugate 
gradient method can be applied even in this case.

For an underdetermined problem (where Nm> Nd), the con­
jugate gradient iterations (6) converge to the minimum norm 
solution mmi„:

: F r (FFr )-1d. (8)

Expression (8) is also known as the Riesz representation for­
mula (Parker, 1994).

Regularized conjugate gradient method

The original magnetic inverse problem and its reformulation 
in the compressed form [equation (5)] are ill posed because of 
the nonuniqueness and instability of the solution. The con­
ventional way of solving ill-posed inverse problems, accord­
ing to the regularization theory (Tikhonov and Arsenin, 1977; 
Zhdanov, 2002), is based on the minimization of the Tikhonov 
parametric functional, _P“(m):

P“(m) I I F i n  -  d l l - a m (9)

where ||Fm — d||2 is a misfit functional between theoretical val­
ues Fm and the observed data d, ||m||2 is a minimum norm 
stabilizing functional, and a is a regularization parameter.

The problem of parametric functional minimization.

P “(m) mm. (10)

can be reformulated to apply formula (6). Consider the linear 
inverse problem:

s/aI
in

0
(ID

where I is the unit matrix. Two matrices in square brackets 
denote a single matrix created by appending the two:

y/al
(12)

For example, vector di is created from vector d by appending 
a zero vector 0 to its tail. Matrix Ai is created by appending a 
diagonal matrix (with s/a on the main diagonal) to matrix F.

Equation (11) is the result of adding extra equations to the 
original equation (2). The number of existing equations in the 

Nd
Nm

Nm Nd
Nm

termined system, the conjugate gradient method converges to 
the least-squares solution. This is equivalent to the minimiza­
tion of the parametric functional expressed in combined matrix 
notations:

IIAiin — di mm. (13)

Reformulating equation (9) as equation (13) and applying 
formula (6) to the minimization of formula (13), we arrive 
at the conventional regularized conjugate gradient method 
(Zhdanov, 2002).

To select an optimal regularization parameter a, we use the 
Tikhonov method. First, a is set to balance the contribution of 
a misfit and a stabilizer after the first iteration of a conjugate 
gradient method:

mi =  kiFT d, —d — kiFmi
mi

(14)

The subsequent iterative values are determined by decreasing 
a to one-half of its previous value (Tikhonov and Arsenin, 
1977):

ai
^+1 -  y -

The process stops when the value of the misfit functional de­
creases below the noise level in the data tf>:

i

Method of reweighted optimization

In our previous paper (Portniaguine and Zhdanov, 1999a) we 
introduced a minimum support stabilizing functional sMS(m) 
to generate a sharp, focused inverse gravity problem solution, 
similar to the one developed by Last and Kubik (1983):

SMS (15)

where fS > 0 is a small positive number.
Substituting the minimum norm stabilizing functional in for­

mula (9) by formula (15), we obtain

P “(m) ||Fm -  d|| ' E
k

m
m p 2

mm. (16)

where fS is a small number needed to avoid the singularity when 
mk = 0. Thus, the focusing inversion is reduced to the solution 
of the minimization problem (16). The problem is solved using 
reweighted optimization (O'Leary, 1990).

To account for the different sensitivities of the data to the 
model parameters, we have to use an additional weighting ma­

m
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Magnetic Inversion and Compression 1535

Portniaguine and Zhdanov (1999a) have shown that the matrix 
Wm with this property can be determined as the square root of 
the integrated sensitivity matrix:

Wm =  VI, (17)

where S is a diagonal matrix formed by the integrated sensitiv­
ities of d to the parameter mk, determined as the ratio

* = £ J  = y p w -  <*>>
In formula (18), Fik are the elements of the forward modeling

m
by {«>i, «>2, «iWm}-

Let us consider the minimization problem with the minimum
k

Nm 2 2
P “(m )=  | |F m -d ||2 + a  =  min. (19)

t t mi + P 2

We introduce an iterative weighting matrix as follows:

m

where diag[m2 + /J2!] is a diagonal matrix formed by the ele- 
mk

Now we can reformulate problem (19) using matrix notation: 

P

=  min.  (2 1 )

We transform problem (21) into a space of weighted model 
parameters m„ by replacing the variables:

in =  W(m)m,„, F„, =  FW(m). (22)

Substituting equation (22) in expression (21), we tind

P a( mw) =  ||Fu,mtt, — d||2 +  cf||inu,||2 =  min.  (23)

Problem (23) seems to be completely similar to the classi­
cal minimum norm optimization problem (9) with only one 
important difference: the new forward modeling operator, 
F,,.. =  FW(m), depends on m,,.., so it changes in the iteration 
process.

We can solve problem (23) using the reweighting algorithm, 
where a minimization problem for m„ is solved in each step 
with tixed F„. using the regularized conjugate gradient algo­
rithm, described above. Then, m and F„. are updated using 
equation (22) and W(ni) is updated using equation (20), where 
m is the inversion result in the previous step. This algorithm 
generates a set of equivalent solutions of the inverse prob­
lem which tit the data with the same accuracy. The different 
models within this set have different degrees of focusing. The 
model after the tirst iteration is actually a maximum smooth­
ness solution. The process continues until the required degree 
of focusing is reached.

To conclude this section, we should note that the reweighted 
optimization technique has been considered in several ear­
lier publications (Last and Kubic, 1983; Wolke and Schwetlick, 
1988: O’Leary, 1990: Farquharson and Oldenburg, 1998). The 
most significant difticulty in the numerical implementation of 
this technique is related to selecting the parameter /J, because

for very small values of fi the problem has a singularity where 
mi

is different in the way the weighting is introduced in the opti­
mization process. The most significant practical advantage of 
our approach is that the final set of equations, (22) and (23), 
involves only W(ni) and not the inverse, W- 1(m). In this case, 
according to equation (20), we can assume that fi = 0 without 
generating any singularity:

m m

This idea is similar to the one considered by Gorodnitsky and 
Rao (1997). They have also found that the reweighting equa­
tion (22) focuses the image.

Also note that our algorithm includes constraints on ma­
terial properties, implemented via a penalization algorithm 
(Portniaguine and Zhdanov, 1999a).

Assume that the geological model can be described as a com­
posite of two materials with known physical properties (for 
example, magnetic susceptibility). One material corresponds 
to the homogeneous background: the other characterizes the 
anomalous body. In this situation, the values of the material 
property in the inversion image can be equal to the background 
value or to the anomalous value. However, the geometric dis­
tribution of these values is unknown. Numerical tests show that 
focusing tends to produce the smallest possible anomalous do­

m
of this domain tend to be equal to the background values mb. 
We can impose the upper bound for the positive anomalous 
parameter values ma and, during the iterative process, cut off 
all values above this bound. This algorithm can be described as

m — m b = m a, if m — m b > m a,
(25)

m — m b =  0 , if m — m b < 0 .

Thus, according to formula (25), the material property values 
m

m b < m < m b + m a.

A similar rule is applied in the case of negative anomalous 
parameter values.

In summary, the whole algorithm of 3-D magnetic focusing 
inversion with compression consists of the following steps:

1) precomputing the compressed matrix Fmc using formula
(3).

2) calculating the sensitivity weights according to equation 
(17), and

3) using an iterative focusing inversion, which consist of 
(a) inversion of data via the conjugate gradient method 
according to formulas (6), (b) changing weights accord­
ing to equation (24), and (c) performing penalization of 
material property distribution, as described above.

MODEL STUDY

We tested our method on typical models of magnetic anoma­
lies. We considered three models similar to those discussed by 
Li and Oldenburg (1996): (1) a cube with anomalous mag­
netic susceptibility (Figure la), (2) a 3-D magnetic susceptibil­
ity model of a dipping slab (Figure lb), and (3) a 3-D magnetic 
susceptibility model of a faulted slab (Figure lc).
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1536 Portniaguine and Zhdanov

For all three models we used a coordinate system where the 
x-m s is directed toward geographic north, the j-axis points 
to geographic west, and the z-axis is directed downward. The 
data at the surface are measured on a 20 x 20 grid in the x -and 
j-directions, with sampling intervals of 50 m in both directions.

The model grid used in the inversion consists of cubic cells 
of 50 x 50 x 50 m \ In the lateral direction, it covers the area 
of the data grid and extends down to 500 m in the vertical 
direction. The number of cells in the model grid is 20 x 20 x 10 
(4000 cells).

Li and Oldenburg (1996) have noticed the instability of 3-D 
magnetic inversion to the uppermost layer of the cells. They

proposed to cure that by inverting the data obtained by upward 
analytical continuation to a height equal to the length of the 
side of the cubic cell. We followed the same strategy.

The data for models 1,2, and 3 are displayed in Figures 1 d-f, 
respectively. These pictures represent the total field anomaly 
at the observation surface. However, for inversion we used 
the data at a height of 50 m (equal to the length of the cell 
side). The data were contaminated by Gaussian noise, whose 
standard deviation was equal to 2 % of the data magnitude 
plus 1 nT. The strength of the inducing field for each model 
was 50000 nT. The polarization of the inducing field differed 
from one model to another.
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Fig. 1. (a) Model of a cube with anomalous magnetic susceptibility, (b) Model of a dipping slab. The slab strike direction points to 
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each slab and is equal to 0.06 SI units, (d-f) Data for cube, dipping slab, and faulted dipping slab models, respectively. Gaussian 
noise with a standard deviation of 2% of data magnitude plus 1 nT was added to the data.
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We applied smooth inversion and focused inversion for cach 
model. The sensitivity matrix was stored in comprcsscd form, 
using the compression algorithm based on the cubic interpola­
tion pyramid. The compression factor for all three models was 
22%.'

The first model is a cubc with a side of 200 m. The top of the 
cubc is buried at a depth of 150 m. Figure 1a shows the slicc of 
the cube through the x = 500 m profile. The anomalous suscep­
tibility is uniform within the cubc and is equal to 0.06 SI units. 
The inducing field has a strength of50 000 nT and vertical polar­
ization (inclination I = 90° and declination D = 0°). Figure Id 
shows a map of the synthetic observed data for this model. 
Figure 2a presents the result of the smooth inversion, and 
Figure 2d demonstrates the result of the focusing inversion.

The smooth inversion generates a diffused image of a cube, 
while the focusing inversion produces a sharp, clear image of 
the magnetic target. For this model the initial value of regular­
ization parameter a was 0.3, and the final value of a was 0.0094.

The second model is a 3-D magnetic susceptibility model of 
a dipping slab. Figure 1 b shows the slice of the slab through the 
x

x x
tibility is uniform within the slab and is equal to 0.06 SI units.

I
D
model. Figures 2b and 2e present the results of the smooth and 
focusing inversions, respectively. The smooth image provides 
some information about the location and inclination of the slab.
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Fig. 2. Results of smooth inversion for (a) cube, (b) dipping slab, and (c) faulted dipping slab. Results of focusing inversion for
(d) cube, (e) dipping slab, and (f) faulted dipping slab.
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1538 Portniaguine and Zhdanov

but the image is diffused and unfocused, while the focusing in­
version reconstructs very well the original model of the slab. 

The third model is a slab with a normal fault. Figure lc shows
x

ists at y =  500 m. The inducing field has a strength of 50 000 nT, 
I = 45°, and D = 45°. Figure If shows the total field data for this 
model. Figures 2c and 2f present the results of the smooth and 
focusing inversions, respectively. The fault is vaguely visible in 
the smooth image, while it is clearly recognized in the sharp 
image.

The performance of the compression method was tested us­
ing model 1, shown in Figure la. On a computer with 200 MHz 
processor speed and 256 Mbytes of memory, we solved five 
problems with models of different sizes: Nx, Ny, Nz =20 x 20 x 
10,25 x 25 x 12,30 x 30 x 15,35 x 35 x 17, and 40 x 40 x 20. In 
each case, data dimensions were changed proportionally to the
Nx Ny
are shown in Figure 3. Figure 3a shows timing, while Figure 3b 
shows memory consumption. The Dashed and solid lines show 
the performance of the uncompressed and compressed ver­
sions, respectively. For the uncompressed version, we used 
matrices with full storage memory organization to preserve 
efficiency. The size of the problem is referred to the number of 

x
proportionally for the five considered cases.

a)

b)

Fig. 3. (a) Increased speed and (b) memory savings because 
of compression. Compressed version performance is shown by 
the solid line. Uncompressed version performance is shown by 
the dashed line. Calculations are performed for test model 1, 
shown in Figure la.

For cases where the dimensions are small, the uncompressed 
problem has the same speed as the compressed one. That hap­
pens because the compressed problem has overhead to fill 
out the compressed matrix. As the dimension increases, the 
compressed version performs much better. For the last case,

Nx
memory (256 Mbytes); therefore, its execution time increases 
dramatically.

INVERSION OF REAL DATA

We applied the developed code to interpret airborne mag­
netic data collected for ExxonMobil Upstream Research Com­
pany over an area in northern Canada. Figure 4a presents the 
map of the observed total magnetic field. The flight line spacing 
was about 300 m, and the flight elevation was about 100 m. The 
measurements were taken approximately every 16 m along the 
lines. In our inversion study, we assumed that the direction of 
the inducing magnetic field was close to vertical, since the ob­
servation area was in northern Canada. The basement (granite) 
is buried at a depth of about 450 m and is covered by sediments 
formed by till and sand layers. The goal of the interpretation 
was to locate the magnetization zones in the upper parts of the 
section, which manifest themselves as the magnetic anomalies.

In the first stage of interpretation, we divided the observed 
total magnetic field into regional and residual anomalies. This 
problem can be solved using polynomial approximation of the 
regional anomalies. One can use the inversion program to sep­
arate the field as well, as described below.

The lower half-space below the observation area was divided 
into l x l x l  km’ cells to a depth of 20 km. Applying our 3-D 
inversion code, we obtained the distribution of the magnetic 
susceptibility within these cells. We determined the regional 
magnetic anomaly by applying the forward modeling code to 
the cells located only at depths between 4 and 20 km. The 
residual field was obtained by subtracting the regional part 
from the observed data.

In the next stage of interpretation, we divided the residual 
field into subregional and local anomalies. We introduced anew 
mesh at depths from 0 to 4 km, formed by cubic cells measuring 
400 x 400 x 400 rrr\ The distribution of the magnetic suscep­
tibility within this mesh was found by 3-D inversion. The sub­
regional field was computed as the effect of the cells at depths 
from 1.6-4 km. This field was subtracted from the residual field 
to calculate the corresponding local anomalies (Figure 4b).

In the last round of the inversion, we applied the 3-D in­
version code to the local anomalies only, using a mesh formed 
by cubic cells measuring 300 x 300 x 300 m ’ located at depths 
from 0 to 1.5 km. In this stage we used two types of inversion: 
(1) the conventional maximum smoothness inversion and (2) 
the focusing inversion.

Figure 4c shows the result of the smooth inversion. It pres­
ents a horizontal slice of the anomalous magnetic susceptibility 
distribution at a depth of 800 m. The result of the focusing 
inversion is shown in Figure 4d.

We can clearly see the lateral shape and extent of the mag­
netized rock formations in these figures. However, the smooth 
solution produces a diffused image of the magnetic targets, 
while the focused solution provides a much clearer and sharper 
image.
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Fig. 4. (a) Airborne magnetic data, (b) Local anomalies, (c) Smooth inversion result, slice at 800 m depth. The color scale shows 
the anomalous susceptibility in SI units, (d) Focused inversion result, slice at 800 m depth.
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APPENDIX A 
COMPRESSION IN ONE DIMENSION

To understand how to represent a full matrix as a product of 
sparse m atrices, let us consider the compression of a full vector. 
The full matrix can be viewed as a collection of its columns (or 
rows), which are vectors.

Before we go to the complicated 3-D case, let us consider a 
simple 1-D vector d. As an illustration. Figure A-la, shows a 
smooth function, given as a vector of 17 values.

Let us retain the even values of d in vector de, which has 
zeroes in place of the odd values. Vector d0 retains the odd 
values of d and has zeroes in place of the even values:

d = d e (A -l)

Vectors de and d0 are connected to d via diagonal matrices We 
and W„:

W„d, (A-2)

(A-3)

The main diagonal of We has ones for even indices and zeroes 
for odd indices. The diagonal of Wo has ones for odd indices 
and zeroes for even indices. Based on that definition, one can 
easily establish the following properties of We and Wo:

W„ +  We =  I, W„W„ =  W„, We We

0,

We

(A-4)

where 1 is the identity matrix.
i

even nodes from values at odd nodes only using cubic polyno- 
i

i

Wi =  WeWiW0 (A-5)

One round of compression transformation consists of (1) 
predicting even node values, (2) subtracting true even values 
from those predicted, and (3) retaining odd node values as is. 
The result of this tranformation is illustrated in Figure A-lb. 
This transformation can be expressed in matrix notation as

del =  W d 0 -  de +  d0,

where drf is the transformed data. Taking into account equa­
tions (A-2), (A-3), and (A-5), we obtain

del =  WeWiW0d — ^ d  +  W0d =  dd =  WBd, 

where

W„ =  WeWW0 — We +  W0. (A-6)

We call Wn an elementary compression matrix. Note that W„ 
is inverse to itself because of equations (A-4) and (A-5):

WBWB =  (WeWiWo — We +  W0)(WeW,-W0 -  We +  W0)

-W e+W „

We +  W0 =  I. (A-7)

In the next round of compression transformation, we use 
data that is twice as coarse. Such successive transformations are 
called interpolation pyramids. One compression round is called 
an elementary compression level. The elementary compression 
matrices for level n are denoted above as Wn. For the first 
level, for example, it is Wi; for the second level it is W ;̂ etc. 
Figures A-lc and A-ld show the results of compression through 
the second and third levels.

a) e)

b)

c) g)

d) h)

Fig. A-l. Compression with interpolation pyramid for a 1-D 
vector, (a) Original vector of 17 values, (b, c) Intermediate 
compression levels, (d) Compressed vector, (e) Restored vec­
tor, solid line: original vector, dots, (f, g) Intermediate restora­
tion results, (h) Thresholded and sparsified vector; only three 
values are retained.

WeWiW0 WeWiW0

o

o

e e

f)

e o o e
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Combining N  levels together, we arrive at the full compres­
sion transformation:

dc = W N ,.. . ,W 2W id= W cd, (A-8)

c

c N

Figure A-la shows the original vector d, a smooth function 
of 17 values. The result of the compression transformation is 
shown in Figure A-ld. Note that cubic interpolation predicts 
the intermediate values of the smooth function very well, and

c
predictions and the actual values. Therefore, only a few values

c
c

c c

The inverse operation, restoration, is described by the same 
matrices Wn applied in the reverse [order from property 
<A-7)1:

d = W 1,...,W N -iW N d c= W rdc, (A-ll)

where Wr is a restoration matrix:

Wr = W i, . . . ,W N_iWN. (A-12)

c
mum, which contains only three nonzero values and therefore 
is sparse. Figures A-lf and A-lg illustrate the restoration pro­
cess. Figure A-le shows the restored vector as a solid line; the 
original vector is shown by dots.

APPENDIX B
FACTORIZATION OF MATRICES FOR 3-D COMPRESSION

When solving 3-D magnetic inverse problems, we have to 
handle model parameters and data in three dimensions. In this 
section we discuss how the basic principles of 1-D compression 
can be generalized to the 3-D case.

Consider, for example, a two-level interpolation pyramid ap­
plied to a 3-D function depending on three Cartesian coordi­
nates (x, y, z). The compression matrix Wc is the product of six 
elementary compression matrices:

Wc =  WzsWysWxsWziWyiWxi, (B-l)

where the indices x, y z  denote the axis along which a particular 
matrix is applied and the numerical indices 1, 2 denote the 
pyramid level.

In the case of 1-D linear compression, we interpolate a func­
tion using a two-point scheme. The first-level matrix Wxi has

c
a 1-D compression matrix in the x-direction if

Wzl =  Wyl =  Wz2 =  Wy2 =  !.

In 1-D finite-difference cubic interpolation, for example, the 
scheme is four point and Wxi has four off-diagonal elements.

c
x y

obtained if Wzi = Wz2 = f. The compression matrix at the first 
pyramid level is equal to Wy|WXf  In 2-D bilinear interpola­
tion, the scheme is four point; in 2-D finite-difference cubic 
interpolation, the scheme is 16 point.

For 3-D interpolation, the compression matrix at the first 
pyramid level is a product of all three elementary matrices 

x y z

Wc =  WziWyiWxi. (B-2)

The interpolation scheme is eight point for trilinear interpola­
tion and 64 point for tricubic interpolation.

The compression matrices tend to be less and less sparse 
with growth of the dimension and in the complexity of the 
interpolating function. This effect can be countered by storing

c
in equation (B-l), without computing their product.

Further, we notice that the structure of the elementary com­
pression matrices is such that at higher pyramid levels only 
a few points are reduced. The other points are passed without 
a change, being already reduced on lower levels. For example, a 
volume of 64 x 64 x 64 points has six pyramid levels, and there

x y z
c

product of 18 matrices. For the last several levels, these matrices 
contain few off-diagonal elements (because the last reduction 
levels are coarse). On the main diagonal, the elements mostly 
equal 1. We may therefore further reduce the amount of stor­
age by keeping the elementary matrices with the main diagonal 
subtracted:

x

y

w 3 =  Wzi -  i,
(B-3)

x

y

z

Storing matrices Wi, Wi, etc., requires less storage than storing
x y
Now the compression procedure of a vector d can be de­

scribed by the recursive formula

dn+l =  Wndn +dn,  (B-4)

where n changes from 1 to a number of elementary matrices in 
the factorization. The restoration is described by formula (B-4) 
applied in the reverse order:

An =  WBdB+i +  dB+i, (B-5)

n
The use of formulas (B-4) and (B-5) saves space and execution 
time because the vector under transformation is not multiplied 
by i, which would have been the case if we had used matrices

x y
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