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We performed 79Br nuclear-quadrupole-resonance (NQR) line-shape and spin-lattice relaxation 
time measurements in the incommensurate (D system j£?-ThBr4 over the temperature range 293-2.5 
K. In addition, we extended the theory of the effects of Raman processes on amplitudon and 
phason spin-lattice relaxation in incommensurate systems by obtaining general expressions for the 
spectral densities and phason gap Â  that are valid at all temperatures in the I  phase. By measuring 
Ti selectively for the different parts of the broadened NQR line in /3-ThBr4, we separately obtained 
the phason and amplitudon contributions, 7^ and TXAy respectively. A comparison between 
theory and the experimental data shows excellent agreement and demonstrates that spin-lattice re
laxation in /?-ThBr4 is dominated by Raman processes. The phason gap Â  was determined to be
0.072+0.020 THz.

I. INTRODUCTION

In recent years considerable interest has developed in 
studying incommensurate (I) systems. Many techniques 
[neutron diffraction,1 light-scattering2 and infrared3 
spectroscopy, nuclear magnetic resonance (NMR),4,5 
electron paramagnetic resonance (EPR) (Ref. 4 and 5), 
and nuclear quadrupole resonance (NQR) (Refs. 4 and 5)] 
have been successfully employed.

The incommensurate modulation wave is characterized 
by two excitation modes: (1) amplitudons, describing 
fluctuations in the amplitude of the wave, and (2) 
phasons, describing fluctuations in its phase. Even 
though amplitudon excitations are characterized by a 
nonzero energy at zero-reduced wave vector (A: =0), 
phasons should be gapless since they represent sliding of 
the modulation wave.6 However, in actual systems 
phasons are not usually gapless, but are characterized by 
an energy gap believed to arise from pinning of the 
modulation wave by imperfections.4 Even though 
scattering techniques (neutron diffraction, Raman 
scattering) have been widely used in determining the am
plitudon gap A A, they are less effective in phason gap Â  
determination, because they have difficulty in observing 
frequencies that are smaller than the damping coefficient
r .

In contrast, NMR, NQR, and EPR have been particu
larly useful in studying both the amplitudon and phason 
properties of /  systems. The usefulness of NQR, in par
ticular, is due to the fact that the I  modulation wave 
directly affects the electric-field-gradient (EFG) tensor 
through the nuclear displacements. The static parts of 
the EFG tensor are responsible for line broadening while 
the fluctuating parts of the EFG induce spin-lattice relax
ation. By exciting selectively different parts of the NQR 
line and measuring the corresponding spin-lattice relaxa
tion times T Xy the phason and amplitudon contributions 
to the spin-lattice relaxation rate4,5,7 can be determined 
separately.
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At the present time, the A 2B X  4 systems (e.g., 
Rb2ZnCl4, Rb2ZnBr4, etc.) have been intensely studied 
with magnetic resonance techniques. Both NQR and 
NMR (Refs. 8 and 9) have recently been employed to 
determine separately the amplitudon and phason contri
butions to the spin-lattice relaxation as well as the phason 
gap. To the best of our knowledge, both the phason and 
amplitudon relaxation properties are dominated by direct 
phonon processes in the I  systems studied by magnetic 
resonance up to now. In this paper we report the first 
magnetic resonance observations of amplitudon and 
phason relaxation by Raman processes in an incommens
urate phase (/?-ThBr4).

The paraelectric-incommensurate phase transition at 
Tj  =95 K in /?-ThBr4 was first observed independently by 
NQR (Ref. 10) and optical spectroscopy.11 The incom
mensurate modulation is characterized by a displacement 
of the bromide ions, while the thorium ions remain at 
their high-temperature paraelectric-phase lattice sites.12 
As a result, an NQR study of bromide nuclei allows 
direct observation of the incommensurate modulation in 
/?-ThBr4.

In this paper, we report pure NQR line shape (includ
ing thermal fluctuation effects) and T x measurements of 
79Br in /?-ThBr4 powder in the /  phase over the tempera
ture range 95 K down to 2.5 K. Also, we extended the 
theory of the effects of Raman processes on the spin- 
lattice relaxation by obtaining general expressions for the 
phason gap A  ̂ and for the spectral densities valid for all 
temperatures in the I  phase.

* %

II. EXPERIMENTAL DETAILS

The powder sample used in the experiments was ob
tained from Anderson Physics Laboratory, Urbana, Illi
nois. The nominal purity is 99.9% and it is reported to 
be free of oxides and oxyhalides (<  700 ppm H20  and 
OH~, as measured by the coulometric Karl Fischer titra-
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tion method). The powder sample was sealed in a quartz 
ampoule in an inert atmosphere, and was not opened 
after shipment to our lab, thereby guaranteeing no mois
ture contamination. Because of strong quadrupolar 
broadening we used the Hahn echo13 sequence in which 
we selectively excited only a small portion of the NQR 
line using rf pulses of relatively long duration.

Low temperatures were obtained by the helium flow 
method. The temperature controller (Lake-Shore) uses 
one sensor to control heating of the flowing helium and 
another sensor to read out the temperature near the sam
ple. The temperature variation was typically ^ 0.10 K, 
during each measurement. Temperatures between 2.5 
and 4 K were achieved by pumping on the liquid helium 
in the sample spaces.

III. LINE SHAPE MEASUREMENTS

In general, NMR or NQR line shapes of I  systems are 
quasicontinuous in nature because the incommensurate 
modulation disturbs the translational lattice periodicity 
resulting in a large number of nonequivalent individual 
nuclear displacements. This essentially infinite number of 
nonequivalent nuclei significantly broadens the NQR 
lines.

Blinc4,5 and co-workers calculated the resonance line 
shape for two models: local and nonlocal. The former 
states that the NQR frequency v (x i ) of a given nucleus 
depends only on the displacement of this ith nucleus. In 
one-dimensional (ID) modulated systems, the relation be
tween v and the displacement yields

r(x) =  V0 +  V] cos[cp(x) +  (p0]

Jr v 2 oos1[(p(x)Jrcp0] +  * * * , (1)

where Vj is proportional to the j th  power of the ampli
tude of the modulation wave. In the more general nonlo
cal treatment, effects due to the displacements of all the 
nuclei are included. As a result, nonlocal effects will give 
rise to different phase angles for the different terms in the 
expression for the NQR frequency:

v{x)  =  v 0-\~vl cos[^(x) +  <̂ 1]

-f-V2 +  V2COS2[cp(x)-\-(p2]^r • • * , (2)

where v0 corresponds to the high-temperature normal- 
phase NQR frequency. v x is proportional to the linear 
term of the modulation wave amplitude [ oc ( Tj - T f ]  
and v2 (and v'2) are proportional to the quadratic terms.4,5 
The critical exponent is determined by several different 
experimental methods1 to be ( 3 ~ 0 . 315 in /?-ThBr4.

For /?-ThBr4, the bromide atoms are located in planes 
of symmetry, so that the linear term (as well as higher- 
order odd terms) in Eq. (1) or (2) are absent. Thus, Eq. 
(1) or (2) reduces to a quadratic expression

v( X ) =  v0 +  v 2cos2cp( X ) -f O (v4) 

in the local approximation, and

v(a:) =  v0 + v 2 + v 2 cos2cp(x)-\~0 (v4)

(3)

(4)

for the nonlocal case. Obviously, if we can ignore the 
higher-order terms, v2 will be the only term reflecting 
nonlocal effects. Hence, if most parts of the nonlocal 
EFG tensor are canceled out due to lattice symmetry, the 
only effect of the remaining nonlocal term is to shift the 
whole line by an extra temperature-dependent factor v2.

In the plane-wave approximation, where cp{x) is linear 
in x, which is valid throughout part of the I  phase except 
at temperatures very close to the incommensurate- 
commensurate (/-O  transition Tc , the observed NQR 
frequency distribution is given by5

/< v ) = const
[(v v'j V0)(V2 +  'V2 +  V0 v)] 1 / 2

(5)

for the nonlocal case. As a result, the NQR spectrum 
will exhibit two edge singularities, at

v _ = v 0 +  v2

and (6)

v + V0 +  Vo +  Vo

By comparing Eq. (6) to Eq. (4) we see that v_ corre
sponds to cos(p(x) =  0 and v + to cos<p(.x) =  ± l .

Figure 1 shows the NQR frequency measured as a 
function of temperature from 300 K down to 2.5 K. The 
splitting frequencies below Tj  « 9 5  K in Fig. 1 are very 
close to those reported by Malek and co-workers,10 who 
also observed NQR splittings in the I  phase down to 
about 65 K. The quantities v2 and v2 can be obtained 
from the experimental values for v + and v_ since, from 
Eq. (6),

v.

and (7)

Vo —V. Vi0

The paraelectric-phase NQR frequency v0 has linear tem
perature dependence with a negative slope of magnitude 
d v 0/ d T =  0.65 kH z/K, as determined from the data 
above Tj  in Fig. 1. Extrapolating this slope into the I  
phase, we can obtain “experimental” values for v2 and v2, 
using Eq. (7). Since v2 and v2 are proportional to the 
square of the modulation wave amplitude, they are de
scribed by the expressions

v ^ A l T ' - T l P

and (8)

v ' 2 = B ( T j - T )2/J

A fit to our experimental data, using ( 3 = 0 . 315, yields 
A = (4 3 .9± 2 .5 ) kH z/K 20 and B = (5 .8 3 + 1 .0 ) kH z/K 2̂ . 
We thus see that B , which is a measure of the nonlocal 
effects, is only slightly more than 10% A.  This relative 
unimportance of nonlocal effects can be understood quali
tatively, since the I  modulate wave displaces only the 
Br~ ions in /?-ThBr4, as discussed in Sec. I. The solid 
curves in Fig. 1 are obtained from Eq. (8) using the exper
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FIG. 1. Temperature dependence of NQR frequency v Q. Below Tly the two sets of data are the frequencies of the singularities at
v + — v0 +  v2 +  v2 and v_ =  v0 +  v\. '

imentally determined values for the fitting parameters A 
and B.

The excellent agreement between theory and experi
ment observed in temperature regions far from the vicini
ty of Tj is consistent with neutron scattering and other 
results14 showing that /3 is nearly a constant in the whole
I  phase. Furthermore, the line at 4.2 K is still a continu
ous inhomogeneous line with only two singularities (Fig. 
2), characteristic of a typical I  phase NQR frequency dis
tribution.5 The absence of any discrete multisoliton lines 
indicates that we are not seeing any evidence of a nearby 
transition to a commensurate phase down to 2.5 K. The 
small deviation from the theoretical curve of the low- 
temperature data below 10 K may very well be due to a 
slight change in lattice parameter with decreasing tem
perature.

IV. THERMAL FLUCTUATIONS NEAR Tj

At temperatures immediately below the P-I  transition 
at Tj =  95 K, there is a small discrepancy between the 
measured singularity positions v+ ,v_  and the theoretical 
expression [Eq. (6)], based on the classical Landau theory. 
Figure 3 shows an enlargement of the T j >  T  > T j - \ 5  K 
region. The solid line is the theoretical curve for 
v2 =  43.9(77 —D 2/? and V2 =  5.8 3(Tr - T ) 2ls with /? 
=  0.315. Qualitatively, we see motional narrowing due to 
rapid phase fluctuations15 of the modulation wave. Simi
lar phenomena were also observed in Rb2ZnBr4 by 
NM R,16 Rb2ZnCl4 by NQR,17 and in Gd3+-doped [3- 
ThBr4 by ESR.18

Below and near the P-I  transition temperature T j , the 
phase of the modulation wave6 exhibits significant 
thermal fluctuations

<f>(x,t)=z<l>(x) +  A ^(x,0 , (9)
resulting in motional narrowing of the NQR line. At 
temperatures very close to ^  (say, within 1 K), phase

vq (M Hz )

Vq (MHz  )

FIG. 2. NQR line shapes at (a) 4.2 K, (b) 30 K. Note that no 
multisoliton lines are observed.
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FIG. 3. Singularity splitting over the range T /-1 5  < T  < T t . 
The departure of the experimental results from the theoretical 
curve is due to motional narrowing arising from thermal phase 
fluctuations. T j - T ( K )

fluctuations will be rapid compared to the NQR time 
scale so that the motional averaging effect will result in a 
smoothing of the edge singularities, thus making it 
difficult to determine accurately the precise P-I  transition 
temperature Tj.  At lower temperatures, the edge singu
larities can be seen even though the linewidth may still be 
somewhat reduced by motional narrowing. In the qua
dratic approximation, Blinc and co-workers5 have shown 
that

v =  v0+  y[v2 +  v2e 2(7 cos( 2(f) ) ] -f v2 , (10)

where <t2 =  A02 is a measure of the phase fluctuations. 
The singularities v± are then given by

v+ =  v Q+ \ v 2( \ ± e  2a2) +  v 2 . (11)

Decreasing the temperature causes <r2—*0, in which case 
Eq. (11) reduces to Eq. (6).

The phase-fluctuation exponent a 2 can be determined 
from a comparison of the differences between the experi
mental values for v+ and v_ with the theoretical 
differences at each temperature in Fig. 3. From Eq. (11), 
we see that

cr2 —  _  1
- H n

expt
(  V _ |_  ) j i i e o r  (  V —  )

(12)
theor

where (v± )expt and (v± )theor represent experimental and 
theoretical values for v±. The denominator 
(v+ )theor — (v_)theor *n d2) is v2 and is equal to the 
difference between the theoretical values (solid curves) in 
Fig. 3.

Figure 4 is a plot showing the temperature dependence 
of a 2 just below Tj.  We see that the thermal phase fluc
tuations are only significant within 5 K of 71/. A t l O K  
below T j , the rms phase fluctuations are less than 10°, 
and have disappeared entirely below jT7 —12 K. These 
results are comparable to values for a 2 reported in 
Rb2ZnBr4 by NMR (Ref. 16) and in Rb2ZnCl4 by NQR.17 
It appears that the thermal fluctuation effect extends to

FIG. 4. Temperature dependence of the mean-square phase 
fluctuations cr2 =  ( A<f>2) in (3-ThBr4.

slightly lower temperatures in our NQR measurements 
than were reported for EPR (Ref. 18) measurements in a 
Gd+-doped /?-ThBr4 crystal. This difference, which may 
result from possible pinning of the modulation wave by 
the dopant, reduces the amplitude of the phase fluctua
tions. Also, the 79Br NQR technique may be more sensi
tive to slight changes in local environment due to small 
thermal fluctuations in the positions of the Br“ ions.

V. EFFECTS OF RAMAN PROCESSES 
ON r ,   ̂ AND T h

The general theory of the contributions of damped am- 
plitudons and phasons to the NQR or quadrupolar per
turbed NMR spin-lattice relaxation in incommensurate 
systems was developed by Blinc and co-workers.4,5,7 In 
contrast to the situation of translational periodic systems 
where T x does not vary over the NQR line, amplitudons 
and phasons will contribute differently to different parts 
of the NQR spectrum in I  systems, thereby allowing the 
independent determination of T XA and T

Starting from the fith component of the EFG tensor 
expanded in a Taylor series

a r (M>
3 u /

0

0 2  j - ( f i )  

9 u / 8 u  j
ui(r)<8>u/U )+  • •

o

(13)

where u is the magnitude of u/ f The fluctuating part of 
the EFG tensor can be expressed4 as
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a
d T {̂  

9 u  i 0 j

a 2r ^ )
0ut3u;

u
0

8U;

+ 1 2
h j

g 2  j * ( / i )

9 U ; 9 U y
8 U ,  <8> S U y  + (14)

o

The first term results in the direct process (absorption or 
emission of one phason or one amplitudon by the spin 
system) for relaxation and the second term results in the 
ordinary Raman process (inelastic scattering of two exci
tations, amplitudon or phason). From this expression, we 
see that the Raman process will be significant only if the 
linear term of the EFG tensor 07"(/i)/3u; )0 
« 0 .

Furthermore, Raman processes should be important in 
spin-lattice relaxation only if there are considerable num
bers of excitation pairs (versus single excitations) (Ref. 
19) whose frequency differences correspond to the rela
tively low rf frequencies used in NMR and NQR. This 
situation should occur only when the density of excita
tions is peaked at frequencies much higher than the rf re
gion, which, in turn, requires a small damping coefficient 
F (underdamped case). If, on the other hand, the excita
tion density is peaked at lower frequencies (near the 
NMR or NQR frequencies) which should occur when the 
damping coefficient is larger, direct processes should 
dominate the relaxation, as has been reported8,20,21 for 
most of the I  systems (e.g., the A 2B X 4 systems) studied 
so far by NMR and NQR. However, even in these sys
tems, the amplitudon modes are not strongly over
damped,22 suggesting that Raman processes may still be 
significant.

/?-ThBr4 has a relatively small damping coefficient14 
(r  ~  70 GHz) compared with K2Se04 for which r > 2 1 0  
GHz.22 The /?-ThBr4 amplitudon gap A a at 81 K was 
measured to be approximately 230 GHz by both Raman 
and neutron scattering.14 Therefore, it is quite obvious 
that the amplitudons are underdamped even at 81 K. 
There is insufficient experimental evidence in the litera
ture to determine if there is a nonzero phason gap A ,̂ 
which may be possibly induced by lattice defects or im
purities. The phason dispersion curve reported at 81 K 
shows a maximum frequency &>0max~4OO GHz. Since 
the damping coefficient T  is smaller than these charac
teristic frequencies, there should be a large number of un
derdamped phason modes whose frequencies are much 
larger than the NQR frequency. As a result we would ex
pect that both T lA and T ^  will be dominated by Raman 
processes in /?-ThBr4. Moreover, as we mentioned in Sec. 
Ill, the bromide atoms in /?-ThBr4 are located in planes 
of symmetry so that the part of the linear term in Eq. (14) 
involving (97Y0U/) is absent, thereby reducing the con
tributions of direct processes to the spin-lattice relaxa
tion.

If Raman processes are dominant in both phason- and 
amplitudon-induced relaxation in the local approxima
tion, the spin-transition probability in the /  phase will be 
given by4

t y r W .

3tt
 ̂ Q 7

h T °2
k T

X [ X * J a a + ( 1 - X 2)2J „

+ X 2( 1 - X 2KJm + J ^ a )] , (15)

where is the EFG tensor component defined in Eq. 
(13), X =  cos cp(x)y p  is the mass density, and 
f i =  | Am | =  | ±  11, | ± 2 1, • • * . The spectral densities for 
the amplitudon and phason contributions are represented 
by J  aa anc* J m ’ respectively. J A(p and J^A are spectral 
densities for interactions involving one phason and one 
amplitudon. As we shall see in the present investigation 
T lA and T x<p will be determined without requiring a prior 
knowledge of J  A<j> and J+A. Since T f 1 =  W (1)+  W {2\

7 T 1 « ( k T ) 2[ X 4J AA + ( l - X 2)2/ #

+ X 2( l - X 2)(JA<p+ J ^ A )] . (16)

The amplitudon and phason contributions to the spin- 
lattice relaxation rate can be determined separately by 
selectively measuring T j in different parts of the line. At 
X  =  cosq? =  0, v = v 0 in the local approximation [Eq. (3)] 
and

T - l const T 2J

a pure phason contribution which we call T l(̂ . 
X  =  ±1, v = v 0 +  v2 and

7"f1 =  const T 2J AA ,

(17) 

At

(18)

a pure amplitudon contribution which we call Tj~J. At 
both X  =  0 and ±1, the contributions from J and J^A 
vanish. A measurement of the temperature dependence 
of T f 1 can thus be used to determine whether T lA and 
T are dominated by Raman versus direct processes, 
since the contribution of the direct process to 7"f1 will be 
linear in temperature4,19 in contrast to the quadratic tem
perature dependence of Eqs. (15) —(18).

/3-ThBr4 is incomensurate over a wide temperature 
range, from Tj =  95 K down to the lowest temperature 
which we have investigated (2.5 K). Thus, it is very easy 
to distinguish a linear from a quadratic temperature 
dependence in the spin-lattice relaxation rate. Figure 5 
shows the 79Br spin-lattice relaxation times measured 
over the temperature range 293-2.5 K. In the vicinity of 
Tj  we see a sharp dip, characteristic of soft-mode con
densation. Below T j , T lA is measured at the higher- 
frequency edge singularity r + (at X  = ± 1 ), whereas T l(f> is 
measured at the lower-frequency edge singularity v_ (at 
X = 0 ) .

In Fig. 6, we replot the I  phase T ! data as a log-log
plot of T - l1 A and r , / versus T  . The fact that both
curves have slopes equal to unity over most of the range 
indicates that both and T ^ 1 are dominated by Ra
man processes. Below approximately 10-15 K, the T ^ 1 
and T  f*1 slopes becomes steeper than the T 2 dependence, 
as is typical for the low-temperature behavior of Raman 
processes. Near T j , the amplitudon branch r f j  in
creases rapidly, in contrast to T ^  which remains on the
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T 2 curve, thereby indicating that J AA is temperature 
dependent but J ^  is not.

The spectral densities J AA and J ^  depend on the 
dispersion relations for amplitudons and phasons

co2A = A 2A + K k 2 (19)

and

a^=A^-fAcfc2 , (20)

where A a and are the amplitudon and phason gaps, 
respectively. Figure 7 shows sketches of co versus k  ob
tained from Eqs. (19) and (20).

In the limit where the NQR frequency v Q is much less 
than the phason and amplitudon frequencies, Blinc4 
showed that the spectral densities are

J aa = k ~ 5/2A( 1 -2 A ^  /A V k ) (21)

and

J H = K - i n A { \ - 2 L , f>/AV~K) , (22)

where A corresponds to the maximum value of the wave 
vector k. This treatment assumes the same value for

T ( K )

FIG. 5. Temperature dependence of the spin-lattice relaxa
tion time T\. Below TJy T XA is measured at v+ and T ](f) is mea 
sured at v_.

T 2 ( K 2 )  7" j

FIG. 6. Log-log plot of T \ \  and Tj^1 vs T 2 over the I  phase. 
The solid lines at both branches have slopes of 1, indicating that 
Raman processes are dominant.

AV k for both phasons and amplitudons. Equations (21) 
and (22) are valid in the region very close to 
the transition temperature Tj.  However, because A a 
=  % /2a ( Tl ~- T) is temperature dependent, 
( 2 A a / A V k ) > 1  and J A A <  1 at temperatures far from 
Tl9 causing Eq. (21) to no longer be valid. From pub
lished data12 at 81 K for /3-ThBr4, we can calculate

= A ^ /V / r 7- B l  K =  235/V 'l4 =  62.8 G H z/K 1/2 .

Using this value, we obtain at T  =  70 K the value 314 
GHz for A a . Since AVV is temperature independent for

REDUCED WAVE VECTOR k

FIG. 7. Schematic diagram of typical I  phase amplitudon 
and phason dispersion relations.
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phasons, we can use the phason value AV'/c«400 G H z 
(Ref. 1) obtained at 81 K, in which case we see that 
2 A a / A V k >  1 and J AA <1. Thus, Eq. (21) is valid only 
at temperatures very close to Tj,  for which « A Vk.

We extended Blinc and Zumer’s treatment4,7 to obtain 
more general expressions for J AA and / ^ ,  valid over 
most of the I  phase, provided that the plane-wave ap
proximation is valid. They expressed the spectral density 
Jpp,  where (3 and /?' can be either A or cf>, in terms of the 
excitation (phason or amplitudon) density p^ as

T _  7T4 C P p ^ ) p e((0 +  (0Q )dC0 ^
■ V -  y i  J  +  ■ ( 2 3 >

Since we are interested only in J AA and J ^ ,  we let 13=13' 
and obtain

J 7T

f
Pp{ co )pf3( cd +  cOq )dco

0)2(c0~h COq )2

From the dispersion relations (19) and (20), we obtain 
dco Kk

(24)

V k [ \ - { L I / cd2)]x/2
dk c o

Since

p(co)dco~(V/4rr3)4rrk2dk  , 

we get

lco2[ l  — (A6/co)2] W2, co> Ao ,
r r

0, co< Ap . (25)

There are two physically interesting limits for which we 
can evaluate Jpp,

(a) The gap A^ » coq, in which case co» coq and 
co +  coq^ co. We then get

J P/3 * - 3  r
J  L

CO/3 max
1 - [ V

2 -

CO
dco

K- 3
^ / ? i n a x

A 2

^ ( 3  max

K
3 ^^ ( 3 max A^g) 

^ P  max
(26)

This result shows that J ^  is always positive, as it should 
be.

. 2(b) The gap Ap « c o q ,  s o  that pp(co)~( V Ar )k 
the Debye result and we get

3 / 2  2 • f CD IS

j p p - K 3 r
CO/3max __ ^

dco —K CO
0

P  max * (27)

Our result is more general than that of Blinc in two 
respects: (1) We kept the Ap/cof3max term in Eq. (26), 
which is very small for T  very close to Tl9 but is not 
small for the amplitudon branch when T  is far from T7; 
(2) we kept coA max and ^^max distinct and did not assume 
them to be equal. From the dispersion relations Eqs. (19) 
and (20), we know that the maximum frequencies of the

two branches should be different and these differences be
come negligible only when A  ̂ is very much less than 
cop max? which occurs in the amplitudon branch only for T  
very close to Tj.  We thus see that B line’s expressions for 
J AA and J ^  are approximations which are valid very 
close to Tj,  whereas our modified expressions should be 
valid over most of the I  phase.

VI. PHASON GAP A

There exist relatively few examples of I  systems in 
which a nonzero phason gap has been detected by direct 
experimental techniques (like neutron diffraction or opti
cal spectroscopy), since phason excitations are usually 
overdamped ( I \>  AJ near k = 0 .  For /?-ThBr4, neutron

1 1 A ^scattering data are ambiguous 5 ’ about the existence of 
a nonzero phason gap, but suggest that the gap, if it ex
ists in /?-ThBr4, should be at most 70 GHz.1

Because of this difficulty in observing Â  by the 
diffraction method, Blinc and co-workers studied several 
A 2B X 4 systems by spin-lattice relaxation measure
ments.4,5,16,20 All these studies assumed that both T XA 
and T l(f> are direct processes, in which case,

l <f>
J A A T 1 A

J — l
1 cf>

(28)

For Raman-dominated relaxation processes, we now 
derive a similar formula which can also be used to deter
mine A  ̂in those systems. Using Eq. (26) we get

1 A
r p —  1 

1  \(f>

A j )'

A J 2
(29)

assuming A a and A  ̂ are much larger than coq. The 
phason gap can then be calculated in terms of experimen
tally measurable quantities,

cf) *0(f) max
^cf> max 

^  A max

1  \<f)

T - l  
1 A

1 / 2

(co A max A, ) .

(30)

Theoretically, this formula is valid at any temperature 
in the I  phase. However, it is preferable to perform mea
surements in the I  phase at temperatures far below T l for 
several reasons: (1) The dispersion relations [Eqs. (19) 
and (20)] are more valid at lower temperatures. A more 
general treatment14 results in a power series expansion

c o

A

<t>
a T r - T  +  G ( k )

± [ a 2\ T j - T \ 2+ U 2( k )] 1 / 2 (31)

where
+  a * k 5

G ( k )  =  a 0 +  a 2k  +  a 4k  . . . ,  U (k )  =  a 3k 
,5n. . . ., and the +  and — signs are associated with 

amplitudons and phasons, respectively. Only at lower 
temperatures will the terms involving a \ T j  — T\ be 
sufficiently larger compared with G ( k )  and U (k )  that the 
higher-order terms in the expansion can be neglected. In 
this case, Eq. (31) will reduce to Eqs. (19) and (20), keep
ing only terms quadratic in k. (2) Temperature measure-
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ment inaccuracy can be a significant source of experimen
tal error close to TIf where T lA is changing rapidly with 
temperature (Fig. 6). However, at lower temperatures, 
we see that the temperature dependence of the ratio 
7 7 J / 7 V  is greatly reduced.

Evaluation of the phason gap by means of Eq. (30) re
quires knowledge of A a , coAmax, and &>̂ max, which is easi
ly obtained from other experimental measurements. In 
particular, neutron and Raman scattering measure
ments1,14 at 81 K give A ^ « 0 .2 3  THz and c o ^ ^ ^ O A  
THz. By combining these results with our lower- 
temperature values for T ^  and T lA , we can use Eq. (30) 
to determine A .̂ __________

Since A A(T) =  y / 2 a ( T I — T), we can express A a at an 
arbitrary temperature in terms of its value at a particular 
temperature T 0 by

1.5

a a ( T ) = a a ( t 0 )[(Tj - t ) / ( T j - t 0 )]i l / 2 (32)

The maximum phason frequency 6>̂ max and A  ̂should be 
independent of temperature. The temperature depen
dence of co A max can be expressed in terms of A A ( T) and
^ ( p  max*

7  , o h

0.5

1 ■ 
1 
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—

•
• • •

• •
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4 . 2 K

•

__ .... 1 ..........

•
• •%

V
1 . 1.......... ....1...... ......

49.2 49.4 49.6 49.8 50.0 50.2
l/Q (MHz)

oyAm^ T )  =  [Kk2m̂  +  L \ { T ) ] x/2

^ [ c o l max +  A 2A( T ) ] l/2 . (33)

Since A ^ « ^ max, the replacement of Kk2mAX by <ô max is 
justified.

Using our measured relaxation times at T  =  50, 42, and 
25 K, we obtained corresponding values for A  ̂ of 0.055, 
0.088, and 0.087 THz, respectively. Our average value 
for A  ̂ (0.072 THz) is in good agreement with an upper 
limit for A  ̂ of 0.070 THz, estimated using other tech
niques.1 The existence of a phason gap of this size strong
ly supports our contention that Raman (rather than 
direct) processes determine the relaxation, since

A(p » c o q ( = 2 ^ X 5 0  MHz) .

VII. DETERMINATION OF T x VERSUS v Q 
OVER LINE SHAPE

It is important to consider the possibility that our 
spin-lattice relaxation is dominated by acoustic phonons 
(rather than amplitudons and phasons), which could also 
involve both direct and Raman processes. This possibili
ty can be ruled out by a careful measurement of T  l over 
the inhomogeneously broadened line shape since acoustic 
phonons should cause the same spin-lattice relaxation for 
all parts of the NQR line, whereas amplitudons and 
phasons will result in different values for T ! for different 
parts of the line.4 Accordingly, we measured T x versus 
Vq at 4.2 and at 25 K over the whole line. Figure 8 
shows a very strong dependence on Vq , thereby ruling 
out appreciable contributions from acoustic phonons.

49.4 49.6 49.8 50.0 50.2
V Q (MHz )

FIG. 8. I f 1 vs measured over whole NQR line (a) 
r  =  4 .2K , <b) T =  25 K.

VIII. CONCLUSIONS

In this paper we extended the general theory, originally 
developed by Blinc,4’7 of the effects of Raman processes 
on amplitudon and phason spin-lattice relaxation in in
commensurate systems. In particular we obtained gen
eral expressions for the phason and amplitudon contribu
tions to the spectral densities that are valid at all temper
atures in the I  phase, not just near the transition temper
ature Tj.  Also, we developed a general method for ob
taining the phason gap A  ̂ in systems in which the spin- 
lattice relaxation is dominated by Raman processes.

We applied these techniques to 79Br NQR in the in
commensurate phase of /?-ThBr4 and found excellent 
agreement between our theoretical and experimental re
sults, thereby demonstrating that spin-lattice relaxation 
in the incommensurate phase of this substance is indeed 
dominated by Raman processes. We measured the 
phason gap A  ̂ to be 0.072+0.020 THz, in good agree
ment with estimates obtained from other experimental 
techniques.

We observed an incommensurate phase from Tt ( =  95 
K) down to our lowest temperatures (2.5 K). In particu
lar, the absence of any sudden change in the line shape or 
spin-lattice relaxation time indicates the absence of any 
commensurate (O phase over this temperature range. 
The absence of multisoliton effects and the constancy 
with temperature of / 3 = 0.315 (Ref. 14) suggest that there
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may not be a commensurate phase except possibly at 
significantly lower temperatures. However, if /?-ThBr4 is 
a type-II incommensurate system, multisoliton effects 
would not appear above the I-C  transition temperature 
r c ;24,25 hence, it is possible that a commensurate phase 
might exist slightly below our lowest temperature. More 
experiments at substantially lower temperatures are need
ed to resolve this question.
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