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Abstract 

There is anecdotal evidence for the significant effects of salt ions on the flotation 

separation of minerals using process water of high salt content. Examples include flotation of 

soluble salt minerals such as potash, trona and borax in brine solutions. Although some of the 

effects are expected, some do not seem to be encompassed by classical theories of colloid 

science. Several experimental and modeling techniques for determining solution viscosity, 

surface tension, bubble-particle attachment time, contact angle, atomic force microscopy, sum-

frequency vibrational spectroscopy and molecular dynamics simulation have been used to 

provide further information on air-solution and solid-solution interfacial phenomena, especially 

the interfacial water structure due to the presence of dissolved ions. These studies indicate that 

the ion specific effect is the most significant factor influencing flotation in brine solutions.  
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1. Introduction 

Froth flotation is one of the most important separation methods whereby hydrophobic 

mineral particles are captured by air bubbles and removed from the slurry into a froth phase. 

Particulate separations by flotation are of considerable significance in many areas of 

technology ranging from water treatment and materials recycling, to the mining and 

construction materials industries. Since froth flotation involves physico chemical phenomena at 

the solid/water (S/W) and at the air/water (A/W) interfaces, surface chemistry principles play a 

significant role in the development of improved flotation technology.  

Soluble salt minerals (potash, trona, borax, etc.) are essential raw materials for the 

production of many different commodities; fertilizers, magnesium metal, magnesium oxide, 

soda ash, baking soda and many boron chemicals. These soluble mineral resources can be 

processed using flotation technology and, in fact, the use of flotation technology is critical for 

the potash industry. Since the flotation process for soluble minerals must be carried out in 

saturated solutions due to the high solubility of these salt minerals, the interfacial water 

structure is influenced and this affects collector adsorption at salt surfaces.  

Dissolved ions in solutions can inhibit or activate the floatability of minerals due to their 

effect on the properties of the solutions and interfaces involved. The ions present at relatively 

high concentrations can significantly impact the colloidal interactions between bubbles and 

particles during flotation. The most important example, perhaps, for the effect of the dissolved 

ions in flotation is the soluble salt flotation of minerals such as potash, trona and borax. Since 

these minerals are soluble in water, a saturated solution is used to prevent solubilization of the 

floated salt particles from the gangue particles. Therefore, it is important to understand how the 

dissolved ions behave in solutions and at the interfaces. For instance, the flotation of potash 

minerals has to be carried out in a saturated brine of about 5 M of halite (NaCl) and sylvite 

(KCl). The highly concentrated salt solutions influence the bulk and interfacial water structure 

such that adsorption of flotation chemicals (e.g., insoluble collectors of long chain amines) at 

the minerals surfaces and air bubbles (Burdukova et al., 2009; Cheng et al., 2008). At high salt 

concentration, electrostatic interactions cease and thus zeta potential is almost zero, and the 

solubility of collectors is limited.  

Fundamental understanding for the flotation of soluble salts is limited when compared 

with other flotation systems, e.g., oxides, silicates, sulphides and semisoluble salt minerals. For 

instance, flotation experiments of soluble alkali halide salts with dodecylamine hydrochloride 

(DAH) and sodium dodecylsulphate (SDS) collectors have demonstrated that KCl can be 

floated with both cationic (DAH) and anionic (SDS) collectors. However, NaCl (halite) cannot 

be floated with either of the collectors (Hancer et al., 2001). The electrical double-layer theory 

fails to explain the floatability of NaCl and KCl crystals in these saturated solutions. It is 

shown in the next section that the structure of water induced by the salt ions determines the salt 

floatability. 

Borax (Na2B4O7.10H2O) is another soluble salt, which must be upgraded to about 35% 

B2O3 for the production of basic chemicals, such as boric acid. Boron minerals; colemanite 

(Ca2B6O11.5H2O), ulexite (NaCaB5O9.8H2O), and kernite (Na2B4O7.4H2O), exhibit a spectrum 

of chemical compositions with cations ranging from monovalent to multivalent ions. The type 

and valence of the cation dictate the solubility of the minerals and in turn their electrokinetic 

behavior. Borates release a number of species upon dissolving in water such as B4O7
2-

. The 

ions released from boron minerals have been shown to interact with collectors to form 

insoluble surface precipitates. 
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The primary source of sodium carbonate (soda ash) in the United States consists mainly 

of trona, sodium sesquicarbonate (Na2CO3.NaHCO3·2H2O), containing minor undesirable 

gangue materials. Since sodium carbonate (Na2CO3) and bicarbonate (NaHCO3) are the main 

constituents of trona, most of the studies have focused on the flotation of carbonate and 

bicarbonate salts (Ozcan and Miller, 2002). Micro-flotation studies with carbonate salts 

(Na2CO3 and NaHCO3) showed that contrary to the strong flotation of NaHCO3 with both 

anionic and cationic collectors, Na2CO3 does not float at all (Ozcan and Miller, 2002). 

In the past, the flotation chemistry of soluble salts has received relatively little attention 

perhaps due to experimental difficulties such as high ionic strength, high viscosity and high pH 

in the case of trona and borax minerals. More recently efforts have been made to explain the 

mechanism of collector adsorption in soluble salt flotation systems. A number of experimental 

and modeling techniques have been used to develop a better understanding of the effect of 

dissolved salts on the flotation of soluble salt minerals as exemplified above.  

In this paper, we use the results obtained by different methods to review the role of ion 

interactions in the flotation of soluble salts. The available experimental results have provided a 

better understanding of the flotation behavior of many systems, including potash, trona, and 

borax. Possible mechanisms and practical implications will be discussed to highlight the 

significance of ion interactions in brine solutions. 

2.  Flotation of typical soluble salts 

The flotation process for soluble salt minerals such as potash, trona and borax is carried 

out in saturated solutions due to their high solubility. Such high salt concentration appears to 

have a significant effect on the interfacial water structure which influences the collector 

adsorption at the salt surface and also has an impact on the adsorption of collector at the 

surface of insoluble mineral components of the salt resource.  

2.1 Potash flotation 

Potash ores are a mixture of sylvite (KCl) and halite (NaCl) with water-insoluble 

minerals such as clay and carbonate minerals. Potash is widely used as fertilizer in the 

agriculture industry. Other uses for potash are glass manufacturing, soaps, plastics and 

pharmaceuticals (Perucca, 2003). Most of the potash ores in the world are concentrated by 

froth flotation.  

Although there have been many studies on the flotation behavior of various soluble salts 

in their saturated solutions, the collector adsorption mechanism at the surface of soluble salts 

minerals is still not clearly explained (Rogers and Schulmann, 1957; Schubert, 1988; Miller 

and Yalamanchili, 1994; Laskowski, 1994; Hancer et al., 1997; Hancer and Miller, 1999; 

Hancer and Miller, 2000; Burdukova and Laskowski, 2009). There have been many models 

proposed to explain the flotation behavior of soluble salts in their saturated solutions such as 

ion exchange model (Fuerstenau and Fuerstenau, 1956), a heat of solution model (Rogers and 

Schulman, 1957), and a surface charge-ion pair model (Schubert, 1988). Recently, significant 

progress has been achieved in the areas of soluble salt flotation chemistry particularly by Miller 

and his co-workers (Hancer et al., 2001; Hancer and Miller, 2000; Miller et al., 1992; 

Yalamanchili et al., 1993). Subsequent research by Hancer showed that consideration of 

hydration phenomena at salt crystal surfaces provided a better explanation for the flotation of 

soluble salts even when the collector charge is the same as the salt (Hancer et al., 2001). 

As seen in Figures 1 and 2, KCl can be floated with both cationic (dodecylamine 

hydrochloride) and anionic (sodium laurate) collectors. However, NaCl (halite) cannot be 

floated with either of the collectors (Miller et al., 1992).  As mentioned above, in brines the 

double layer thickness is very small at salt surfaces, which make measurement of the surface 
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charge under these circumstances difficult. Nevertheless, surface charge measurements of salt 

minerals were first made using a nonequilibrium electrophoretic technique (Miller et al., 1992). 

This study showed that KCl has a negative surface charge, whereas NaCl has a positive surface 

charge and these results were used to explain the flotation of KCl from NaCl with 12C amines. 

According to this analysis, the positively charged amine collector colloid adsorbs on negatively 

charged KCl particles, while there was no adsorption of the cationic collector at the positively 

charged NaCl particles (Yalamanchili et al., 1993).  

 

Figure 1. Flotation recovery of KCl and NaCl as a function of dodecylamine hydrochloride 

concentration (Miller et al., 1992). 

 

Figure 2. Flotation recovery of KCl and NaCl as a function of sodium laurate concentration 

(Miller et al., 1992). 

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



5 

 

Unfortunately this theory could not answer the question of why negatively charged KCl 

particles are also floated with 12C anionic collectors such as SDS. Subsequently research by 

Hancer showed that consideration of hydration phenomena at salt surfaces provides a better 

explanation for the flotation of alkali halide salts even when the collector charge is the same as 

the salt (Hancer et al., 2001). These studies and the analysis of surface hydration indicate that a 

salt may be either a water structure maker or a water structure breaker. If the salt serves as a 

structure maker for water, the water molecules will be strongly bonded at the salt surface and 

the adsorption of collector at the hydrated surface is prevented. As is well known, collectors 

generally must adsorb at the particle surface in order to create a hydrophobic surface state for 

flotation. Unlike the structure maker salts, the structure breaker salts have a tendency to destroy 

the structure of water at the salt surface; thus a collector may more easily reach the surface, 

create the hydrophobic surface state and thus allow for the flotation of such salts. Drawings 

which illustrate these cases are presented in Figures 3 and 4, respectively.  
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Figure 3. Collector Adsorption does not occur at the NaCl Surface for 12C amine and sulfate 

collectors (NaCl is a water structure maker) (Hancer et al., 2001). 
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Figure 4. Collector adsorption does occur at the KCl surface for 12C amine and sulfate 

collectors (KCl is a water structure breaker) (Hancer et al., 2001). 

The flotation response of the selected salts is presented in Table 1. As seen in Table 1, 

salts that can be floated with either the cationic (DAH) or anionic collectors (SDS) are the 

water structure breakers whereas salts that are classified as water structure makers stabilize the 

interfacial water structure at the salt-brine interface and the flotation of these salts with either 

collector is not possible. 

 

Table 1. Correlation of floatability of alkali halide salts with water structure (Hancer 2001) 

 
NF: No flotation; F: flotation 

 

 

A molecular dynamics simulation (MDS) study regarding water structures at LiCl, NaCl, 

KCl and RbCl salt surfaces in their saturated brine solutions is reported by Du and Miller (Du 

and Miller, 2007b; Du et al., 2007a). This study showed that water molecules are highly 

ordered at NaCl and LiCl surfaces with distinct orientations due to strong interaction between 

water molecules and small surface cations, Na
+
 and Li

+
. In contrast, water molecules oriented 

at KCl and RbCl surfaces randomly due to weak interaction between water molecules and large 
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surface cations such as K
+
 and Rb

+
. This study also showed that the orientation of water 

molecules at the salt surfaces is not as simple as shown in the drawings.  

2.2 Borax flotation 

Borax (Na2B4O7.10H2O), one of the most important boron minerals in the world, 

contains about 20% B2O3 when mined and must be upgraded to about 35% B2O3 for the 

production of basic chemicals, such as boric acid. The most commercially important boron 

minerals beside borax are colemanite (Ca2B6O11.5H2O), ulexite (NaCaB5O9.8H2O), and kernite 

(Na2B4O7.4H2O). Apart from these minerals, a considerable amount of boron compounds is 

also produced from boron-rich lakes (Harben and Dickson, 1985). 

Boron compounds are used in the manufacture of a variety of industrial products 

including advanced materials. World reserves of boron minerals are estimated at 1,241Mt 

B2O3, sufficient to meet world demand at current levels for over 600 years (Roskill, 2010). The 

United States and Turkey are the world’s two largest producers of boron compounds. Together, 

these two countries make up about 90% of the world’s boron reserves (Harben, 1995). 

Boron minerals show a spectrum of solubilities depending upon the cations in the lattice 

structure. While colemanite and ulexite are classified as semi-soluble minerals, borax and 

kernite are soluble minerals. Borax is normally concentrated from its saturated brine by 

scrubbing followed by classification. The friable nature of boron minerals, however, tends to 

produce a large amount of fines mostly below 0.2 mm which are usually discarded as waste. 

Recovery of these fines is possible only through particle separation processes such as flotation. 

In most boron ores, the major accompanying gangue minerals are montmorillonite type clays 

and carbonate minerals, and thus a common problem encountered in both classes of boron 

minerals is the presence of significant amounts of clay type minerals which adversely affect 

flotation recoveries in the form of slime coatings (Akin et al., 1997). 

Despite the successful application of flotation technology in the potash industry, flotation 

has not yet been well developed for borax recovery. This may be attributed to inherent 

difficulties such as high ionic strengths, and particularly the presence of clay minerals, which 

act as persistent slimes. While Miller and his co-workers provided new insight into explaining 

the selective flotation of several soluble salt minerals from their saturated brines, Celik and his 

associates have identified some particular characteristics of the flotation behavior of boron 

minerals with cationic and anionic collectors (Celik et al., 1993; Celik and Bulut, 1996; Celik 

et al., 2002; Celik and Yasar, 1995). For example, as seen in Figure 5, both surfactants SDS 

and DAH float borax in the same manner at concentrations above 1×10
-5

 M. The lattice 

structure of borax is composed of Na
+
 ions. This characteristics feature imparts high solubility 

to borax. Although the collectors used are usually less soluble in concentrated brine solutions, 

the floatability of boron minerals is enhanced in the presence of brine. The results indicate that 

there appears to be a direct correlation between the onset of flotation and that of hemimicelle 

formation. For borax it provided that the extent of CMC reduction in such saturated brines is 

known. It is well known that the CMC of sulfonate shifts by an order of magnitude in the 

presence of 0.1 M NaCl solutions. The extent of CMC reduction in concentrated brines would 

be even greater. Therefore, it is possible that the onset of borax flotation may also coincide 

with the formation of hemimicelles. 
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Figure 5. Flotation recoveries of colemanite and borax vs. the concentration of anionic and 

cationic surfactants at pH 9.3 (Celik et al., 1993). 

The most prominent one is Na
+
 in the structure of borax. Apart from the effect of 

monovalent ions in compressing the double layers of minerals, they also modify the bulk water 

structure and micellization of collectors and consequently enhance surface activity of 

collectors. There are controversial opinions about the role of monovalent ions in the floatability 

of minerals. While some assert that monovalent cations and anions depending on their water-

breaking and-making structure modify the bulk structure of water and extrapolate the same 

effect all the way to the surface, others emphasize adsorption of monovalent ions at solid 

surfaces and their subsequent interaction with water (Clark and Cooke, 1968; Colic et al., 

1997; Hancer et al., 2001). The previous results showed that for all boron minerals the 

potential determining ions are the constituent lattice ions, i.e., B4O7
2-

 and the counterion, as 

well as the H
+
 and OH

-
 ions. The addition of SDS and DAH marginally affects the zeta 

potential of colemanite with pH. Especially, zeta potential of amine adsorbed onto borax 

revealed an abrupt increase in zeta potentials above critical DAH concentrations. It is generally 

accepted that monovalent ions are indifferent electrolytes and thus only function in the 

compression of an electrical double layer; this compression ceases at about 1 M monovalent 

salt addition where the thickness of the electrical double layer is on the order of the ionic size. 

Some researchers believe that the electrostatic interactions sharply decay above 0.1 M of salt 

addition. At monovalent salt levels higher than 0.1 M and especially at 1 M, the electrostatic 

mechanism may be conveniently ruled out. 

Accordingly, smaller, more strongly hydrated ions would produce a larger short-range 

repulsive force because of the greater energy required to dehydrate the smaller cations (Colic et 

al., 1997). The only plausible mechanisms that can be proposed under such high ionic strength 

conditions are ion exchange or hydrogen bonding. Addition of monovalent salts is known to 

reduce the CMC and consequently dissolve salts of multivalent ion precipitates at lower SDS 

levels (Celik and Somasundaran, 1988). The precipitation appears to start at 0.1 M salt 

concentration and undergoes dissolution with increasing of the salt concentration. 
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2.3  Trona flotation 

Trona (sodium sesquicarbonate, Na2CO3.NaHCO3.2H2O) is the major source of soda ash 

in the United States. Soda ash, the common name for sodium carbonate, is one of the most 

widely used raw materials in the U.S. (Kostick, 2004), and the largest use of soda ash is in the 

production of glass. Since soda ash has a low melting point, the use of soda ash allows silica to 

be melted at low temperatures and therefore easily handled and formed (Garrett, 1991). This 

situation accounts for the important dependence that the glass industry has on soda ash 

production. 

The largest known trona deposits in the United States are located in Green River, 

Wyoming where 14.5 million tons were mined in 2003 and the total estimated value of the 

domestic soda ash produced was $800 million (Kostick, 2004). Trona is not so common and 

significant deposits are found only in a few locations; Africa, China, Turkey, and Mexico. 

None of these trona resources compare to the vast trona deposit of the Green River Basin in the 

U.S. 

Trona ore consists mainly of trona, including minor undesirable gangue materials a 

number of double carbonate salts in addition to dolomitic shale, quartz and clays (Garrett, 

1991). In the industry, conventional production of soda ash from trona is a complex process 

with many steps to eliminate the insoluble components of the trona ore. Conventional soda ash 

production involves the following unit operations; dissolution, clarification, filtration, 

calcination and crystallization in different order depending on the process design. The 

insoluble content of the trona ore plays an important role. The insoluble components of the 

trona ore must be eliminated. In addition production of soda ash has a significant energy 

demand due to calcination and crystallization operations. In this regard, mining and processing 

costs, particularly energy costs, are higher than desired and these costs have a significant 

impact on the cost for production.  

With the present industrial practice, there is no particle separation process to remove 

these insoluble minerals prior to thermochemical processing. Recently, a research at the 

University of Utah showed that the removal of gangue minerals from trona ore could be 

accomplished by froth flotation (Ozdemir et al., 2010; Wang et al., 2002). In this current 

research appropriate conditions for trona flotation technology were established from 

exploratory bench-scale experiments, and the conditions obtained from the bench scale 

experiments were also applied to pilot scale flotation tests (Ozdemir et al., 2010). 

Trona is a complex salt of sodium carbonate and sodium bicarbonate. Despite many 

studies regarding the flotation of soluble salts, there is a little information about the flotation of 

carbonate salts. One research study (Ozcan and Miller, 2002) reports that the flotation of 

soluble carbonate salts is dependent on their water structure breaking or making properties 

(Figure 6). It was found that the structure breaking sodium bicarbonate (NaHCO3) salt can be 

floated with both 12C anionic and cationic collectors, but the structure making sodium 

carbonate (Na2CO3) salt does not float due to the inability of the collector to break the 

organized water structure and at the surface of Na2CO3. Also because trona 

(Na2CO3.NaHCO3.2H2O) is a structure maker, flotation is generally difficult with 12C 

collectors. In the trona brine, the structure making character of sodium carbonate dominates 

and direct flotation of trona with 12C collectors is impossible. These facts support the use of a 

reverse flotation strategy to float the gangue minerals by flotation and thus produce a trona 

concentrate. 
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Figure 6. Flotation recovery of the sodium bicarbonate salt as a function of collector 

concentration at room temperature, pH 8.3 (Ozcan and Miller, 2002). 

3. Bulk solution properties of ions in flotation systems 

3.1 Viscosity of salt solutions 

It has been long established that the dissolved ions in water increase or decrease water-

water interactions (Desnoyers and Perron, 1972). Ions of dissolved salts can increase or 

decrease the solution viscosity. The solution viscosity is an important macroscopic parameter 

which significantly affects the solid and gas dispersions, the bubble rise velocity and the 

drainage of both foam and wetting films in flotation. The viscosity of salt solutions is also used 

often to classify water-soluble salts into structure making (cosmotropes) and structure breaking 

(chaotropes).  

We therefore measure the viscosity of the salt solutions to provide us with information 

about their structure making/breaking character. For example, Figures 7 shows the relative 

viscosity values of selected salts as a function of salt concentration. As seen from Figure 1, the 

salts such as LiCl, NaCl, NaI, LiI and KF generally result in a viscosity greater than 1. 

However, the salts such as KCl, KI, CsI, RbCl, and KI result in viscosities less than 1. It can be 

concluded from these results that salts of small ions such as Li
+
, Mg

2+
, F

-
, and Cl

-
 which 

increase the viscosity of aqueous solutions, are considered structure makers and those salts of 

large ions such as Cs
+
, Rb

+
, and I

-
 decreasing the solution viscosity are called the structure 

breaking (chaotropes) (Jiang and Sandler, 2003a; Kaminsky, 1957). 

For example, salts such as NaCl increasing the solutions viscosity show the structure 

making characteristic. However, salts such as KCl decreasing the solution viscosity, show 

structure breaking character. 
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Figure 7. Viscosity (relative to water) of structure making (a) and breaking (b) salt solutions 

(Hancer et al., 2001). 

The solution viscosity was also found to correlate well with the floatability of carbonates 

and bicarbonates in trona flotation (Ozdemir et al., 2007). For example, Figure 8 shows the 

viscosity values of carbonate and bicarbonate solutions as a function of salt concentration. The 

viscosities of the salt solutions increase with increasing salt concentration up to the saturated 

concentrations. The dependence of the viscosity on concentration for Na2CO3 and K2CO3 is 

strong and highly non-linear. The viscosity for NaHCO3 and NH4HCO3 solutions, on the other 

hand, shows a significantly weaker dependence on salt concentration. These results again 

reveal that the Na
+
 has a stronger structure making effect than K

+
. In fact the lower viscosity 

for the K2CO3 solution may reflect the structure breaking influence of the K
+
 ion over the 

strong structure making effect of the CO3
2-

. Since carbonate solutions increase considerably the 

viscosity of water, Na2CO3 and K2CO3, as a general concept, can be classified as strong 

structure maker salts. Unlike carbonates, bicarbonates, NaHCO3 and NH4HCO3, only slightly 

increase the viscosity of their solutions. On this basis, they can be classified as weak structure 

maker salts. It is interesting to note that carbonates cannot be floated with either DAH or SDS. 

On the other hand, bicarbonates show high floatability with both collectors (Ozcan and Miller, 

2002). The high viscosity values of carbonate salt solutions at saturation could be attributed to 

the difficulty of floating carbonate salts. In contrast, the lower viscosity of the saturated 

bicarbonate salt solutions can be responsible for their good floatability. It is very interesting 

that bicarbonates here are found to be weak water structure makers and therefore expected to 

hinder the adsorption of collectors on their surfaces. However, their floatability with both 

cationic and anionic collectors do not agree with the findings of the previous work on alkali 

halide salts (Hancer et al., 2001). These results suggest that some critical level of structure 

making can be tolerated for flotation with 12C surfactants. The phenomena occurring at the 

water–salt interface are complex and the flotation response cannot always be fully described by 

consideration of just one factor. 
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Figure 8. Viscosity of carbonate and bicarbonate solutions as a function of concentration at  

23oC (Ozdemir et al., 2007). 

 

3.2 Results of spectroscopy studies 

The effect of dissolved ions on water structure at the molecular level can also be 

determined experimentally by vibrational (IR and Raman) spectroscopy. Vibrational spectra 

gives direct evidence about the changes in the strength of the hydrogen bonds between water 

molecules, and therefore reflects the interaction between dissolved salt ions and water 

molecules (Nickolov and Miller, 2005). Depending on the salt type, the interactions will 

change (Figure 9). It has been proved that some ions showing structure making effect on water 

structure increased the width of the O-D band and shifted its peak to lower wavenumbers while 

others showing structure breaking effect on water structure decreased the width of the O-D 

band and shifted its peak to higher wavenumbers (Nickolov and Miller, 2005). 

 

 

Figure 9.  O-D stretching band spectra of solutions of KF (left) and KI (right) in 4w% D2O in 

H2O mixtures at different salt. 
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The results with carbonates and bicarbonates (Figure 10) also showed a similar trend in 

that the water structure was significantly affected with increasing sodium carbonate 

concentration. On the other hand, the water structure in the presence of NaHCO3 increased 

only slightly (Ozdemir et al., 2007). 

 

 

Figure 10. OD stretching band in carbonate and bicarbonate solutions containing 4% D2O as at 

different salt levels. 

 

3.3 Results of molecular dynamics (MD) simulations 

Molecular dynamics (MD) simulation is a fundamental tool which can be used to explore 

water/water, water/ion and ion-ion interactions, and to elucidate the influence of salts on the 

dynamic properties of brine solutions (Berendsen, 1988; Berendsen and Van Gunsteren, 1984; 

Dang, 1992a; Haile, 1997). In the past decade, much research has been devoted to the study of 

water structure, as well as the dynamic and thermodynamic characteristics of electrolyte 

solutions (Chowdhuri and Chandra, 2001; Chowdhuri and Chandra, 2003; Dang, 1992b; Dang, 

1994; Dang, 1995; Dang and Smith, 1993; Dang and Smith, 1995; Koneshan et al., 1998a; 

Koneshan et al., 1998b; Lee and Rasaiah, 1994; Lee and Rasaiah, 1996; Lynden-Bell and 

Rasaiah, 1996; Smith et al., 1997; Uchida and Matsuoka, 2004). Also efforts have been made 

to characterize the energy parameters of various ions (Dang, 1992a; Dang, 1992b; Smith and 

Dang, 1994a; Smith and Dang, 1994b; Smith et al., 1997). The thermodynamics of solvation of 

simple ions as a function of their size, charge, and charge inversion, have been studied by MD 

simulation at infinite dilution extensively (Koneshan et al., 1998b), and  different types of 

hydration have been identified and discussed in relation to the energy and entropy of solvation. 

Systematic investigations by MD simulation of concentrated alkali halide solutions with 

respect their effect on water structures and the physicochemical properties of the solutions are 

limited.  

 

3.3.1. Water structure  

MD simulations of LiCl, RbCl, and CsI solutions have revealed that water structure is 

dependent on the ions present in the solution as shown in Figure 11, which summarizes the 

effect of different ions and their concentrations in solution on water/water coordination. In pure 

water, water molecules form dynamic tetrahedral networks with average coordination of 4.5. 

When Li
+
 ions are present, due to their large local electric field, water molecules are 
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tetrahedrally coordinated and tightly held around ions, and form hydrophilic hydration shell as 

shown in Figure 12a. As more Li
+
 ions are present, the number of water molecules 

tetrahedrally bonded with Li
+
 ions increases accordingly and one direct result is the 

water/water coordination number increases with salt concentration due to water molecules are 

pulled together by Li
+
 ions. 
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Figure 11. The first shell water/water coordination numbers in different salt solutions against 

solution concentration (Du et al., 2007a). 

 

a b

    
 

Figure 12. Snap shot from MDS of 0.9 M LiCl solution (a) and 3.97 M LiCl solution (b). (Red 

- oxygen atom in water, Yellow - hydrogen atom, Purple - Cl
-
, and Green - Li

+
.)  Each Li

+
 is 

tetrahedrally bonded with four water molecules at low concentration as seen in Figure 12a.  

When the solution becomes concentrated, some water molecules in the Li
+
 tetrahedral 

hydration shell are replaced by Cl
-
, forming direct cation/anion pairing as illustrated in Figure 

12b (Du et al., 2007a). 
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As the solution becomes more concentrated, some of the water molecules participating in 

the Li
+
 ion hydration shell are replaced by negatively charged Cl

-
 ions, as shown in Figure 12, 

hence, the hydration number of Li
+
 ions decreases as the solution concentration increases. On 

the other hand, the water molecules in the Li
+
 tetrahedral hydration shell are counted into the 

hydration shell of Cl
-
 ion. Therefore, the larger the hydration number of the Cl

-
 ions increases 

with solution concentrations. 

For larger cations such as Rb
+
 and Cs

+
, the size of the hydration shell increases 

accordingly, and is larger than that of the pure water cluster. Similarly, owing to their large 

size, the Cl
-
 and I

-
 hydration shells are much larger than that of the pure water cluster. For very 

large cations such as a Cs
+
 ion, the local electric fields at the ion surface have decreased 

significantly, and behave more like uncharged particles (Koneshan et al., 1998b).  Hence, as 

the size of the cation increases, the dominating electrostatic hydrophilic hydration of small ions 

is gradually replaced by hydrophobic hydration of large ions where hydrogen bonded water 

molecules form a disordered cage surrounding the ions as can be seen in Figure 13a.  

 

        

a b

 

Figure 13. Snap shot from MDS of 0.9 M CsI solution (a) and 3.97 M CsI solution (b). (Red - 

oxygen atom in water, Yellow - hydrogen atom, Purple - I
-
, and Green - Cs

+
.) Water molecules 

form hydrophobic cages around cations, and stable hydration shells around anions.  

At high solution concentration, cations and anions pair up minimizing the number of 

water molecules in the primary hydration shell around ions (Du et al., 2007a). 

For water molecules composing the cages, because one position has been taken by these large 

ions, only three other water molecules can be hydrogen bonded to them and counted as primary 

waters coordination, thus, the water/water coordination number of these cation bonded water 

molecules is less than that of pure water cluster. As more ions are in the solution, more water 

molecules will be around ions, and consequently, the water/water hydration number decreases 

monotonically with salt concentrations. When hydrophobic hydration dominates, water 

molecules are loosely bonded to the ion and the radius of the primary hydration shell is large, 

allowing more water molecules to be accommodated. As the number of ions increases in the 

solution, there will be fewer water molecules available to complete the cages around ions, and 

the cations and anions will pair up to include less water molecules in their hydration shells 

which are fragile and may break, as observed from Figure 13b.   

3.3.2. Cation/anion interactions 

The cation/anion coordination number as a function of salt concentration is summarized 

in Figure 14, where both the primary and secondary coordination numbers are presented. 

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



16 

 

Generally speaking, independent of ion species, both the primary and secondary coordination 

number between cation and anion increases when the salt concentration increases. Specifically, 

for the Li
+
/Cl

-
 combination, an increase of the secondary coordination number, which is the 

interaction of hydrated or solvent separated ions, is much more significant than an increase of 

the primary coordination number, which is the naked ion-ion interaction. In contrast, for the 

Cs
+
/I

-
 combination, the primary coordination increases much more significantly with 

concentration. And for the Rb
+
/Cl

-
 combination, the change in the coordination number for 

both the primary and the secondary shells are almost of the same magnitude. When Li
+
 ions are 

in the solution, due to the strong local electric fields, water molecules are tightly bonded by Li
+
 

ions, excluding the direct contact with Cl
-
 ions. When a large number of ions are in the 

solution, there is competition between ion/water and ion/ion interactions. Because hydrophilic 

hydration of Li
+
 ions dominates, driven by minimization of system energy, the coordination 

number between hydrated ions increases more significantly relative to the direct ion/ion 

contact. For larger ions such as Cs
+
 ions, loose hydrophobic hydration shells are formed around 

these ions. On the other hand, water molecules try to keep their integrity as pure water clusters. 

Because the direct cation/anion interaction, which will lead to fewer water molecules 

participating in the hydration shells is energetically more favorable, the primary coordination 

number increases faster as a function of salt concentration. For the intermediate ion 

combination (Rb
+
 and Cl

-
), the ion/water and the ion/ion interactions are in close competition. 
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Figure 14. The coordination number of naked cation/anion pairs (direct cation/anion contact) 

and hydrated cation/anion pairs (a layer of water between cation/anion pair) in different salt 

solutions for various solution concentrations (Du et al., 2007a). 

3.3.3. Dynamic properties 

MD simulation has concluded that ion size influences the mobility of water molecules in 

the solution. When small ions such as Li
+
 are present, the mobility of water molecules in both 

the ion hydration shell and the water-only clusters decreases as a function of salt concentration. 

Small ions such as Li
+
 strongly interact with water molecules in the hydration shell and 

therefore, significantly confine the movement of water molecules in the primary water shell, 

resulting in a substantially longer residence time. 
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In contrast, for solutions containing large ions (CsI and RbCl), the ion/water electrostatic 

interaction does not contribute significantly to immobilize the water molecules. Consequently, 

the residence time of water molecules do not show a substantial change with solution 

concentration. For large ions such as Cs
+
, Rb

+
, and I

-
, the local electric fields are weak as 

discussed earlier, and water molecules in the primary hydration shell are more loosely bonded 

to them.  Thus they are more mobile and the residence time of water is shorter. 

The changes of residence times support the observations of self-diffusion coefficients of 

particles as a function of salt concentration as shown in Figure 15, which suggests that when 

Li
+
 ions are present, the diffusion coefficients of water molecules in the solution decrease 

significantly with salt concentration, and when Cs
+
 and I

-
 ions are present, there is no 

significant change of the water diffusion coefficients with salt concentration.  
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Figure 15. Self-diffusion coefficient of water molecules in water clusters for various solution 

concentrations (Ref). 

3.3.4. Viscosity 

The viscosities calculated from our MD simulations of brine solutions as a function of 

solution concentration are shown in Figure 16. As expected, the size of the ions has a 

significant influence on the viscosity of the solution. When small ions are present (LiCl 

solution), the system shear viscosity increases monotonically with solution concentration. As 

the ion size increases (RbCl solution), the system viscosity shows very weak dependence on 

the solution concentration. Further increasing in ion sizes (CsI solution), leads to an obvious 

decrease of viscosity as a function of solution concentration. This variation of solution 

viscosity as a function of ion size and solution concentration has also been observed 

experimentally by several research groups (Hancer et al., 2001; Jiang and Sandler, 2003b), so 

our simulations show the same trends. 

In LiCl solution, Li
+
 ions interact strongly with either water molecules or corresponding 

anions, and form stable tetrahedral structures, which contribute substantially to a “sticker” 

system. Though Cl
-
 ions, due to their large size, do not form strong bonds with water 

molecules; the influence of cations is dominating. Consequently, the mobility of the solution 

will decrease, and system shear viscosity, which describes mobility macroscopically, will 

increase. The higher the solution concentration, the more significant role the Li
+
 ions play, and 
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the higher the viscosity. In contrast, when large ions (Cs
+
 and I

-
) are presented in the solution, 

loose hydrophobic shells were formed around those ions, and the ion/water interaction is not as 

strong as water/water interaction, accounting for the decrease in the system shear viscosity.   
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Figure 16. Variation of system shear viscosity with solution concentration (Du et al., 2007a) Is 

there any graph showing experimental and predicted viscosities? 

The change of system viscosity with solution concentration as determined from MD 

simulation in this study successfully compliments the experimental results reported in the 

literature (Dang and Smith, 1995; Koneshan et al., 1998b), and provides an in-depth 

understanding regarding the variation of viscosities as a function of ion sizes and salt 

concentrations from a molecular perspective. For LiCl solutions, the system viscosity increases 

monotonically with salt concentration due to the strong ion/water interactions in the solution. 

As the ion size increases e,g. the case of RbCl, hydrophobic hydration becomes dominating, 

and leads to negligible variation of system viscosity with salt concentration. Further increase in 

the ion size to Cs
+
 and I

-
 revealed a noticeable decrease of system viscosity as a function of salt 

concentration. The excellent agreement between the simulation results and the experimental 

results for the variation of viscosity with ion size and concentration provides future information 

to phenomenologically describe the behavior of particles in alkali halide solutions. 

4.  Effect of ions at air-water interfacial properties 

4.1 Surface tension 

The presence of salt ions in solution not only changes the properties of solid-water 

interfaces but also the air–water interfaces, thus additionally effecting the interaction between 

particles and bubbles during flotation. It is important to understand how these electrolytes 

behave at the interfaces. As seen in Figure 17, most of the electrolytes increase the surface 

tension of water with increasing salt concentration (Weissenborn and Pugh, 1996). An increase 

in surface tension in the presence of electrolytes has been explained by negative adsorption of 

ions at air-water interface, however, some electrolytes such as HCl, HNO3, etc., decrease the 

surface tension of water so that they positively adsorb at the air-water interface.  
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Figure 17. Effect of electrolyte on the change in surface tension relative to water for 1:1 

electrolytes (Weissenborn and Pugh, 1996). 

As mentioned before, the flotation of soluble salts must be carried out in their saturated 

solutions. An interesting study about the surface tension of selected salts (NaCl, KCl, KI, 

KNO3, NaF, and K2SO4) as a function of concentration up to their solubility limit showed that 

the surface tension of the aqueous solutions increases with increasing salt concentration up to 

their saturation points (Figure 18). It is interesting to note that the solubility of these salts play 

a significant role on their surface tension values with a more soluble salt giving higher surface 

tension at a given level of saturation (Ozdemir et al., 2009b). As mentioned before, NaCl and 

NaF are structure makers. On the contrary, KCl, KI, KNO3, and K2SO4 are structure breaker 

salts. It is evident that there is no correlation between the surface tension of these salts and their 

structure making and breaking effect on the flotation response. 

The surface tension experiments with carbonate (Na2CO3 and K2CO3) and bicarbonate 

(NaHCO3 and NH4HCO3) solutions also showed the same trend that while carbonates 

significantly increases the surface tension as the salt concentration increase, the increase in the 

surface tension of NaHCO3 and NH4HCO3 solutions is not significant (Figure 19). 
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Figure 18. Surface tension of salts versus concentration up to the point of saturation at 25
o
C 

(Ozdemir et al., 2009b).  
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Figure 19. Surface tension of carbonate and bicarbonate salts versus concentration up to the 

point of saturation at 25
o
C (Ozdemir et al., 2006). 

4.2 Sum-frequency vibrational spectroscopy (SFVS) 

SFVS is a powerful nonlinear optical technique for investigating molecules at the salt 

water-air interfaces. Figure 20 shows the SFVS spectra of pure water, saturated NaHCO3 and 

saturated Na2CO3 solutions. The spectral feature of pure water as observed in the SFVS 
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spectrum is similar to the previous studies at the same air/water interface (Gopalakrishnan et 

al., 2005; Mucha et al., 2005; Shen and Ostroverkhov, 2006).  Generally, three OH stretching 

frequencies at ~3200, 3400, and 3700 cm
-1

 characterize the OH vibrations in water. The 

spectrum of pure water indicates that the interfacial water structure consists of a partially 

ordered and a partially disordered hydrogen bonding network. Compared to the spectrum of 

pure water, the intensity of the “ice-like” peak at 3200 cm
-1

 slightly decreases in the spectrum 

of the NaHCO3 solution, but significantly increases (~ by a factor of 4) in the Na2CO3 solution. 

The increase in the SFVS intensity suggests that more polar-ordered hydrogen bonding water 

network is formed at the surface of the Na2CO3 solution. In contrast, at the surface of the 

NaHCO3 solution, a weakly ordered water structure is suggested. These results are in good 

agreement with the surface tension of these salts. 
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Figure 20. The SFVS spectra for pure water, saturated sodium bicarbonate solution and 

saturated sodium carbonate solution in the O-H stretching region at the air-liquid interfaces at 

23
o
C (Du et al., 2008).  
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4.3. Ion-specific effect on froth stability and thin liquid films (TLF) 

4.3.1. Bubble coalesence in salt solutions   

The density of the bubbles in froth is decisive for flotation. Therefore, the effect of the 

inorganic salts on the froth stability was studied for the last four decades (Christenson and 

Yaminsky, 1995; Craig, 2004; Craig et al., 1993a; Craig et al., 1993b; Deschenes et al., 1998; 

Duineveld, 1998; Henry et al., 2007; Kim et al., 1990; Kim and Lee, 1988; Kumar and Ghosh, 

2006; Marrucci and Nicodemo, 1967; Nicodemo et al., 1972; Pashley and Craig, 1997; Pugh et 

al., 1997; Tsang et al., 2004; Vrtovsek et al., 1989; Weissenborn and Pugh, 1995a; 

Weissenborn and Pugh, 1995b; Yu and Jer, 1983). It was established that a number of 

inorganic salts inhibit the bubble coalescence above certain critical (transition) concentration in 

gas dispersion as compared to other salts with no effect (Christenson and Yaminsky, 1995; 

Craig, 2004; Craig et al., 1993a; Craig et al., 1993b; Deschenes et al., 1998; Duineveld, 1998; 

Henry et al., 2007; Kim et al., 1990; Kim and Lee, 1988; Kumar and Ghosh, 2006; Marrucci 

and Nicodemo, 1967; Nicodemo et al., 1972; Pashley and Craig, 1997; Pugh et al., 1997; 

Tsang et al., 2004; Vrtovsek et al., 1989; Weissenborn and Pugh, 1995a; Weissenborn and 

Pugh, 1995b; Yu and Jer, 1983).  

Thermodynamically, gas dispersion is very unstable system tending to decrease its total 

surface by multiple bubble collision. Physically, gas dispersion in the dynamic conditions of 

flotation is complex system with given rheology (Duineveld, 1995; Duineveld, 1998; Kim and 

Lee, 1988; Kumar and Ghosh, 2006; Yu and Jer, 1983) (approach velocity, bubble sizes, 

surface tension, etc.) and surface forces between the bubbles (Derjaguin and Landau, 1941; 

Verwey and Overbeek, 1948). In this context, inhibition of the bubble coalescence can occur 

by decreasing the surface tension (this enhances the disperse-ability of the gas phase into the 

liquid medium), by increasing the approach velocity of the bubbles (making them to bounce 

after their contact) and by increasing the electrostatic repulsion between the bubbles (by 

adsorption of ionic surfactants). The adsorption of surfactants on gas/liquid interface decreases 

the surface tension significantly and consequently inhibits the bubble coalescence. In contrast, 

the inorganic electrolytes increase the surface tension and suppress any electrostatic repulsion 

between the bubbles. Therefore, they should promote the bubble coalescence. However, most 

of the inorganic electrolytes stabilize bubbles above certain concentrations (Christenson and 

Yaminsky, 1995; Craig, 2004; Craig et al., 1993a; Craig et al., 1993b; Deschenes et al., 1998; 

Henry et al., 2007; Kim et al., 1990; Marrucci and Nicodemo, 1967; Nicodemo et al., 1972; 

Pashley and Craig, 1997; Tsang et al., 2004; Vrtovsek et al., 1989; Weissenborn and Pugh, 

1995b) at which the electrostatic repulsion between the bubbles is totally suppressed (Craig et 

al., 1993a; Craig et al., 1993b; Pashley and Craig, 1997). In addition, the bubble size appears to 

be important for the rate of bubble collision (Tsang et al., 2004). Some salts do not have an 

effect on the bubble coalescence at any concentration.   

It was observed that the density of bubbles in gas dispersion correlates well with certain 

combinations of the cation and anion of the salt (Craig et al., 1993a; Craig et al., 1993b; 

Pashley and Craig, 1997). An empirical rule was established  (Craig et al., 1993a; Craig et al., 

1993b; Pashley and Craig, 1997) according to which the ions are classified as  and  ions. 

This rule postulates that the effect of the salt is controlled by proper combination of ions: salt 

consisting of  cation and  anion or  cation and  anion inhibit the coalescence of the 

bubbles, while salts consisting of mixed  and  ions have no effect. 

It was believed that Marangoni effect on the surfaces of bubbles in contact impedes their 

coalescence by the Gibbs elasticity of the adsorption layer of the inorganic salts (Chan and 

Tsang, 2005; Prince and Blanch, 1990a; Prince and Blanch, 1990b), however this hypothesis 

was found recently inconsistent (Craig, 2004). An alternative way to explain the slower 

coalescence of bubbles suggested recently (Marcelja, 2006), is the electrostatic repulsion 
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between the bubbles. Their surface potential is generated by specific spatial distribution of 

anions and cations in the vicinity of the air/water interface. This ionic distribution occurs at 

distance less than 1 nm from water/air interface. Therefore, bubbles at distance larger than 2 

nm do not interact electrostatically due to the very small inverted Debye length (less then 

1nm). In addition, significant van der Waals and short-ranged spinodal cavitation attraction 

forces (Stevens et al., 2005) act between the bubbles at distance less than 10 nm. Another way 

to explain the prohibited coalescence of bubbles is that some combinations of ions can decrease 

the surface mobility of the gas/liquid interface thus immobilizing the surfaces of the bubbles 

however this hypothesis was refuted recently (Henry et al., 2008). This ion-specific effect does 

not correlate with the increment of the surface tension of water/air interface (Henry et al., 

2007) as well. 

Experiments with sum-frequency generation vibrational spectroscopy (SFG) and 

molecular dynamic simulations report (Du et al., 2008) that some salts in their brine solutions 

make the water structure network close to the water/air interface more compact while other 

salts make it less compact as compared to pure water. Thus the salts were classified as structure 

makers and structure breakers. However, these findings do not correlate with the ion-specific 

effect on bubble coalescence (Tables 2) (Craig et al., 1993a) as well. As seen from Tables 2 

there are structure makers and structure breakers (e.g. NaCl and KCl) both of which inhibit the 

bubble coalescence.  

 

Table 2. Effect of salts on the bubble coalescence (Craig, 2004) 

 Cations H+ Li+ Na+ K+ Cs+ Mg2+ Ca2+ NH4
+ (CH3)4N

+ (CH3)4NH+ (CH3)4NH2
+ (CH3)4NH3

+ 

Anions Type β α α α α α α α β β β β 

OH- α ×            

Cl- α ×        × × × × 

Br- α ×            

NO3
- α ×            

ClO3
- β   ×          

ClO4- Β   ×   ×  ×     

CH3COO- β   × × × × × ×     

SO4
2- α ×            

(COO)2
2- α ×            

Combining rules:  

αα or ββ salts inhibit bubble coalescence () 

αβ or βα salts do not inhibit bubble coalescence (). 

 

Therefore the ion-specific effect could be related to the bulk properties of the salt 

solutions. Interestingly, it was reported in the literature (Pugh et al., 1997; Weissenborn and 

Pugh, 1995b) that inorganic salts reduce the solubility of oxygen. Correlation between the 

solubility of oxygen and ion-specific effect on the bubble coalescence can be found (Pugh et 

al., 1997; Weissenborn and Pugh, 1995b). When existing, the ion-specific effect on bubble 

coalescence can be evaluated by the transition concentration of salt, beyond which the effect 

appears. The smaller the transition concentration, the stronger the ion-specific effect is.  The 

solubility of oxygen depends on the concentration of salt as an exponential decay function 

(Weissenborn and Pugh, 1996).  The larger the absolute value of exponential decay coefficient, 

the smaller the solubility of oxygen is. Figure 21 shows correlation between the decay 

coefficient and the transition concentration of salts. The lower the solubility of oxygen the 

stronger the inhibition of the bubble coalescence is. The salts with multivalent ions have 

strongest effect. Unfortunately, data on solubility of oxygen in the presence of different salts 

are scarce. These last findings give a hope that the ion-specific effect could be understood in 

near future. All of the experiments on bubble coalescence were performed with bubble 

columns, where the multiple gas bubbles were generated by passing purified air or nitrogen 
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through an orifice or through a porous surface such as a sintered glass disk. Therefore, the 

experimentally established rate for bubble coalescence is a statistical value based on the 

observation of multiple bubble collisions. There are no systematic literature data showing the 

behavior of foam film between two bubbles in contact of highly concentrated salt solutions. 

Such a study has been conducted recently by Karakashev et al (Karakashev et al., 2008). 

Micro-interferometric method of Scheludko has been utilized for studying foam films with two 

pairs of active (NaCl and LiCl) and inactive (NaClO3 and NaAc) salts. The foam films have 

been studied in open and closed cells. In open cell the foam film is in contact with the air of the 

lab, hence it can evaporate. In a closed system the foam film is in contact with saturated water 

vapors and, hence it cannot evaporate. According to the DLVO theory all the foam films 

should drain until rupture despite the kind of the salt. Indeed, in the case of open cell: the foam 

films prepared from the NaAc and NaClO3 solutions thinned until rupture; the foam films 

prepared from dilute (below 0.1 M) NaCl and LiCl salt solutions drained until rupture as well; 

however, the foam films prepared from concentrated NaCl and LiCl salt solutions were 

relatively stable and exhibited significant dynamics (see Fig. 22). Thus some salts stabilize the 

foam films, while others not. This is deviation from the prediction of the DLVO theory and 

ion-specific effect.  
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Figure 21. Correlation between the transition concentration exponential decay coefficients for 

oxygen solubility (Weissenborn and Pugh, 1996).  
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Figure 22.  Evolution with significant dynamic surface corrugations of a 4 M NaCl foam film, 

shown at a time interval of 5 s (from the top left to bottom right corner).  

 

Evaporation No evaporation

Ion-specific effects DLVO theory

Foam films

 

Figure 23. The ion-specific effects in thin foam films of concentrated salts observed under 

special conditions of evaporation and saturation.  

In the study of the drainage and stability of foam films of concentrated salt solution using 

the Scheludko cell technique (Karakashev et al., 2008) it was observed that in the case of 

closed cell saturated by vapour of the salts all the foam films drained until rupture thus 

exhibiting short lifetime. Hence, they followed the prediction by the classical colloidal theory 

known as the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory (Nguyen and Schulze, 

2004). The ion-specific effects in thin liquid films were observed when the films were in 

contact with unsaturated environment of the Scheludko cell open to the ambient atmosphere 

and might undergo fast evaporation. These interesting observations of the effect of saturation 

by salt vapour and the evaporation of salt solutions from the foam films are illustrated in Fig. 

23.  
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4.4 Molecular dynamics simulations 

4.4.1. Brine/air interface 

A MDS snapshot of the Na2CO3 solution and a corresponding number density 

distribution plot is shown in Figure 24. It is evident from the snapshot that, both sodium and 

carbonate ions are excluded from the air/water interface due to significant hydration of these 

ions. The particle number density plot further reveals the deficiency of ions at the air/water 

interface over a region extending to about 10 Angstroms in thickness, showing a strong 

negative adsorption for both Na
+
 ions and CO3

2-
 ions, which accounts for the increased surface 

tension reported previously (Andersson et al., 2007; Gopalakrishnan et al., 2005; Jungwirth et 

al., 2006; Jungwirth and Tobias, 2002; Jungwirth and Tobias, 2006; Thomas Jennie et al., 

2007) and will be further discussed later. Similar MD simulation observations have also been 

reported regarding Na2SO4 solutions (Gopalakrishnan et al., 2005). 

 

Figure 24. Snapshot of aqueous sodium carbonate solution (2.0 M) (left) and particle number 

density distributions along surface normal (right). The color representations are as follow: 

Cyan-Carbon, Green-Sodium, Red-Oxygen, and White-Hydrogen (Du et al., 2008). 

In contrast, for the NaHCO3 solution shown in Figure 25, HCO3
-
 ions occupy a portion of 

the air/water interface due to some affinity of HCO3
-
 ions for the air/solution interface. The 

obvious HCO3
-
 ion number density peak at the interface suggests that the presence of 

bicarbonate ions is energetically favorable.  As might be expected, the Na
+
 ion peak follows 

the HCO3
- 

ion peak in order to satisfy the cation/anion columbic interactions. However, the 

concentration of sodium and bicarbonate ions at the interface is still lower than in the bulk 

solution, suggesting a slightly negative adsorption state.  
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Figure 25. Snapshot of aqueous sodium bicarbonate solution (1.1 M) (left) and particle number 

density distributions along surface normal (right). The color representations are as follow: 

Cyan-Carbon, Green-Sodium, Red-Oxygen, and White-Hydrogen (Du et al., 2008). 

The changes in surface tension of salt solution (compared to pure water) from MDS 

analysis and from experimental measurements are listed in Table 3. As seen in Table 3, the 

calculated surface tension values with respect to the surface tension of pure water are in good 

agreement with the experimental measurements qualitatively. The significant increase of 

surface tension of saturated Na2CO3 solution is due to the strong negative adsorption of 

carbonate at the air/water interface as discussed previously; the carbonate ion is excluded from 

the interfacial region due to strong hydration forces.  In contrast, only a slight surface tension 

increase has been noticed for the saturated NaHCO3 solution due to a much less significant 

negative adsorption of the bicarbonate ion at the interface.  

 

Table 3. Comparison of simulated and experimental results for the increase in surface tension 

relative to pure water (Du et al., 2008) 

Salt Concentration, M 
Surface tension change, mN/m 

MDS calculation Experimental measurement 

Na2CO3 2.0 5.6 0.6 3.8 

NaHCO3 1.1 2.0 1.0 0.8 

 

It is also interesting to notice in Figure 26 that the orientations of water molecules in the 

sodium carbonate solution are totally different when compared to pure water and/or sodium 

bicarbonate solution as suggested by the sign of cos . In sodium carbonate solution, the 

weak local electric field due to the presence of carbonate ions in the middle of the solution has 

a significant influence on the orientation of water molecules. Thus, the water hydrogen atoms 

point toward the bulk solution, while the water oxygen atoms point toward the air/solution 

surfaces. On the other hand, in pure water and sodium bicarbonate solution, the water 

orientation results from the inhomogeneous properties between the air and the solution phases. 

Consequently, at the air/sodium bicarbonate solution interface, water hydrogen atoms are in 

contact with air, and water oxygen atoms are in contact with the aqueous phase.  
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Figure 26. Average water dipole moment cos  as a function of location in the sodium 

carbonate, sodium bicarbonate, and pure water solutions from MD simulations. (The Gibbs 

dividing surface is defined as the position where water density is equal to one-half its bulk 

density) (Du et al., 2008). 

The combination of sum-frequency vibrational spectroscopy (SFVS) and molecular 

dynamics simulation (MDS) has been validated to be able to provide further information on 

air/solution interfacial phenomena, especially the interfacial water structures due to the 

presence of ions (Andersson et al., 2007; Gopalakrishnan et al., 2005; Jungwirth et al., 2006; 

Jungwirth and Tobias, 2002; Jungwirth and Tobias, 2006; Raymond and Richmond, 2004; 

Thomas Jennie et al., 2007; Walker and Richmond, 2007a; Walker and Richmond, 2007b). It is 

reported that charge, size, and polarizability of ions have significant effects on the distribution 

of ions in the interfacial region (Andersson et al., 2007; Gopalakrishnan et al., 2005; Jungwirth 

et al., 2006; Jungwirth and Tobias, 2002; Jungwirth and Tobias, 2006; Thomas Jennie et al., 

2007). For example, sulfate ions are significantly excluded from the interfacial region 

(Gopalakrishnan et al., 2005). An increase of water SFVS signal has been obtained due to the 

substantially expended interfacial distance and more ordered interfacial water structures due to 

the strong hydration of the sulfate ions. In addition, calculation of the change of brine solution 

surface tension from MDS has been reported for selected salts with satisfactory accuracy 

(Jungwirth and Tobias, 2001; Jungwirth and Tobias, 2006). 

4.5 Modelling of adsorption and surface tension of brine solutions 

The Gibbs surface thermodynamics has been used to model adsorption at and surface 

tension of the air-salt solution surfaces. The Gibbs adsorption equation gives the change, d , 

in surface tension relative to water (solvent) as; 
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where i  is the adsorption excess of the i-th solute with the bulk concentration ic , k is the 

Boltzmann constant and T is the absolute temperature. The modeling of the adsorption excess 

is critical to predicting surface tension of salt solutions and has been presented a major 

modeling challenge for many decades as discussed below. 

The increase in surface tension of electrolyte solutions was first modeled by Wagner 

(Wagner, 1924), and then Onsager and Samaras (Onsager and Samaras, 1934). The potential, 

iE , of the repulsive electrostatic image forces on the solute ions was used to determine the 

adsorption excess by integrating the solute energy from infinity (in solution) to the Gibbs 

dividing surface as; 

  
0

exp / 1i i i i ic E x z e kT dx



         [2] 
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where iz  is the charge of the i-th solute, e is the charge of the proton,  is the Debye constant,  

is the dielectric constant of water, and x is the distance of the i-th solute measured from the 

Gibbs dividing surface. The electric potential, i , of the i-th solute ion was obtained from the 

solution of the Poisson-Boltzmann equation linearized for the low ionic potential. Onsager and 

Samaras (Onsager and Samaras, 1934) calculated the surface tension as a sum of a series and 

tabulated this sum. For very dilute salt solutions, the authors found an analytical expression for 

the surface tension, referred to as the Onsager-Samaras limiting law nowadays, which shows a 

linear increase in the surface tension with increasing salt concentration. For 1:1 salts, the 

limiting law yields 

 1.012 ln 1.467 /water c c    [4] 

where the salt concentration is given in M. 

 

 

Figure 27. Comparison of the Onsager-Samaras limiting law (dashed line) and the Markin-

Volkov theory (solid lines) with the experimental data (points) for the surface tension of 

sodium and potassium chloride solutions (Markin and Volkov, 2002). water     . 
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Further efforts have been focused on developing a theory which accounts for the 

additional effects on the ion distribution at the surface. Randles considered the effect of ion 

hydration on the adsorption excess and assumed that there should be an salt ion-depletion  

layer in the subsurface vicinity (Randles, 1957). The author considered that the smaller ions 

should have larger hydration radii and vice versa. Therefore, the small ions have a larger 

affinity to water, resulting in stronger repulsion (expel) from the water-air interface and higher 

increment of the surface tension as experimentally determined (Weissenborn and Pugh, 1996). 

The addition of the ion solvation energy into Eq. [2] can improve the prediction of the surface 

tension of aqueous solutions of inorganic electrolytes (Manciu and Ruckenstein, 2003; Markin 

and Volkov, 2002). Figure 27 shows a comparison between the experimental data and the 

theories. 

The role of dispersion forces (Mahanty and Ninham, 1977) in the ion-surface interactions 

has also been investigated (Bostroem et al., 2005; Bostroem and Ninham, 2004; Bostroem et 

al., 2001; Kunz et al., 2004; Ninham and Yaminsky, 1997). The ion distribution at the surface 

was obtained by solving the recast Poisson-Boltzmann equation which for 1:1 salts can be 

described as; 

   2

2

0

e c x c xd

dx

 
   



 
 [5] 

  0 exp
image dispersion solvationE E E e

c x c
kT



   
  

 


 [6] 

Equations [5] and [6] have to be solved numerically to obtain the ionic potential and the 

ion distributions which then can be used to calculate the ion adsorption excess and surface 

tension. Generally, these improved theories show the increase in surface tension of alkali 

halide solutions. However, the quantitative agreement between the theories and the 

experimental data is still far from being satisfactory. The magnitude of the surface potential 

obtained by the theories is also significantly different from the available experimental data.   

Molecular dynamics (MD) simulation has also been used to predict the surface tension of 

alkali halide salt solutions (Jungwirth and Tobias, 2001; Mahiuddin et al., 2008; Minofar et al., 

2007). Only qualitative agreement between the MD simulation results and the experimental 

data has been achieved, i.e., the simulation confirms that the surface tension of alkali halide 

solutions increases with increasing salt concentration. The simulation also shows different 

distributions of cations and anions at the air-water surface, i.e., the anions are usually closer to 

the interface than the cations. Based on these theories, most of the salts increase the surface 

tension of aqueous solutions which means that salt ions are excluded from the air-brine 

interface. Our previous studies showed that NaCl and NaF are structure makers. On the 

contrary, KCl, KI, KNO3, and K2SO4 are structure breaker salts. As seen from the surface 

tension results of these salts, they increase the surface tension of aqueous solutions.  

It is noted that, while the molecular modeling of the adsorption excess of salt ions and 

the surface tension of salt solutions has been difficult, a semi-analytical approach to the 

prediction of the surface tension can be useful. It is based on the Gibbs adsorption equation and 

the empirical correlation of the ion activity with the salt concentration (Ozdemir et al., 2006; 

Ozdemir et al., 2009b). The Gibbs adsorption equation used in this modeling exercise is 

generally expressed in term of the ion activity, a, rather than the concentration used in Eq. [1] 

which is normally correct for low concentration only. For cation, M, and anion, X, dissociated 

from a single salt, MX, the Gibbs adsorption equation used is given as;        
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   ln lnX X X M M Md kT v d a v d a         [7] 

where Mv  and Xv  are the stoichiometric coefficients of the salt. Equation [7] can be used, in 

conjunction with the Langmuir adsorption isotherm for the salt ions and the Pitzer theory 

(Pitzer, 1973; Pitzer and Kim, 1974; Pitzer and Mayorga, 1973; Pitzer and Mayorga, 1974) for 

the ion activities, a , to calculate the surface tension as a function of salt concentration.  

Figure 28 shows a few examples of the model predictions for the surface tension of 

sodium and potassium chloride, and sodium carbonate and bicarbonate with concentration up 

to the limit of saturation. The agreement is excellent. The only disadvantage of the semi-

empirical modeling approach is the required dependence of the ion activity on the salt 

concentration. However, for many typical salts, the dependence is already measured and 

readily available. 
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Figure 28. Comparison between the surface tension data (points) and the semi-empirical 

predictions (lines) based on Eq. [7], the Langmuir adsorption isotherm and the the Pitzer theory 

for the ion activity (Ozdemir et al., 2006; Ozdemir et al., 2009b). 

5.  Effect of ions at the solid/brine interfacial properties     

5.1  Contact angle 

Contact angle measurements are often used in flotation studies to describe the extent of 

wetting or the hydrophobicity of a surface. It appears from previous studies that in the presence 

of water structure maker ions, salt surfaces are hydrated to the greatest extent, and a contact 

angle is not detected, whereas in the presence of water structure breaker ions the surface 

appears to be less hydrated and finite contact angles can be measured in the absence of 

collector (Hancer et al., 2001). For example, Table 4  presents sessile drop contact angle 

measurements with a drop of brine in the absence of collector (Hancer et al., 2001).  

 

Table 4. Advancing contact angle on soluble salt crystals in their saturated solutions in the 

absence of collectors (Ozdemir et al., 2009a) 

Salt Contact Angle, degree 
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KI 25±2 

KCl 7.9±0.5 (12±1.4) 

NaCl 0 

NaF 0 

Na2CO3 0 

NaHCO3 19.8 

Trona 0.4 

 

The contact angle measured for carbonate salts using the thin-layer wicking method also 

indicated that the surfaces of structure making salts such as Na2CO3 and trona were hydrated to 

such a great extent that a contact angle could not be measured for these salts, whereas the 

structure breaking NaHCO3 salt was less hydrated and a finite contact angle was measured. 

 

Table 5. Bubble attachment results for selected alkali salts (Yalamanchili et al., 1993) 

Alkali 

halide 

Bubble 

Attachment 

LiF N 

NaF N 

KF N 

RbF N 

CsF N 

LiCl Y 

NaCl N 

KCl Y 

RbCl N 

CsCl Y 

LiBr Y 

NaBr Y 

KBr Y 

RbBr Y 

CsBr Y 

LiI Y 

NaI Y 

KI Some 

RbI Y 

CsI N 

NaI.H2O N 
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Figure 29. The effect of (top) DAH and (bottom) SDS concentration on attachment time 

between air bubbles and NaHCO3 particles at pH 8.4 in saturated solution of NaHCO3 (1.1 M) 

(Ozdemir et al., 2009a). 
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Table 6. Measured attachment times for different concentrations of DAH and SDS at a bed of 

NaHCO3 and Na2CO3 particles (150×106 microns) (Ozdemir et al., 2009a) 

 

5.2  Bubble attachment time 

The bubble attachment time experiments can also be carried out to characterise the 

hydrophobicity of mineral particles either in their natural state or with surfactant addition. 

Table 5 presents the bubble attachment results for selected alkali salts with dodecylamine 

hydrochloride. As seen from the table, while there is an attachment between the structure 

breaker salts such as KCl, CsCl, and RbBr etc., and bubble, no attachment was observed 

between the structure maker salts such as NaCl, and RbF and KF etc, and bubble 

(Yalamanchili et al., 1993).  

Ozdemir et al (Ozdemir et al., 2009a) studied the bubble-particle attachment carbonate 

and bicarbonate soluble salts with dodecylamine hydrochloride and sodium dodecyl sulphate in 

detail. As seen in Figure 29, there is an attachment between the NaHCO3 particles and a 

bubble, and the bubble attachment times for NaHCO3 decrease with increasing DAH and SDS 

concentrations. However, in the case of Na2CO3, as seen from Table 6, there is no attachment 

of Na2CO3 particles in its saturated solutions (2.3 M) even at high concentrations of DAH and 

SDS. 

The results shown in Table 6 indicated that NaHCO3 surface has a lower stability which 

allows easier penetration of both anionic and cationic collectors to the surface of NaHCO3 

leading to good flotation, as shown in bubble attachment time measurements. However, it is 

not the case for Na2CO3. This can be explained by the fact that the ion specific effect plays on 

important role on attachment time of these salts. For instance, dissolved ions Na
+
 and CO3

2-
 

can significantly affect the interfacial water structure at the salt surface and inhibits the bubble-

particle attachment which accounts for the difficulty in the flotation of Na2CO3. In contrast, the 

Na
+
 and HCO3

-
 ions cause only a modest increase in water structure at the salt surface and 

make the bubble-particle attachment possible which accounts for the flotation of NaHCO3.  

5.3 Electrokinetics of soluble salt minerals 

Sparingly soluble minerals when dissolved in water will release a number of species into 

solution. These ionic species will produced at the solid-liquid interface or may form in solution 

and subsequently adsorb on the solid in amounts proportional to their concentrations. The 

electrokinetic behavior is an indicator of the ability of ions to be incorporated in the double 

layer and, in particular, may reveal the expected flotation response for a certain collector 

scheme. In this matter, the measurement of surface charge is always important to understand 

the interaction between mineral and collector. The electrophoretic mobilities, surface charge 

and floatability of the salt crystals are presented in Table 7. As seen from the table, even the 

negatively charged salts can float with both the cationic (DAH) and anionic (SDS) collectors, 

Collector 

Concentration 

(M) 

Attachment time with 

NaHCO3 (ms) 

Attachment time with 

Na2CO3 (ms) 

DAH SDS DAH SDS 

No collector 1800 1800 No attachment No attachment 

110
-6

 1800 1800 No attachment No attachment 

110
-5

 270 200 No attachment No attachment 

510
-5

 100 60 NA NA 

110
-4

 45 40 No attachment No attachment 
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whereas the others are not floated with either of collector. It is clear from these results that 

surface charge is not a particularly important factor in the flotation of the salts (Veeramasuneni 

et al., 1997; Yalamanchili et al., 1993). 

 

Table 7. Electrokinetic mobility, surface charge and floatability of some salt crystals (Hancer 

et al., 2001; Ozdemir et al., 2009a) 

Salt 
Electrophoretic Mobility 

(ζ/sec)/(V/cm) 

Surface 

Charge 

Flotation 

DAH SDS 

KCl -0.43±0.19 - Yes Yes 

NaCl +0.19±0.10 + No No 

NaF +0.16±0.12 + No No 

Na2B4O7.10H2O -1.68±0.11 - Yes Yes 

Na2CO3 -0.91±0.23 - No No 

NaHCO3 -1.16±0.31 - Yes Yes 

 

As mentioned before, boron minerals exhibit a spectrum of different chemical 

compositions with cations ranging from monovalent to multivalent ions. The type and valency 

of the cation dictate the solubility of the mineral and in turn its electrokinetic behavior. Salt 

type minerals such as borates release a number of species upon dissolving in water. For 

example, colemanite containing Ca
2+

 ion in its structure undergoes acid base reactions in the 

vicinity of pH 9.3. The following overall dissolution process for colemanite occurs in a system 

open to the atmosphere (Celik and Yasar, 1995). As seen from Figure 30, the iep of borax 

appears to be absent or impossible within the pH range of stability. Further studies showed that 

the potential determining ions (pdi) for borax are found to be the constituent lattice cations, i.e., 

the anion B4O7
2-

 (borate), and the H
+
 and OH

-
 ions which control ratio of HCO3

-
/CO3

2-
 (Celik 

and Yasar, 1995; Yarar, 1985). 
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Figure 30. Zeta potential of borax as a function of pH (Muduroglu et al., 2000). 
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Zeta potential measurements of borax were further conducted with SDS and DAH 

collectors in order to test the validity of electrostatic interactions in saturated borax solutions. 

Figure 31 presents the zeta potential profiles of borax in the presence of SDS and DAH. While 

DAH reduces the zeta potentials from -14.4 down to -1.6 mV, SDS increases the negative 

charges from -14.4 up to -26.1; these results distinctly illustrate the existence of electrostatic 

interactions in the system. 
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Figure 31. Zeta potential of borax in the presence of anionic (SDS) and cationic (DAH) 

collectors (Muduroglu et al., 2000). 

5.4 Molecular dynamics simulations 

The obvious change of water molecule orientations at different alkali chloride crystal 

surfaces is due to the variation of cation size and consequently the columbic interaction 

between water molecules and lattice ions at salt surface. When small Li
+
 ions are present, the 

interaction between surface Li
+
 ions and the oxygen atoms of water  molecules dominates 

compared to the interaction of water hydrogen and surface Cl
-
 ions due to the larger local 

electric field around the small Li
+
 (Koneshan et al., 1998b). Therefore, at a LiCl crystal 

surface, a layer of water molecules with oxygen atoms in close contact at the crystal surface 

and hydrogen atoms stretched out to the water phase (represented schematically in Figure 32a) 

is energetically favorable. The presence of the second water layer with opposite orientation 

neutralizes the dipole moment of water molecules in the first layer. As the cation size 

increases, the magnitude of local electric field decreases accordingly, thus, at a NaCl surface 

water molecules tilt to such an orientation that water oxygen atoms are further away from the 

crystal surface while water hydrogen atoms are closer to the surface as seen  in Figure 32b.  

Similar water structures at a NaCl crystal surface have also been obtained from ab initio 

calculation (Pramanik et al., 2005), density function calculation (Park et al., 2004), and Monte 

Carlo simulations (Engkvist and Stone, 2000). With further increase of cation size to K
+
 and 

Rb
+
, the interaction between water hydrogen atoms and surface Cl

-
 ions is significant enough 
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to compete with the cation/water oxygen interaction. Hence a hydrogen/oxygen/hydrogen 

configuration of interfacial water molecules seen in Figure 32c is favored. 

 

LiCl KCl/RbClNaCl
a b c

 
 

Figure 32. Schematic representations (from simulation snapshots) describing different 

orientation of interfacial water molecules at different alkali chloride surfaces (Du and Miller, 

2007b). 

The interfacial water structure at different alkali halide salt surfaces can be further 

studied from the water dipole moment distributions at the crystal surface. Figure 32 describes 

the water dipole moment density distribution profiles along crystal surface normal for LiCl and 

KCl respectively. It is observed in Figure 33a for the LiCl surface that a sharp peak for   is 

found at around 20
o
 followed by another major peak for   at around 120

o
. With further 

increase in the cations size, some dramatic changes are observed as illustrated in Figure 33b for 

the KCl system. The two interfacial water layers at LiCl crystal surface have been replaced by 

one layer with two density peaks for   located at around 130
o
 and 40

o
, respectively, and the 

magnitude of the peak is slightly larger at 40
o
. The orientation of interfacial water molecules at 

the KCl crystal surface is a result of the balance between K+ ion/oxygen and Cl
-
 ion/hydrogen 

interactions, and suggests that these two interactions are of comparable magnitude. The water 

molecules show significant disorder. 

 

 

a b

 

Figure 33. Water dipole moment (angle ) density distribution LiCl and KCl salt surface 

normal (Du and Miller, 2007b). 
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An accurate measurement of equilibrium alkali halide crystal surface charge has always 

been a challenging task due to the dynamic dissolution and recrystallization processes which 

happen at the crystal surface. The surface charge of alkali halide crystals in saturated solution 

has been calculated as the summation of cation and anion number density at a designated 

distance from the surface, and the sign of the salt surface charge is summarized in Table 8. For 

comparison, theoretical and experimental results reported in the literature are listed as well.  

 

Table 8. Surface charge of selected alkali halide crystals in saturated solution and comparison 

with analytical model and experimental results (Du and Miller, 2007b) 

Salt  

Cutoff 

Distance 

 

(Angstrom) 

Surface Charge 

This 

Study 

 (MDS) 

Analytical 

 Model (Veeramasuneni et al., 

1997) 

Experimental  

Results (Miller et al., 1992; Yalamanchili et 

al., 1993) 

LiCl 12.5 - - - 

NaCl 13.0 + + + 

KCl 14.0 + + - 

RbCl 14.0 + + + 

 

The sign of the surface charge for selected alkali chloride salt surfaces in saturated 

solutions obtained from this MD simulation study are in excellent agreement with the results 

from extended lattice hydration theory results, which takes into consideration the lattice ion 

hydration free energy as well as ion size effects (Veeramasuneni et al., 1997). It has been 

suggested that surface lattice ions are partially hydrated; therefore, instead of considering ion 

hydration energy alone, which accounts for the hydration of the gaseous ions, an ion-water 

dipole interaction has to be considered (Veeramasuneni et al., 1997). This ion-water dipole 

interaction accounts for the transaction of a partially hydrated surface lattice ion to be a free 

(vacuum) surface lattice ion (Veeramasuneni et al., 1997). In LiCl system, due to a much larger 

hydration energy (-470.7 kJ/mole for Li
+
 and -347.27 kJ/mole for Cl

-
 (Hunt, 1963; Miller et al., 

1992), Li
+
 ions in the LiCl crystal lattice have a greater tendency than Cl- ions to be dissolved 

into water, therefore leaving the salt surface negatively charged (Miller et al., 1992; 

Veeramasuneni et al., 1997; Yalamanchili et al., 1993). In contrast, due to a much larger ion-

water dipole interaction (-35.37 kJ/mole for Cl
-
 and 4.3 kJ/mole for Na

+
 (Veeramasuneni et al., 

1997), the dissolving of partially hydrated surface lattice Cl
- 

is energetically more favorable 

than the dissolving of surface Na
+
 despite the fact that Na

+
 has a larger hydration energy (-

371.54 kJ/mole) (Hunt, 1963; Veeramasuneni et al., 1997). For KCl and RbCl salts, the 

hydration of Cl
-
 is dominating, consequently, the salt surfaces are positively charged 

(Veeramasuneni et al., 1997). The obvious difference with respect to the sign of the surface 

charge for the KCl experimental results has been attributed to the presence of oxygen defects in 

the KCl crystal lattice (Veeramasuneni et al., 1997; Yalamanchili et al., 1993). Also, from the 

extended lattice hydration theory, the difference between hydration energies of K
+
 and Cl

-
 is 

3.46 kJ/mol (Veeramasuneni et al., 1997; Yalamanchili et al., 1993),  and this might account 

for the anomalous behavior of KCl during the sensitive nonequilibrium electrophoresis 

measurement (Veeramasuneni et al., 1997; Yalamanchili et al., 1993). The consistency 

between MD simulation and the literature results regarding the surface charge of alkali halide 

salt crystal suggests that the MD simulation provides a valid method for the analysis of surface 

charge in the case of ionic solids.  

The dynamics of water molecules at selected alkali chloride salt surface study has 

concluded that first of all, in general, water molecules in KCl and RbCl saturated solutions 

diffuse significantly faster than they do in NaCl and LiCl saturated solution. This is because in 
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NaCl and LiCl solutions the cation/water interaction is stronger, and thus water molecules have 

been immobilized to a greater extent. Similar observations have also been reported for a variety 

of alkali halide solutions (Allen and Tildesley, 1987; Chowdhuri and Chandra, 2001; Du and 

Miller, 2007b; Du et al., 2007a; Koneshan and Rasaiah, 2000; Koneshan et al., 1998b). 

Secondly, the self-diffusion coefficient for water molecules in the salt/water interfacial region 

is significantly lower than that of in bulk water. In the interfacial region, where ion 

dissolution/deposition processes dominate, there is a substantial accumulation of ions. As a 

result, the movement of water molecules in this region is confined due to the ion/water 

interactions. Thirdly, the diffusion of water molecules in bulk shows strong concentration 

dependence. In LiCl saturated solution (~14 M), the self-diffusion coefficient of water 

molecules in the bulk solution (~0.8.10
-9

 m
2
/sec) is significantly lower than the self-diffusion 

coefficient in pure water (~2.5.10
-9

 m
2
/sec) (Berendsen et al., 1987; Du and Miller, 2007b; Du 

et al., 2007a) due to the large concentration of ions (especially Li
+
 ions) which interact strongly 

with water molecules and immobilize them. In contrast, in KCl saturated solution (~4.8 M), the 

water self-diffusion coefficient in bulk solution (~2.5.10
-9

 m
2
/sec) is similar to the value of 

pure water. Possible explanation is that a large number of ions are accumulated in the 

crystal/water interfacial region, thus ion concentration in bulk solution is relatively low. Also, 

the ion/water interactions are weaker when compared to LiCl system, and consequently water 

molecules are more mobile.   

For water molecules in the interfacial region, their residence time shows clear cation 

dependence as LiCl NaCl KCl RbCl      . This is due to the fact that small cations such as Li
+
 

and Na
+
 interact stronger with water molecules when compared to large cations such as K

+
 and 

Rb
+
, consequently, water molecules are immobilized more significantly around small cations. 

The inconsistency involving KCl and RbCl interfacial water is due to a higher RbCl saturation 

solution concentration. The variation of interfacial water residence time is in excellent 

agreement with water self-diffusion coefficients. In bulk solutions, water molecules move 

faster when compared to water molecules at crystal lattice positions and interfacial water 

molecules as indicated by the short residence times and large diffusion coefficients. Especially 

for water molecules in bulk KCl solution, the residence time (5.9 ps) and self-diffusion 

coefficient (~2.5.10
-9

 m
2
/sec) are very close to pure water value (~5 ps and ~2.5.10

-9
 m

2
/sec 

respectively) (Berendsen et al., 1987; Du and Miller, 2007b; Du et al., 2007a; Koneshan et al., 

1998b).  

5.5 General discussion 

A high concentration of dissolved ions in brines modifies the bulk and interfacial water 

structure, and this effect is a significant factor in the flotation chemistry of soluble salts. 

Particularly, recent studies showed that consideration of hydration phenomena at salt crystal 

surfaces provides a better explanation for the flotation of soluble salts even when the collector 

is charged the same as the salt and the flotation of soluble salts depends on the dissolved ions 

of these salts (Du et al., 2008; Hancer et al., 2001; Miller et al., 1992; Ozdemir et al., 2007; 

Ozdemir et al., 2009a; Ozdemir et al., 2006). The previous studies in dilute electrolyte 

solutions also showed the same effect of structure making and breaking properties of salt ions 

on the adsorption process (Ma and Pawlik, 2006). 

All the results show that the dissolved ions significantly affect the flotation of these 

soluble salts. While some dissolved ions activate the flotation of minerals, some of them 

reduce the flotation of these salts. As mentioned before while NaHCO3 floats with both 

anionic and cationic collectors, Na2CO3 does not float at all.  It can be said that NaHCO3 

surface has a lower stability which allows easier penetration of both anionic and cationic 

collectors to the surface of NaHCO3 leading to good flotation as shown in bubble attachment 
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time measurements. However, this is not the case for Na2CO3. This can be explained by the 

fact that the ion specific effect plays an important role on the bubble attachment time at the 

surface of these salts. For instance, dissolved ions Na
+
 and CO3

2-
 can significantly affect the 

interfacial water structure at the salt surface and inhibit the bubble-particle attachment which 

accounts for the difficulty in the flotation of Na2CO3. In contrast, the Na
+
 and HCO3

-
 ions 

cause only a modest increase in water structure at the salt surface and make the bubble-particle 

attachment possible which accounts for the flotation of NaHCO3.  

Trona does not float well in its saturated brine with DAH (Ozdemir et al., 2009a). 

Additionally, the limited floatability of trona with DAH is reduced slightly after adding 110
-2

 

M of Na2CO3 to the brine. This result indicates that the structure making character of Na2CO3 

has a significant impact on trona flotation, making the direct flotation of trona from its brine 

difficult. The same effect was also observed in the flotation of NaHCO3 in the presence of 

Na2CO3. These results suggest that the effect of the bicarbonate ion on the water structure is 

negligible when compared to the carbonate ion. It appears from these results that when one of 

the ions in a salt is a water structure breaker whereas the other a structure maker, one of them 

might be dominant in determining the extent of water structuring. The results reported here 

indicate that instead of Na
+
 ion, which is normally a structure maker, it is rather the HCO

3-
 

anion, a structure breaker, dominates water structuring in soluble salt systems.  

All this discussion refers to water structure making and braking effect of ions. However, MDS 

studies are not conclusive in this. Ion specificity appears to be significant. Thus the above 

analysis on trona does not include this aspect. 

6.  Conclusions 

The flotation chemistry of soluble salts such as alkali halides and alkali oxyanion salts 

has been studied by many researchers and it appears that the interfacial water structure and 

hydration states of soluble salt surfaces are of considerable importance in explaining their 

flotation behavior. Generally, soluble salts can be classified as structure makers or as structure 

breakers. Structure making salts such as NaCl, strongly bond/order water molecules at the salt 

surface, prevent adsorption of collector, and inhibit flotation with either a cationic or an anionic 

collector. Structure breaking salts such as KCl have a tendency to disorganize the structure of 

water at the salt surface; thus a collector may more easily reach the surface, creating the 

hydrophobic state and further allowing for the flotation of such structure breaking salts with 

both cationic and anionic collectors. 

The flotation behaviour of soluble salt minerals is influenced by dissolved salts and is 

determined by the specific effect of these ions. The effect of these ions at air/liquid, air/solid, 

and solid/liquid interfaces has been investigated in more detail using several experimental 

techniques. All of these studies suggest that ion specificity is the most significant factor in 

governing the flotation surface chemistry of soluble salt minerals with both anionic and 

cationic collectors.  
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