
CPU Reservations and Time Constraints:
Implementation Experience on Windows NT

Michael B. Jones
Microsoft Research, Microsoft Corporation

One Microsoft Way, Building 31/2260
Redmond, WA 98052, USA

mbj@microsoft.com
http://research.microsoft.com/~mbj/

John Regehr
Department of Computer Science, Thornton Hall

University of Virginia
Charlottesville, VA 22903-2242, USA

regehr@virginia.edu
http://www.cs.virginia.edu/~jdr8d/

Abstract
This paper presents an implementation of scheduling

abstractions originally developed for the Rialto real-time
operating system within a research version of Windows
NT called Rialto/NT. These abstractions, CPU
Reservations and Time Constraints, as described in the
1997 SOSP paper [Jones et al. 97], are intended to allow:
(1) activities to obtain minimum guaranteed execution
rates with application-specified reservation granularities
via CPU Reservations, and (2) applications to schedule
tasks by deadlines via Time Constraints, with on-time
completion guaranteed for tasks with accepted constraints.

The Rialto/NT scheduler differs from the original
Rialto scheduler in several key respects. First, it has been
extended to schedule multiprocessors—this is the primary
new intellectual contribution of this work. It has been
adapted to operate with operating system clock services
that only provide timing interrupts at regular periodic
intervals measured in milliseconds, rather than being able
to schedule clock interrupts at arbitrary sub-millisecond
points of time. It coexists with the existing Windows NT
scheduler, allowing it to schedule time not scheduled by
itself. Finally, it has been implemented in a particularly
non-intrusive manner, using rather than replacing the
existing Windows NT priority-based scheduler.

Results presented will demonstrate that CPU
Reservations and Time Constraints can be effectively
implemented on multiprocessors. We will also describe
the implementation techniques chosen and tradeoffs made
as a result of implementing within Windows NT. Finally,
we will present performance results and execution traces.

1. Introduction
1.1 Research Context

Novel implementations of two real-time scheduling
abstractions were developed within the Rialto real-time
operating system [Jones et al. 97, Jones et al. 96]: CPU
Reservations and Time Constraints. These abstractions
allow activities to obtain minimum guaranteed execution
rates with application-specified reservation granularities
via CPU Reservations, and to schedule tasks by deadlines
via Time Constraints, with on-time completion guaranteed
for tasks with accepted constraints.

The goal of this work is to investigate the feasibility
of bringing benefits of predictable Rialto-style scheduling

to Windows NT applications. This paper describes a re-
implementation of the Rialto scheduling abstractions in a
research version of Windows NT called Rialto/NT. Our
implementation is based on Windows 2000 Beta 3.

This paper assumes that the reader is already familiar
with the results and techniques presented in [Jones et al.
97] and builds directly upon them.

1.2 New for Windows NT
There are several key differences between Rialto and

Windows NT that affected this work. Some of these are:
• Multiprocessor — Windows NT can be run on

symmetric multiprocessors. The Rialto scheduler was
designed only for scheduling uniprocessors.

• Periodic Clock — Time is kept on Windows NT
using periodic interrupts that advance the system’s
record of the current time. The interrupt frequencies
are settable to values supported by the Hardware
Abstraction Layer (HAL) being used; however, these
values are restricted to integer multiples of
milliseconds. (For more on HALs and timing see
[Jones & Regehr 99].) On Rialto, the clock interrupts
occurred on an aperiodic, as-needed basis with
precision on the order of one microsecond.

• Existing Scheduler — Windows NT has an existing
priority-based scheduler. Under Rialto, ours was the
only scheduler. One of the Rialto/NT goals is to
coexist with the existing Windows NT scheduler,
allowing applications using it to obtain approximately
the same behaviors as they did before our changes.

A related decision that distinguishes this work from
both the original Rialto implementation of CPU
Reservations and Time Constraints and the previous
Vassal [Candea & Jones 98] scheduling work on Windows
NT is that we decided to implement the Rialto/NT
scheduler by taking advantage of, rather than
circumventing, the existing Windows NT priority-based
scheduler.

A final distinction between the current Rialto/NT
implementation and the original Rialto system is that, as
of this writing, we have not yet fully implemented the
Activity abstraction. Consequently, our CPU reservations
currently apply to a specific thread, rather than to all
threads within an activity. We view this as an interim
implementation step—not a long-term design decision.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Programming Model
2.1 Adaptive Real-Time Applications

The Rialto scheduling abstractions were designed to
allow multiple independently authored applications to be
concurrently executed on the same machine, providing
predictable scheduling behavior for applications with real-
time requirements. They were designed to enable
applications to perform predictably in dynamic, open
systems, where such factors as the speeds of the processor,
memory, caches, busses, and I/O channels are not known
in advance, and the application mix and available
resources may change during execution.

Applications with real-time requirements in such a
dynamic environment cannot rely on off-line
schedulability analysis, unlike those for single-purpose
systems with fixed hardware configurations and
application loads. Consequently, real-time applications
must monitor their own performance and resource usage,
modifying their behavior and resource requests until their
performance and predictability are satisfactory. The
system plays two roles in this model. It provides facilities
both for applications to monitor their own resource usage
and for applications to reserve the resources that they need
for predictable performance.

2.2 Terminology and Abstractions
Two additional abstractions are provided in Rialto/NT

beyond those provided in the normal Windows NT
system: CPU Reservations and Time Constraints. This
section is intended to provide a brief introduction to them
and their usage for those unfamiliar with them.

2.2.1 CPU Reservations
CPU Reservations are made by threads to ensure a

minimum guaranteed execution rate and granularity. CPU
reservation requests are of the form reserve X units of time
out of every Y units for thread A. This requests that for
every time interval of size Y, thread A be scheduled for at
least X time units, provided it is runnable. For example, a
thread might request at least 800µs every 5ms, 7.5ms
every 33.3ms, or one second every minute.

CPU Reservations are continuously guaranteed. If A
has a reservation for X time units out of every Y, then for
every time T, A will be run for at least X time units in the
interval [T, T+Y], provided it is runnable.

Blocked threads do not accumulate credits for time
reserved but not used; unused time is given to other
threads that are ready to run.

In Rialto, CPU Reservations applied to Activities,
which were sets of threads, rather than just individual
threads. We plan to eventually augment the Rialto/NT
implementation with activities as well.

2.2.2 Time Constraints
A Time Constraint is a dynamic request issued by a

thread to the scheduler that the code associated with the
constraint be run to completion between the associated
start time and deadline. The request also contains an
upper bound on the execution time of the code.

Feasibility analysis is done for all time constraints
when submitted, including those with a start time in the
future. The requesting thread is either guaranteed that
sufficient time has been assigned to perform the specified
amount of work when requested or it is immediately told
via a return code that this was not possible, allowing the
thread to take alternate action for the unsatisfiable
constraint. For instance, a thread might skip part of a
computation, temporarily shedding load in response to a
failed constraint request. Providing time constraints that
can be guaranteed in advance, even when the CPU
resource reservation is insufficient or non-existent, is one
feature that sets Rialto and Rialto/NT apart from other
constraint- and reservation-based schedulers.

When a thread makes a call indicating that it has
completed a time constraint, the scheduler returns the
actual amount of execution time the code took to run as a
result from the call. This provides a basis for computing
accurate run-time estimates for subsequent executions.

An application can request that a piece of code be
executed by a particular deadline as follows:

Calculate constraint parameters
schedulable = BeginConstraint(

start_time, estimate, deadline);
if (schedulable) {

Do normal work under constraint
} else {

Transient overload — shed load if possible
}
time_taken = EndConstraint();

The start_time and deadline parameters are
straightforward to calculate since they directly follow
from what the code does and how it is implemented. The
estimate parameter requires more care, since predicting
the run time of a piece of code is a hard problem
(particularly in light of variations in processor & memory
speeds, cache & memory sizes, I/O bus bandwidths, etc.,
between machines) and overestimating it increases the risk
of the constraint being denied.

Rather than trying to calculate the estimate in some
manner from first principles (as is done for some hard
real-time embedded systems), one can base the estimate
on feedback from previous executions of the same code.
In particular, the time_taken result from EndConstraint()
provides the basis for this feedback.

The schedulable result informs the calling code
whether a requested constraint can be guaranteed,
enabling it to react appropriately when it cannot. This
might be caused by transient overload conditions or an
application optimistically trying to schedule more work
than its CPU reservation can guarantee.

A composite EndConstraint/BeginConstraint call that
atomically ends the previous constraint and begins a new
one is also provided.

Finally, note that constraint deadlines may be small
relative to their thread’s reservation period. For instance,
it is both legal and meaningful for a thread to request 5ms



of work in the next 10ms when its reservation only
guarantees 8ms every 24ms. The extra time is guaranteed,
when possible, using free time in the schedule. The
request may or may not succeed, but if it succeeds
sufficient time will have been reserved for the constraint.

3. Implementation
3.1 Precomputed Scheduling Plan

The principal data structure for Rialto/NT is the
Precomputed Scheduling Plan [Jones et al. 97], a tree-
based representation of time that allows the system to
efficiently schedule reservations with a wide range of
periods, from a few milliseconds to tens of seconds, and to
decide in constant time what to schedule next. We
maintain a scheduling plan for each processor in the
system.

Nodes in the scheduling plan represent either intervals
of time assigned to activities with CPU reservations or
free intervals. Attached to nodes are lists of interval
assignments, which represent time intervals reserved for
threads with constraints.

While Rialto/NT maintains a scheduling plan for each
processor in the system, it does not currently ensure that
reserved time is scheduled on any particular processor.
Rather, it uses the Windows NT scheduler’s priority
scheduling to dispatch threads. We discuss this
implementation decision in more detail in Section 3.5.2.

3.2 Policy Decisions
A multiprocessor implementation of Rialto’s

scheduling abstractions is necessarily more complex than
a uniprocessor implementation. Although most of the
mechanisms changed only slightly, the space of policy
choices increased dramatically.

3.2.1 CPU Reservation Policies
As a simplifying assumption, we decided that once a

reservation is assigned to a scheduling plan, it stays there
for its lifetime. When a new reservation is requested, the
system attempts to add it to the scheduling plans in which
it could possibly fit, in increasing order of CPU
utilization. Threads may not request a reservation in a
specific plan or on a specific processor. If a reservation
cannot be added to any scheduling plan, the request fails.
Clearly, there are situations where this scheme rejects a
reservation that could have been granted by redistributing
reservations among plans and rebuilding all plans at once.
We chose not to do this for now, as rebuilding an
individual scheduling plan is already potentially time-
consuming. However, a global rebuild would give us
more freedom to implement optimizations such as placing
reservations with similar periods in the same scheduling
plan, helping to minimize nonessential context switches.

To rebuild a scheduling plan, Rialto/NT begins with
an empty plan and adds reservations in order of increasing
period. In combination with a search strategy that
backtracks when it cannot fit all reservations into the plan,
this ordering tends to achieve a high percentage of
processor utilization. The use of a heuristic search is

critical, as the problem of optimal reservation layout is
NP-complete, even for a single processor.

Each CPU can have an idle reservation, a reservation
for no thread. Since this time is scheduled by the existing
Windows NT scheduler, the idle reservations prevent
Rialto/NT from starving user interface or worker threads,
no matter how many reservations and constraints exist.

3.2.2 Time Constraint Policies
New time constraints are placed in the scheduling

plan in which the requesting thread has a reservation, if
any. Otherwise, scheduling plans are presently tried in
numerical order. A better heuristic in this case might be to
try plans in order of increasing load.

3.3 Entry Points
We added four system calls to Windows NT:
NTSTATUS NTAPI NtBeginReservation (

IN HANDLE ResThread,
IN ULONG Period,
IN ULONG Amount,
OUT ULONG *ActualPeriod,
OUT ULONG *ActualAmount,
OUT ULONG *Cpu);

NTSTATUS NTAPI NtEndReservation (
IN HANDLE ResThread);

NTSTATUS NTAPI NtBeginConstraint (
IN _int64 Start,
IN _int64 Deadline,
IN _int64 Estimate,
IN BOOLEAN EndPrev,
OUT _int64 *TimeTaken,
OUT ULONG *Cpu);

NTSTATUS NTAPI NtEndConstraint (
OUT _int64 *TimeTaken);

Due to rounding and quantization effects,
NtBeginReservation() may not be able to grant the precise
amount and period requested. So, it returns to the caller
the actual amount and period of the reservation granted.
What is guaranteed is that the actual reservation period is
less than or equal to the requested period and that the
fraction of the CPU granted is at least as large as the
fraction requested.

Both reservation and constraint requests, if successful,
report the scheduling plan that the request was granted on.
This is a debugging aid, and may later be removed.

As well as being called by applications, the Rialto/NT
scheduler is also invoked via kernel callback routines and
Windows NT timers.

3.4 Use of Windows NT Timers
There is a Windows NT timer associated with each

scheduling plan. Timer callbacks are set for times when
the scheduling plan needs to schedule a different thread.

Windows NT keeps times internally as 64-bit
quantities in 100ns units. Although some CPUs and
interrupt controllers can provide very high resolution
times to user programs, the most precise time used by
Windows NT itself is interrupt time, which is advanced by



the clock interrupt handler. Windows NT timers, set using
NtSetTimer(), expire at a certain interrupt time; the clock
interrupt handler scans a list of timers, queuing a Deferred
Procedure Call (DPC) for each expired timer. The DPCs
perform the work associated with the timers after the clock
interrupt handler finishes. The clock interrupt period
typically defaults to 10-15ms, depending on the HAL. To
support applications that need more fine-grained timing,
many HALs support variable clock interrupt periods in
1ms increments. HALX86, the default x86 HAL, supports
periods down to 1ms; similarly, HALMPS, the default
multiprocessor HAL, supports periods down to 1/1024s.
(The real time clock, which HALMPS uses, only supports
clock periods that are power-of-two divisions of a second.)

To make the best possible use of discrete interrupt
times, Rialto/NT is designed so that CPU rescheduling
(transitions between nodes of a scheduling plan) always
occurs at the time that a clock interrupt is delivered. This
eliminates further rounding errors. Typically, we set the
interrupt period to 1ms before initializing Rialto/NT so as
to better schedule reservations with small periods.

3.5 Scheduling Threads
Our first attempt at a mechanism for scheduling

threads was intrusive and low-level; problems with this
approach led us to scrap it for an indirect, less intrusive
method. For brevity we will occasionally refer to a thread
scheduled by the Rialto/NT scheduler as an RT thread.

3.5.1 Initial Implementation
We initially added code to the clock interrupt handler

to check if Rialto/NT needed to make a scheduling
decision, and if so, to call our decision code. We also
modified the dispatcher return path to see if there was a
thread that our scheduler had decided to run. If so, it
annulled whatever decision the Windows NT scheduler
had made by putting the standby thread back on a ready
list and replacing it with the RT thread, which then ran
immediately. Although this approach had the advantage of
performing scheduling at a very low level, it had several
disadvantages. It violated the principle of localized cost
by adding code to frequently used code paths, imposing a
performance penalty on threads not using the real-time
subsystem. It also let the Windows NT scheduler do the
work to make a scheduling decision, and then often ran a
different thread. (The alternative to this, preventing the
Windows NT scheduler from running unless Rialto/NT
had nothing to decide, was even more intrusive.)

Locking issues caused a subtler problem; we wanted
to use a spinlock to protect Rialto/NT data structures, but
our code in the dispatcher was called with the dispatcher
database lock held—this lock protects all Windows NT
scheduler data structures. Then, if we acquired our own
spinlock, we would have forced ourselves to never acquire
these two locks in the other order since that risks
deadlock. This was an impossible restriction, because
many of the Windows NT kernel functions that we wanted
to call from our code, with our lock held, acquire the
dispatcher database lock. So we used the dispatcher

database lock to protect both the Rialto/NT scheduler and
the Windows NT scheduler. Unfortunately this not only
increased contention for an already busy lock, it also made
programming inconvenient since the kernel memory
allocation functions ExAllocatePool() and ExFreePool()
cannot be called with the dispatcher database lock held.
We were forced to pre-allocate memory before acquiring
the lock and to defer frees until it was released. Together,
these problems were serious enough that we decided to
use a different means of scheduling threads.

3.5.2 Use of Priority Scheduling by Rialto/NT
Windows NT has 32 priorities [Solomon 98, p. 187].

0 is reserved for the zero page thread. 1-15 are for time-
sharing threads, which are subject to increased quanta for
threads in the foreground process and priority boosts
under certain circumstances [Solomon 98, p. 205].
Priorities 16-31 are “real-time” priorities; Windows NT
never adjusts the priorities or quanta of threads in this
priority range and simply schedules among runnable
threads at the highest priority in a round-robin manner.

The current Rialto/NT implementation schedules
threads using the Windows NT scheduler, rather than
bypassing it. To schedule a thread, we raise it to priority
30. Obviously, for this method to work, no thread outside
of Rialto/NT may spend significant amounts of time
running at priority 30 or 31.

Rescheduling employs the following steps: A clock
interrupt occurs and our DPC is enqueued; it runs and
lowers the priority of the currently scheduled RT thread
from 30 to its previous value. Then, the scheduler selects
the next node in the scheduling plan, saves the priority of
the thread corresponding to that node, boosts it to 30 using
KiSetPriorityThread(), sets a timer to expire at the end of
the node’s time slice, and exits. The Windows NT
scheduler then dispatches the thread selected by Rialto/NT
and it begins running.

We made one small change to KiSetPriorityThread().
When it is called from outside of Rialto/NT, we need to
check if Rialto/NT is currently scheduling the thread
whose priority is being adjusted. If so, we modify the
saved priority rather than the actual one; the thread will be
set to the new priority when it is descheduled.

Because Rialto/NT schedules threads by manipulating
Windows NT priorities, it does not matter if a thread that
is being scheduled blocks, as CPU guarantees just apply to
runnable threads. The only thread state changes that
matter are changes to reservations and constraints, which
are made via new system calls, and thread termination, of
which Rialto/NT is notified by a callback set during
initialization using PsSetCreateThreadNotifyRoutine().

The low intrusiveness of our scheduler gives us
confidence that it could easily be made into a Vassal-style
loadable kernel module [Candea & Jones 98]. We are
currently researching loadable scheduler interfaces.

3.5.3 Multiprocessor Issues
We initially considered pinning scheduling plans to

processors by manipulating the affinity masks of RT



threads. Affinity masks are attributes of Windows NT
threads that restrict them to be scheduled only on a subset
of the available CPUs. However, pinning RT threads to a
single CPU would prevent them from opportunistically
using free time on other processors. So, Rialto/NT instead
allows the Windows NT scheduler to decide on which
processor to run RT threads, depending upon its processor
affinity logic and scheduling plan induced priority
scheduling to keep threads running on the same CPU, so
as to minimize inter-processor cache traffic.

Because the number of scheduling plans is the same
as the number of CPUs, we assumed that there would
never be contention for processors among threads at
priority 30. However, this is not the case: there are
situations on multiprocessors when Windows NT does not
schedule the highest-priority runnable threads [Solomon,
pp. 213-215]. A relevant situation is the selection of a
processor on which to run a newly ready thread. In the
absence of idle processors, Windows NT picks a processor
and preempts the thread running on it only if that thread’s
priority is less than the priority of the new thread.
Otherwise, the new thread is added to a ready list and does
not get to run immediately. Because only a single
processor is considered, this scheme misses the case where
a thread of lower priority is running on a different CPU.
As shown in Figure 4-7, this case can be quite common.

To cause Windows NT to always schedule ready RT
threads, we modified the processor selection logic for
these threads in KiReadyThread() to consider preempting
the thread running on each processor in the affinity mask
of the newly ready thread until the preemption is
successful or all processors have been tried. Figure 4-8
shows the results of the improved code. KiReadyThread()
and KiSetPriorityThread() were the only two kernel
functions that we modified while implementing Rialto/NT.

3.6 Concurrency Control
The Rialto/NT data structures are protected by a

single spinlock; we could fairly easily change this to one
spinlock per scheduling plan. Breaking up the locks more
than that is unlikely to be practical or profitable.

Rialto/NT still sometimes acquires the dispatcher
database lock, but only briefly while adjusting thread
priorities. The lock ordering we have chosen prohibits the
Rialto/NT spinlock from being acquired when the
dispatcher database lock is held.

Part of the process of acquiring a reservation involves
a search with backtracking. When there are many
reservations, this can take several milliseconds even on a
fast machine. This is far longer than the 25µs maximum
recommended spinlock hold time [Microsoft 99, sec.
16.2.5], so Rialto/NT uses a form of optimistic
concurrency control to avoid holding the lock during this
potentially long computation. The plan building routine
makes copies of the relevant data with the spinlock held
and also records a version number associated with the
scheduling plan. It then releases the lock and builds a new
plan. (Because the Windows NT kernel is fully reentrant,

it is not harmful for threads to spend a long time running
in kernel mode.) When the plan is finished, Rialto/NT
reacquires the spinlock and checks the version number. If
it has changed, the new plan is useless and must be
discarded; otherwise the scheduler swaps the new and old
scheduling plans, increases the version number, releases
the lock, and deallocates the old plan. Every routine that
modifies a scheduling plan must be careful to increment
the version number before releasing the lock.

3.7 Damage Control
Rialto/NT runs at a high level for a scheduler.

Unfortunately, this means that without correct and timely
behavior from lower-level portions of Windows NT, some
of the guarantees that it makes will not be met. However,
the code simplification achieved using the high-level
approach is significant; indeed, without major design
changes to Windows NT, many lower-level thread
scheduling approaches would not do much better.
Furthermore, because it is written as high-level processor-
independent code, Rialto/NT should be trivially portable
between CPU architectures.

3.7.1 Late DPCs
The most vulnerable part of the scheduler is the timer

DPC that schedules RT threads. When a DPC is queued,
the kernel requests a software interrupt; this interrupt will
not occur until the interrupt request level (IRQL) goes
below DPC level. Therefore, DPCs may be prevented
from running by interrupt handlers, by threads running in
the kernel at elevated IRQL (while holding a spinlock, for
example), and by other DPCs. Our experience [Jones &
Regehr 99] shows that other DPCs are the main problem
and that by carefully choosing which device drivers run on
a system, long-running DPCs can be minimized.

Even so, the scheduler DPCs will be called late
sometimes. When this occurs, Rialto/NT minimizes the
damage to the overall schedule by penalizing the threads
that the DPC would have scheduled if it had run on time.
Our goal is keep the scheduling plan on time at all costs.
To this end, we keep a virtual time for each scheduling
plan, which remains synchronized with real time as long
as the scheduler DPC is called on time. When the virtual
time is lags behind, it means that our code was called late
and Rialto/NT catches up by walking the scheduling plan
forward until the times are again in synchrony.

3.7.2 Interrupt Time Skew
The interrupt period supplied by HALs to the kernel

is not always completely accurate. To prevent
accumulated round-off error, the clock interrupt handler
may not always add the same value to the interrupt time.
This prevents Rialto/NT from making accurate predictions
about the correspondence between future interrupt times
and wall clock times, and therefore it cannot guarantee
that constraint start times and deadlines will be honored.
We currently ignore the problem since only certain HALs
perform this correction, and the worst possible drift under
HALMPS amounts to 9ms per hour. There is no problem
under HALX86—it always adds a constant to interrupt



time. A solution to this problem would most likely
involve exposing and taking into account the HALs’
(simple) round-off error avoidance logic. We cannot just
have the HAL tell the scheduler the value that it adds to
the interrupt time—it needs to know the values that will be
added in the future.

3.7.3 Lost Clock Interrupts
The only notion of passing time that Rialto/NT

currently understands is interrupt time. If interrupt time
fails to progress because clock interrupts are missed (for
example, when the PCI bus is blocked by a write to a full
FIFO on a video board [Jones & Regehr 99]), the
scheduling plan will slip with respect to real time. We
have not handled this case because only the most
egregious hardware/driver combinations cause clock
interrupts to be missed. In the future, we could handle this
case by detecting the missed interrupts using the Pentium
timestamp counter and then catching up.

3.8 Execution Time Reporting
Because Windows NT thread execution time

accounting does not provide millisecond accuracy, we are
not yet giving threads precise feedback on their time taken
during constraint execution. It would not be sufficient for
just Rialto/NT to provide accurate accounting, both
because it is unaware of blocking threads and because the
Windows NT scheduler may also schedule RT threads.
We are investigating ways to provide accurate accounting.

4. Results
4.1 Experimental Setup

All performance results reported were measured on a
Gateway E-5000 dual-processor 333 MHz Pentium II PC
with 128MB of memory. Although the machine normally
uses both processors, it is also possible to tell Windows
NT to use only one processor by using the /numproc=1
switch in c:\boot.ini. Uniprocessor measurements were
collected in this way.

The machine uses an Intel EtherExpress Pro/100B
PCI Ethernet adapter, an Adaptec AHA-3940U/UW dual
SCSI controller, and a Seagate ST10101W SCSI disk.

The current version of Rialto/NT is based on
Windows 2000 Beta 3. Our build is not as highly
optimized as the released binaries, which makes some
kinds of debugging easier, albeit at a cost in performance.

All time measurements were made in user space with
the Pentium timestamp counter. Times include all
overheads, such as the time to enter and leave the kernel.

4.2 Size Results
The Rialto/NT scheduler contains about 6000 lines of

C, which are divided roughly equally between reservations
and constraints. Maximum dynamic scheduler memory
usage is under 100KB during simulation runs with many
reservations and constraints (as per Figures 4-2 and 4-3).

4.3 Micro-Benchmarks
Figure 4-1 demonstrates the additional context switch

overhead introduced by Rialto/NT’s scheduling

implementation. During measurements, the system was
booted in single-processor mode and ten threads were
competing for the CPU. In one case, the threads were run
under the released version of Windows 2000 Beta 3 and in
the other, they were scheduled by Rialto/NT with
reservation amounts between 2ms and 18ms, all with
period 128ms. The released Windows NT kernel has a
minimum context switch time of 8.4µs, with a median of
10.6µs. Rialto/NT has a minimum of 13.6µs and a median
of 18.6µs. So, we conclude that reschedules performed by
the Rialto/NT mechanism add approximately 8µs to the
context switch time. The minimum scheduling quantum
on Windows NT is approximately 1ms, so this represents
at most a 0.8% overhead.

However, two data sets that are not shown here (the
context switch times for an unmodified version of the
Windows NT kernel that we rebuilt and for the Rialto/NT
kernel without any reservations) show nearly identical
context switch times that are around 2.2µs slower than the
released kernel. We believe that this is because our
Rialto/NT build is not as highly optimized as the released
kernel. Hence, we would expect context switches in a
fully optimized build of Rialto/NT to be at least 2µs faster
than the results presented here. Finally, note that the
larger Rialto/NT context switch times are squeezed to the
right-most part of the graph. This is because the CPU
reservations forced many more context switches to occur
under Rialto/NT than did under Windows NT.

Figure 4-2 graphs the times to make an intentionally
complex cumulative set of CPU reservations. All requests
reserve 1ms but at varying periods. The sequence of
periods is a pattern which begins 4s, 4s, 2s, 4s, 2s, 1s, 4s,
2s, 1s, 0.5s, etc. This sequence was chosen to build as
complex and sparse a scheduling graph as possible,
allowing us to measure what we believe to be worst-case
times. Both single- and dual-processor times are reported.

The dual-processor reservation times are
approximately half those of the uniprocessor. This is
because reservations are split between the two per-
processor scheduling plans, each of which is

0
20
40
60
80

100
120
140
160
180
200

0% 20% 40% 60% 80% 100%

Context Switches

M
ic

ro
se

co
n

d
s

Windows 2000 Beta 3 Rialto/NT w/ Reservations

Figure 4-1: Rialto/NT vs. native context switch times



approximately half the size of the corresponding
uniprocessor plan.

While the maximum reported values of approximately
5ms are significant, it should be noted that the times to
make the first 35 reservations are all below 1ms and the
first 7 are all below 100µs. Indeed, we believe a small
number of reservations to be the common case. The X-
axis of the graph represents the number of simultaneous
independent granted CPU reservations. To reach the
~5ms values, one would have to have 64 simultaneous
real-time applications on the same machine, meaning that
the average application is content with less than 1.6% of
the CPU. Yet even for this very unlikely case, these
unoptimized reservation acquisition times are still
reasonable, given that reservation requests will typically
occur infrequently, normally just at program startup or at
major mode changes.

One comparison with Rialto for this experiment is
warranted. In Figure 5-1 in [Jones et al. 97], which
corresponds to this experiment, many of the reservation
times are near zero. This is because instead of rebuilding
the entire scheduling graph for each new reservation,
Rialto first looks for a set of free slots large enough to
accommodate the new reservation. If they exist, Rialto
incrementally adds the new reservation to the existing
graph. This is an optimization we have coded but not yet
tested and enabled on Rialto/NT.

Figure 4-3 graphs the time to begin simultaneous time
constraints in two cases. One case is for a system with no
active CPU Reservations. The other is for a system with
reservations as in Figure 4-2. The no-reservations case
shows slow linear growth in time with the number of
pending constraints, as the constraint acquisition code is
forced to search farther ahead in the plan to find free time.
The times for acquiring constraints in the case of threads
with reservations shows no such increase because the
scheduling plan data structure allows the constraint

acquisition code to examine only times reserved for the
thread and unreserved times, never considering times
reserved for other threads. We believe that the longer time
to acquire the first constraint is due to cache effects.

A possibly more useful measure of constraint speed is
the amount of time for the atomic operation that ends the
previous constraint of a thread and begins a new one. This
would typically be employed in a loop. We measured this
cost for a thread with no reservation in six runs of 150
loops each. In a typical run, the minimum, median, and
mean times are very close together, respectively 8.2µs,
8.3µs, and 8.4µs, with a maximum of only 24.8µs.

4.4 Scheduling Traces
This section shows a number of scheduling traces

taken on single- and dual-processor boots of Rialto/NT.
Figure 4-4 shows an execution trace on a single-

processor boot of three threads with reservations of
differing amounts and periods competing with a high-
priority thread. (The high-priority thread is set to a high
priority within the time-sharing class. This is lower than
the real-time class priority used by Rialto/NT to schedule
threads.) The actual amounts and periods of the
reservations differ from the requested amounts and
periods: the thread requesting 1ms/10ms was granted
1ms/8ms, the thread requesting 4ms/20ms was granted
4ms/16ms, and the thread requesting 16ms/40ms was
granted 13ms/32ms. Because the high-priority thread runs
whenever no thread has a CPU Reservation, one can
clearly see the regular nature of the reservations; threads
1, 2, and 3 only run during their reserved times.

Figure 4-5 shows an execution trace like that in
Figure 4-4 except that thread 3, which has a reservation of
1ms every 10ms, also uses a Time Constraint after each
2ms of its own execution to request 2ms of CPU time in
the next 10ms, effectively doubling its amount of CPU for
the next 10ms period when the constraint is accepted.
Thread 3’s constraints do typically succeed in obtaining

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Reservation Number

T
im

e
to

M
ak

e
R

es
er

va
ti

o
n

(m
s)

Uniprocessor Multiprocessor

Figure 4-2: Times to make simultaneous reservations

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Time Constraint Number

C
o

n
st

ra
in

t
A

cq
u

ir
e

T
im

e
(µ

s)

Without Reservations With Reservations

Figure 4-3: Times to begin simultaneous constraints



the additional time despite the high-priority competitor
thread.

Figure 4-6 shows an execution trace like 4-4 except
that there is no competitor thread. Threads 1 and 3 both
are scheduled by the default Windows NT scheduler at
times other than during their reservations, while still being
scheduled during their reservations by the Rialto/NT
scheduler. It is not clear to us why the Windows NT
scheduler never chooses thread 2. This is an example of
the default scheduler not allocating unreserved time
“fairly” between threads with reservations of differing
periods. In contrast, the Rialto scheduler achieved
fairness by scheduling unreserved time itself.

Figures 4-7 and 4-8 show execution traces taken on
dual-processor boots. The reservation periods are the same
as in Figure 4-4, but the amounts are doubled. The thread
requesting 2ms/10ms was granted 2ms/8ms, the thread
requesting 8ms/20ms was granted 7ms/16ms, and the
thread request 32ms/40ms was granted 26ms/32ms.

Consequently, more than 100% of a single CPU is
reserved. To allow threads 1, 2, and 3 to run only during
their reservations we employed two high-priority
competitor threads.

Figure 4-7 shows a run on a kernel without the
modification to KiReadyThread() we described in Section
3.5.3 that forces Windows NT to always run an RT thread
when it becomes ready. For example, thread 3 should
have been scheduled at about 450ms into the run. Because
it was raised to priority 30 and still did not run, we infer
that the default Windows NT KiReadyThread() routine
tried to schedule thread 3 on the same processor that
thread 1 was already running on. Thread 1 was not
preempted because it was also running at priority 30, and
consequently thread 3 was put onto a ready list instead of
being scheduled. Figure 4-8 shows a run on a kernel
containing the modified version of KiReadyThread().
Because the threads running on both processors were

400 450 500 550 600

Time (ms)

Thread 3
1ms/10ms

and constraints

Thread 2
4ms/20ms

Thread 1
16ms/40ms

Competitor
(high priority)

Figure 4-5: 1 processor, 3 reservations as indicated + 1 constraint, 1 high-priority competitor thread

400 450 500 550 600

Time (ms)

Thread 3
1ms/10ms

Thread 2
4ms/20ms

Thread 1
16ms/40ms

Figure 4-6: 1 processor, 3 reservations as indicated

400 450 500 550 600

Time (ms)

Thread 3
1ms/10ms

Thread 2
4ms/20ms

Thread 1
16ms/40ms

Competitor
(high priority)

Figure 4-4: 1 processor, 3 reservations as indicated, 1 high-priority competitor thread



400 450 500 550 600

Time (ms)

Thread 1
32ms/40ms

Thread 2
8ms/20ms

Thread 3
2ms/10ms

Competitor 2
(high priority)

Competitor 1
(high priority)

Figure 4-8: Kernel with MP fix, 2 processors, 3 reservations as indicated, 2 high-priority competitor threads

candidates for preemption, the RT threads always ran
during their reserved time slices.

5. Methodology
While developing Rialto/NT, we wrote a small (1500

lines of C) event-driven simulator that simulates the parts
of the kernel environment relevant to scheduling. The
scheduler can be compiled either into the kernel or the
simulator. Being able to easily switch between the two
has been essential to the development process for a
number of reasons: the lack of real concurrency in the
simulation ensures that any bugs we find using it are
functional bugs rather than races, and the deterministic
nature of the simulator allows us to keep replaying a
troublesome scenario until we get it right. The debug
cycle is much shorter since it does not include a reboot,
and in the Visual C++ environment we can use
sophisticated tools like a graphical debugger, Purify, and
BoundsChecker. We can also turn on or off complications
such as late DPCs at will in order to debug the code that
handles these conditions.

6. Related Work
The goal of this work is to investigate the feasibility

of bringing benefits of predictable Rialto-style scheduling
[Jones et al. 97] to Windows NT applications. This

having been said, we want to contrast our approach with
some alternative paths that could be taken.

One possibility would be to use Windows NT as is for
time-sensitive applications. This can work acceptably
when only one application is run at once since scheduling
contention may not occur. Likewise, multiple time-
sensitive applications can coexist provided sufficient
resources exist to run all of them and they happen to not
interfere with one another’s execution. Unfortunately,
interference appears to be all too common, even between a
single time-sensitive application and other active tasks.

Another possible approach is to augment Windows
NT with a separate add-on real-time kernel. For instance,
VenturCom sells a real-time kernel called RTX [Carpenter
et al. 97] that replaces the HAL beneath Windows NT,
allowing applications using its new system services to
obtain predictable real-time scheduling.

In contrast, by building predictable scheduling
facilities into Windows NT itself, it is our goal to allow
applications to predictably obtain guaranteed amounts of
CPU time, while still using normal Win32 APIs.

Rialto/NT adds new scheduling mechanisms to the
Windows NT kernel, while using the kernel’s native
priority scheduler to actually dispatch threads. In contrast,
[Lin et al. 98] reports on a system that likewise uses the

400 450 500 550 600

Time (ms)

Thread 1
32ms/40ms

Thread 2
8ms/20ms

Thread 3
2ms/10ms

Competitor 2
(high priority)

Competitor 1
(high priority)

Figure 4-7: Kernel without MP fix, 2 processors, 3 reservations as indicated, 2 high-priority competitor threads



priority scheduler to dispatch soft real-time threads but
does so from user space and using different scheduling
policies. While they have shown that this approach can be
effective in some contexts, their redispatch mechanism is
significantly more expensive, requiring six system calls
and three context switches [Lin et al. 98, p. 153]. Their
dispatching overhead is 640µs or 3.2% for 20ms periods,
as opposed to 18.6µs (up from the kernel’s native 10.6µs)
for ours or 1.9% for 1ms periods. Nonetheless, their
approach can work well for tasks with sufficiently coarse-
grained deadlines.

A significant body of work pertaining to particular
choices of scheduling algorithms is discussed in [Jones et
al. 97]. Readers interested in this aspect of the related
work should review its treatment there.

7. Further Research
Although our modified kernel can reliably schedule

threads on multiprocessors, we would like to investigate
the conditions under which it would be desirable to pin
scheduling plans to particular processors, rather than
allowing the Windows NT scheduler to decide which
processors threads run on.

Another area of future work is to implement the
Activity abstraction within Rialto/NT, allowing CPU time
to be reserved for cooperating sets of threads, rather than
just individual threads.

Rialto/NT already implements a flexible set of
scheduling mechanisms. Now that those are in place, we
need to explore API and policy issues such as whether to
allow forms of reservations and constraints that request
that they occur on a particular CPU. Likewise, other
possible higher-level requests such as “please schedule me
on the same (or a different) CPU as that reservation” could
be investigated. Co-scheduling within this framework is
another obvious area of possible research.

Finally, and most importantly, we plan to use
Rialto/NT scheduling in an attempt to improve the
usefulness of a number of real applications.

8. Conclusions
This research demonstrates that the Precomputed

Scheduling Plan data structures originally developed for
the Rialto operating system to implement CPU
Reservations and Time Constraints can be effectively
extended to schedule shared-memory multiprocessors.

We have presented encouraging early results from a
reimplementation of these abstractions within a research
version of Windows NT called Rialto/NT. While not yet
as mature as the Rialto implementation, these results have
already demonstrated the effectiveness and practicality of
implementing CPU Reservations and Time Constraints on
a multiprocessor operating system and within Windows
NT in particular.

Acknowledgments
The authors wish to thank Patricia Jones for her

editorial assistance in the preparation of this manuscript.

References
[Candea & Jones 98] George M. Candea and Michael B.

Jones. Vassal: Loadable Scheduler Support for
Multi-Policy Scheduling. In Proceedings of the
Second USENIX Windows NT Symposium,
Seattle, WA, pages 157-166, August 1998.

[Carpenter et al. 97] Bill Carpenter, Mark Roman, Nick
Vasilatos, and Myron Zimmerman. The RTX
Real-Time Subsystem for Windows NT. In
Proceedings of the USENIX Windows NT
Workshop, Seattle, WA, pages 33-37, August
1997.

[Jones et al. 96] Michael B. Jones, Joseph S. Barrera III,
Alessandro Forin, Paul J. Leach, Daniela Roşu,
Marcel-Cătălin Roşu. An Overview of the Rialto
Real-Time Architecture. In Proceedings of the
Seventh ACM SIGOPS European Workshop,
Connemara, Ireland, pages 249-256, September
1996.

[Jones et al. 97] Michael B. Jones, Daniela Roşu, Marcel-
Cătălin Roşu. CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of
Independent Activities. In Proceedings of the
16th ACM Symposium on Operating System
Principles, St-Malo, France, pages 198-211,
October 1997.

[Jones & Regehr 99] Michael B. Jones and John Regehr.
The Problems You’re Having May Not Be the
Problems You Think You’re Having: Results
from a Latency Study of Windows NT. In
Proceedings of the Seventh Workshop on Hot
Topics in Operating Systems (HotOS-VII), Rio
Rico, Arizona, March 1999.

[Lin et al. 98] Chih-han Lin, Hao-hua Chu, and Klara
Nahrstedt. A Soft Real-time Scheduling Server
on the Windows NT. In Proceedings of the
Second USENIX Windows NT Symposium,
Seattle, WA, pages 157-166, August 1998.

[Microsoft 99] Windows NT 4.0 DDK Documentation,
MSDN Library. Microsoft, April 1999.

[Solomon 98] David A. Solomon. Inside Windows NT,
Second Edition. Microsoft Press, 1998.


