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Abstract: This study reports on the structure of the antennal lobe of the pigeon louse, Columbicola 
columbae.  Anterograde staining of antennal receptor neurons revealed an antennal lobe with a few 
diffuse compartments, an organization distinct from the typical spheroidal glomerular structure found 
in the olfactory bulb of vertebrates and the antennal lobe of many other insects. This anatomical 
arrangement of neuronal input is somewhat reminiscent of the aglomerular antennal lobe previously 
reported in psyllids and aphids. As in psyllids, reports on the odor-mediated behavior of C. columbae 
suggest that the olfactory sense is important in these animals and indicates that a glomerular 
organization of the antennal lobe may not be necessary to subtend odor-mediated behaviors in all 
insects. The diffuse or aglomerular antennal lobe organization found in these two Paraneopteran insect 
orders might represent an independently evolved reduction due to similar ecological constraints. 
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Highlights: 

 We studied the structure of the antennal lobe of the pigeon louse. 

 We stained antennal receptor neurons. 

 Lice presented a diffuse compartmentalized organization of the antennal lobes. 

 Findings challenge the notion that primary olfactory brain centers are always 

organized in glomeruli.   
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1. Introduction 1 

The primary olfactory brain centers of many vertebrates and insects exhibit a distinctive 2 

anatomy that is readily recognized by the organization of the neuropil into globular 3 

units called olfactory glomeruli (Hildebrand and Shepherd, 1997). In many insects, 4 

these glomeruli comprise the structural and functional units of the antennal lobes (ALs), 5 

the first-order olfactory brain areas, which receive receptor neuron input from 6 

peripheral sensory sensilla. The number, size, and spatial arrangement of AL glomeruli 7 

are species-specific and consistent among different individuals of the same species 8 

(Anton and Homberg, 1999). The number of glomeruli found in the ALs of insects 9 

ranges from 10 to 1000 (Rospars, 1988). Since olfactory sensory neurons expressing the 10 

same receptor protein converge on a single glomerulus (Gao et al., 2000), the number of 11 

glomeruli approximately reflects the spectrum of expressed receptor genes. 12 

Furthermore, glomeruluar size appears to be correlated to the number of incoming 13 

afferents of a particular type (Anton and Homberg, 1999). This is evidenced in the 14 

sexually dimorphic ALs, associated with mate finding, that have been described in 15 

several Hymenopteran, Lepidopteran, and Dictyopteran species (Rospars, 1988). In 16 

these orders a macroglomerular complex, i.e. a male specific glomerular aggregation 17 

that is involved in the processing of sex pheromone input, has been reported and its 18 

units found to be larger than ordinary glomeruli (e.g. Vickers and Christensen, 2003). 19 

This glomerular characteristic stems from the large number of sex-pheromone olfactory 20 

receptor neurons (ORNs) on the antenna which confer a high sensitivity to the female 21 

produced sex pheromone. The functional significance of glomeruli is supported by a 22 

wide range of studies in a variety of insect species (e.g. Rodrigues, 1988; Hildebrand, 23 
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1996; Galizia et al., 1999).  Since each physiological type of ORN projects into a 24 

specific glomerulus, they form the basis of a so-called chemotopic map in the AL 25 

(Vosshall et al., 2000) in which qualitative features of differing odor mixtures are 26 

represented by unique combinations of spatial activity.  27 

 28 

In this study, we investigated the AL morphology of the slender pigeon louse 29 

Columbicola columbae (Phthiraptera: Ischnocera), an ectoparasite of the Rock Pigeon, 30 

Columba livia. The antennae of this insect consists of five annuli (scape, pedicel, and 31 

three flagellomeres) but only the last two flagellomeres bear sensilla other than 32 

mechanoreceptors (Smith, 2001). In spite of the fact that C. columbae harbors few 33 

sensilla on its antennae, behavioral reports have shown that this insect is attracted to the 34 

smell of its host (Rakshpal, 1959) and to that of the hippoboscid fly Pseudolynchia 35 

canariensis, involved in the phoretic behavior of this species of lice (Harbison et al., 36 

2009; Harbison and Clayton, 2011). Our investigations of C. columbae ALs revealed a 37 

non-globular compartmentalization of the neuropil reminiscent of the aglomerular AL 38 

found in psyllids and aphids (Kristoffersen et al. 2008; Kollmann et al. 2011). The lack 39 

of defined glomerular structures in the ALs of C. columbae, as well as in that of psyllids 40 

and aphids, suggests that a glomerular configuration is not always a hallmark feature of 41 

insect antennal lobes.  42 

 43 

2. Materials and Methods 44 

2.1 Insects 45 
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C. columbae females and males were obtained from Dr. Dale H. Clayton, University of 46 

Utah. 47 

  48 

2.2 Brain autofluorescence 49 

Individual brains of male and female lice were dissected in saline solution under a 50 

microscope and then fixed with 2.5% formaldehyde in 0.1 M phosphate buffered saline 51 

solution (PBS) overnight. Brains were then removed from the fixative, placed in 2% 52 

glutaraldehyde for 24 hours, and observed using a 1μm thickness of optical sections 53 

with a laser scanning confocal microscope (Zeiss LSM 510, Carl Zeiss Inc., 54 

Thornwood, NJ).      55 

 56 

2.3 Antennal backfills 57 

Live individual lice were placed on a Petri dish (35x10 mm polystyrene, BD Falcon®) 58 

and restrained on double-sided sticky tape (3M Scotch®). Either the right or left 59 

antenna was excised below the first flagellomere to ensure that the receptors’ 60 

projections of all non-tactile sensilla (Smith, 2001) could be stained. A glass electrode 61 

filled with cobalt-lysine (2.38 g cobaltous chloride plus 5 g L-lysine in 20 ml of distilled 62 

water, lowered to a pH of 7.2-7.4 by HCl) or dextran tetramethylrhodamine (3% in 63 

distilled water, 3,000 MW, lysine-fixable; Molecular Probes, Eugene, OR) solution was 64 

slid over the cut-tip of the antenna and left for 4-5 hours at 4°C. A moistened piece of 65 

cotton maintained a high relative humidity in the sealed Petri dish. Insects were then 66 

fixed with 2.5% formaldehyde in 0.1 M PBS overnight at 4°C. Those specimens stained 67 

with dextran rhodamine (N=11) where then dehydrated in an ethanol series, cleared 68 
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with methyl salicylate and examined with a laser scanning confocal microscope (Zeiss 69 

LSM 510). Those specimens stained with cobalt-lysine (N=4) where subsequently 70 

subjected to silver intensification (Bacon and Altman, 1977), dehydrated through a 71 

graded series of ethanol, placed in methyl salicylate, and examined as whole mounts 72 

under a light microscope. Whole insects were embedded in Durcupan resin (Electron 73 

Microscopy Sciences, Ft. Washington, PA), sectioned at 1 μm and mounted on 74 

microscope slides. Sections were counterstained using modified Lee’s methylene blue-75 

basic fuchsin solution (Lee et al., 2006) and examined at 40-100 X. Digital images were 76 

taken with a charge-coupled device (CCD) camera (Carl Zeiss AxioCam HRc). 77 

 78 

2.4 Data analysis  79 

Zeiss LSM confocal images were imported into ImageJ (http://rsb.info.nih.gov/ij/) and 80 

the volumes of ALs, optic lobes (OLs), and entire brains calculated. Male and female 81 

comparisons were performed by means of a Chi-square test of independence. Volumes 82 

of the OLs and thus, those of the whole brains, do not include the first neuropil region 83 

(i.e. the lamina).  84 

 85 

 86 

3. Results 87 

There are few sensory structures on the antennae of C. columbae some of which exhibit 88 

morphological features consistent with an olfactory function (e.g. sensilla placodea and 89 

sensilla coeloconica; Smith, 2001). The small number of olfactory sensilla present on 90 

the antennae and the fact that these insects are permanent ectoparasites of birds is 91 
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consonant with a minor role for olfaction in these insects. However, until now, no 92 

description of the primary olfactory processing center in the brain, i.e. the AL, of this or 93 

any other species of lice has been reported. By using two different methods for 94 

anterograde staining of antennal sensory neurons, we have been able to visualize the 95 

structure of the AL of this louse (Figure 1, 2). Our analysis of C. columbae ALs reveals 96 

an atypical organization of this structure in contrast to the usual glomerular 97 

compartmentalization seen in most other insects that have been examined to date 98 

(Rospars, 1988; Anton and Homberg, 1999). Figure 1 shows the localization of the AL 99 

in the brain and the atypical organization of this brain region. The AL neuropil (as seen 100 

in semi-ultrathin sections; data not shown) was similar to that of other brain areas that 101 

typically never exhibit a glomerular arrangement such as the Central Body. Even 102 

though the antennal lobe neuropil appears to exhibit heterogeneity in staining (Figure 103 

2), this demarcation is very different from the spheroidal glomeruli that have been 104 

reported in most other insects and vertebrates and more likely reflects accretions of 105 

synaptic contacts similar to those detailed in psyllids and aphids (Kristoffersen et al., 106 

2008). A 3D reconstruction of the AL with ORNs stained anterogradely by rhodamine 107 

dextran, and what appears to be the antennal mechanosensory and motor complex 108 

(AMMC; Figure 2), further supports the conclusion of a weakly compartmentalized AL.  109 

 110 

Since no clearly defined glomeruli were identified in the AL of C. columbae, it is not 111 

possible to unequivocally conclude whether a sexually dimorphic region of the AL 112 

exists (as seen for example in moths, Rospars and Hildebrand, 2000). However, our 113 

results show that the AL of both males and females (female data not shown) have no 114 
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gross morphological differences with either of the two staining techniques used (i.e. 115 

cobalt-lysine and rhodamine dextran staining). In both sexes the ALs are relatively 116 

small cloud-shaped structures, measuring around 35μm in diameter.  Receptor neurons 117 

from the antenna appear to terminate either in the AL or the AMMC (Figure 2), 118 

indicating that no taste sensilla are found on the antenna (corroborated by the sensilla 119 

described in Smith, 2001). The AL volumes of females (14440±163 μm
3
, SE, n=4) and 120 

males (14103±239 μm
3
, SE, n=7) showed no significant difference (P=0.27) further 121 

supporting the notion that a sexually dimorphic region in the AL is absent. Furthermore, 122 

the ALs make up about 2.5% of the total brain volume of C. columbae, a small 123 

percentage compared to other insects (e.g. 9% in ants; Gronenberg et al., 1996). Still, 124 

the olfactory neuropil is more developed than that allocated to vision. Due to their 125 

ectoparasitic lifestyle, lice have vestigial eyes that are connected to the optic lobes by 126 

very thin optic nerves. Both the medulla and lobula have a combined volume of 127 

1860±21μm
3
 (SE; n=4) in females and 1785±39μm

3
 (SE; n=7) in males making up 128 

around 0.3% of the total brain volume.  129 

 130 

Discussion 131 

Both lice (Phthiraptera) and psyllids (Hemiptera: Homoptera) are classified as 132 

Paraneopteran orders (Grimaldi and Engel, 2005). Thus, if an aglomerular or diffuse 133 

compartmentalization of the AL neuropil is an ancestral trait for this group, it might 134 

also be present in other Paraneopteran orders such as the Psocoptera and the 135 

Thysanoptera. In fact, the only study on the morphology of the ALs of book lice 136 

(Psocoptera) reported that glomeruli cannot be distinguished (Stöwe, 1943 cited in 137 

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Schachtner et al., 2005). Besides these insect orders, an aglomerular appearance of the 138 

brain area receiving olfactory input has only been reported in anosmic insects (primarily 139 

Ephemeroptera and Odonata; e.g. reviewed in Schachtner et al., 2005; Strausfeld et al., 140 

2009; Crespo, 2011). Comparisons of the structure of the C. columbae AL with that of 141 

related taxa exhibiting varying degrees of parasitism could help to elucidate whether 142 

this morphological feature is an evolved reduction associated with a highly parasitic 143 

lifestyle or a more deeply embedded trait within this group. A recent sequencing study 144 

of the human body louse (Pediculus humanus humanus), an obligate parasite of 145 

humans, revealed a reduced genome that was deficient in genes that encode for proteins 146 

associated with sensory functions (chemosensory and visual) (Kirkness et al., 2010).  147 

Only 10 odorant receptor genes were identified and these data suggest that a parasitic 148 

life history leads to a loss of genes associated with detection of environmental cues in 149 

general (Kirkness et al., 2010). It seems reasonable to speculate that this reduction in 150 

odorant receptor genes would lead to a commensurate reduction in the number of 151 

antennal lobe compartments in the human body louse.  152 

 153 

The morphological similarity between the ALs of parasitic C. columbae and free-living 154 

psyllids could be the result of convergent evolution due to certain characteristics of the 155 

environment that these two groups of insects inhabit. Limited need for and use of 156 

olfactory cues could lead to a reduction in the number of sensory afferents from the 157 

antennae accompanied by a commensurate reduction in the number of AL 158 

compartments and other structural changes. An aglomerular AL organization was 159 

previously reported in the carrot psyllid Trioza apicalis (Hemiptera: Homoptera) in 160 
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spite of this insect’s dependency on olfactory cues to find hosts and migrate to shelter 161 

plants during seasonal changes (Kristoffersen et al., 2008). Thus, the few olfactory 162 

sensilla present on the antennae and the diffuse structure of the AL neuropil in C. 163 

columbae, as in T. apicalis, may not indicate that olfaction plays a minor role in this 164 

insects’ life history. In fact, C. columbae has been shown to be attracted to the smell of 165 

pigeon feathers and other host related odors (Rakshpal, 1959), as well as to olfactory 166 

cues originating from the hippoboscid fly P. canariensis, which is involved in the 167 

phoretic movements of this species of lice (Harbison et al., 2009). Kristoffersen et al. 168 

(2008) proposed two explanations for the reduced number of ORNs found in T. apicalis 169 

which in turn might explain the aglomerular structure of the AL in that species: (1) as 170 

an adaptation to prevent desiccation during the winter, and (2) due to the strong smell 171 

that this psyllid’s hosts emanate and their occurrence in large stands. These two 172 

explanations hold true for lice as well. First, lice are known to do poorly at low 173 

humidity since they acquire moisture by absorbing it from the surrounding air. At low 174 

relative humidity, these insects are unable to maintain their water balance (Rudolph, 175 

1983). So, a reduction in the number of olfactory sensilla of lice might also be 176 

explained by this environmental constraint. Second, as permanent ectoparasites of birds, 177 

lice are exposed to the abundant and constant odor of their hosts which might lessen the 178 

need for sensitive host detection abilities. Nonetheless, evidence suggests that these 179 

animals are attracted by host odor and that of hippoboscid flies which they use to 180 

support their phoretic lifestyle. However, little is known about odor-mediated 181 

communication within and between different lice species. Such information would be 182 

necessary to facilitate studies of the physiological properties of the AL compartments in 183 
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C. columbae and whether they bear any functional resemblance to those of typical 184 

olfactory glomeruli in other insect taxa.   185 

 186 

This study provides the first detailed report on the primary olfactory centers of insects 187 

belonging to the Order Phthiraptera. Our results show that the structure of the C. 188 

columbae AL exhibited weakly defined compartments without clearly delineated 189 

spheroidal glomeruli, a condition similar to that previously reported in the psyllid, T. 190 

apicalis (Kristoffersen et al., 2008). Even though both homopterans and phthirapterans 191 

share a common ancestor, the presence of this trait might be the result of convergent 192 

evolution due to similarities in their natural environment.      193 

 194 
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Figure Legends 263 

Figure 1. Morphological structure of the antennal lobe (AL) of the male louse 264 

Columbicola columbae. Dorsal view of brain with anterograde stains from the antenna 265 

with cobalt-lysine. Black arrows: lateral head cuticle removed; white arrow: AL stained 266 

with cobalt-lysine. Cobalt-lysine staining throughout the AL is heterogeneous, most 267 

likely reflecting areas with a greater concentration of synaptic contacts.  268 

 269 

Figure 2. Projection of series of confocal images show terminals of antennal nerve 270 

axons in the antennal lobe (AL).  Axons were stained anterogradely with rhodamine 271 

dextran in male lice. Staining shows olfactory neurons targeting the right (and left, in 272 

the inset figure) AL and probably mechanosensory neurons targeting the antennal 273 

mechanosensory and motor complex (AMMC; white arrow).  Inset figure shows a more 274 

detailed view of the structure of the AL in a different specimen.  Heterogeneous 275 

staining of the AL is consistent with that observed with cobalt-lysine staining. The 276 

neuropil appears to exhibit three weakly delineated compartments (although a few more 277 

could also be discerned in the preparation) but neither of the staining techniques utilized 278 

in this study revealed a glomerular architecture typical of that observed in many other 279 

insects.   280 
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