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Abstract—Image population analysis is the class of statistical methods that plays a central role in understanding the development,

evolution, and disease of a population. However, these techniques often require excessive computational power and memory that are

compounded with a large number of volumetric inputs. Restricted access to supercomputing power limits its influence in general

research and practical applications. In this paper we introduce ISP, an Image-Set Processing streaming framework that harnesses the

processing power of commodity heterogeneous CPU/GPU systems and attempts to solve this computational problem. In ISP, we

introduce specially designed streaming algorithms and data structures that provide an optimal solution for out-of-core multiimage

processing problems both in terms of memory usage and computational efficiency. ISP makes use of the asynchronous execution

mechanism supported by parallel heterogeneous systems to efficiently hide the inherent latency of the processing pipeline of out-of-

core approaches. Consequently, with computationally intensive problems, the ISP out-of-core solution can achieve the same

performance as the in-core solution. We demonstrate the efficiency of the ISP framework on synthetic and real datasets.

Index Terms—GPUs, out-of-core processing, atlas construction, diffeomorphism, multiimage processing framework.

Ç

1 INTRODUCTION

IMAGE-SET processing is an advanced image processing
technique, widely used in medical imaging [15], video

processing [5], [41], astronomy [1], [6], visual robot control
[18], virtual reality [44], [45], modeling and reconstruction
[24], [28], among others. This technique provides an
extended processing power unattainable with single-image
processing techniques. For example, for images captured
by low-end devices, an image-set average operation is
capable of reducing noise without compromising details, as
well as increasing bit depth and quality [1], [6]. Another
example is the reconstruction of the 3D structure of large
buildings or monuments. Using multiple images captured
from different points of view and under different lighting
conditions, or from public databases such as Flicker or
Google Images, it is possible to reconstruct the 3D layout of
a large scene or the interior of a building [24], [28], [44],
[45]. Image-set processing is also essential for real-time
video processing, with applications in video compression,

computer vision, automated obstacle avoidance vehicles,
video surveillance and security control.

Image-set processing provides the backbone for Compu-
tational Anatomy, an important tool in analyzing popula-
tions composed of hundreds to thousands of subjects. In
this paper, we use the atlas construction technique as a
driving challenge and also an illustration for the effective-
ness of our approach. The method plays a central role in
computational anatomy, particularly in understanding the
variability of brain anatomy [12], [15], [22], [34]. As
illustrated in Fig. 1, the atlas construction allows the
analysis of a population using age regression over average
brain atlases computed at different ages.

However, the benefits of using image-set processing
techniques over single-image processing bring major
computational challenges. First, they involve a huge
amount of data that easily exceeds the direct processing
capability of the system. Second, they demand massive
amounts of computation, which often require days or even
months to complete. As a result, image-set techniques often
call for super-computing systems [12] or large-scale clusters
[25], [44] that limit their applications to large laboratories.
Based on the commodity hardware, a solution will make
this technique available to a widespread audience with
limited computational resources, thus increasing its use in
many existing problems.

In this paper, we discuss a solution for image-set
processing problems on commodity hardware using
graphic processing units (GPUs) combined with an out-
of-core streaming model. The contributions of our paper
are as follows:

. A high-performance, image-set processing frame-
work with a proof-of-concept optimal streaming
model.
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. The definition of the basic building blocks of a
general framework, which allows an efficient im-
plementation of image-set algorithms.

. The introduction of concepts for implicit and explicit
pipelining, with considerations regarding their
efficiency.

. A pseudo-loss-less compression scheme for floating
point inputs, which allows simple, effective, and
high-performance encoding and decoding schemes.

. An analysis of the reasons for streaming degeneracy,
and a solution based on an order-independent model.

. Solutions for cross-stream synchronization to handle
the profiling issue of asynchronous programming.

. A mechanism to extend the streaming model on
heterogeneous systems.

. Guidelines based on the performance analysis that
help developers profile their code performance and
make quantitative decisions.

2 RELATED WORK

In the last decade, there is an emerging trend in the High-
Performance Computing (HPC) community to use hetero-
geneous processing systems (e.g., cell processors, FPGAs,
multicore GPUs, etc.) to replace the conventional super-
computing model. Supercomputing systems based on the
heterogeneous model have been successfully exploited in
some of the fastest computing systems, such as the current
number one supercomputer Tianhe-1A, the first computing
system to achieve 2.5 petaflop/s [38].

The GPU processing model, with hundreds of simple
and computation-centric processing cores, has been proved
to be highly scalable to many problems. In particular, they
are suitable to problems that can be easily computed in
parallel, such as the ones that arise in image-processing
applications.

Modern GPUs can offer a few Tera-flops of peak
performance per unit, providing processing power equiva-
lent to a supercomputer in the mid of 1990, while being
considerably more cost-and energy-efficient. The huge in-
core memory bandwidth, which has historically doubled in
every 2 years, is another advantage of GPU systems over
the conventional processing model, adding substantial
speed increases to the GPU-centric processing model. There
are a number of image-processing applications implemen-
ted on GPUs [19], [42], [46], most of which achieve from 20�
to several magnitudes of speedup over CPU counterparts.
Conceptually, our streaming framework is an extension to

the idea of the fast GPU image-processing framework by Ha
et al. [25], [26]. Their method achieved 60� speed up in
comparison to an optimized, fully parallel version running
on an eight-core Xeon server for Greedy Iterative Diffeo-
morphic Atlas construction problem.

While the use of GPUs appears to be a good solution to
the computational requirements of image-set processing
techniques, the large memory footprint remains an open
problem. Even though the memory bandwidth is fast
enough, the size of the on-board GPU memory is very
limited. Since GPU programs can only access on-board
memory, data must be stored on the GPU when they are
required. This incurs in some memory management scheme
or out-of-core solution.

There are three primary approaches to out-of-core
programming. The first is to use virtual memory based on
operating system support. It is simple and unified for both
in-core and out-of-core processing. However, due to a lack
of application-specific knowledge about the data depen-
dence and parallelism, this method often leads to a poor
performance [47]. The second approach is to use compiler
directed I/O to convert a program from in-core to out-of-
core [4], [7], [39]. For programs with complicated data
dependencies, this approach is not as effective as the third
approach that we use here: explicit I/O controls by
developers. These methods concentrate on techniques to
improve the cache coherency such as caching and prefetching
[2], [9], [11], [31], [37] to reduce the I/O necessary for blocks
already in main memory and/or by overlapping I/O
operations with main-memory computations. Such meth-
ods exploit particular computational properties of each
individual problem as part of the algorithm design. While
explicit I/O controls are mostly application-specific, our
method applies to a wide class of applications such as out-
of-core image-set processing.

Out-of-core processing on GPUs is not a new technique,
especially for scientific visualization [16], [21], [29], [48]. The
amount of data generated in scientific simulations or
modern data acquisition systems (e.g., laser scans) are
reaching petascale sizes, which can easily overwhelm the
direct visualization capability of any visualization system
[49]. To allow real-time rendering, most out-of-core visua-
lization techniques use some caching scheme to minimize
the amount of data pushed through the system [2], [20],
[43]. The advance of GPU hardware allowed the extension
of such techniques to use acceleration structures, such as
KD-trees or BVH trees [36], [50]. Hou et al. [30] addressed
the problem of building the out-of-core BVH tree using a
CUDA solution that is able to handle the number of input
triangles several times larger than previous GPU algo-
rithms. Nevertheless, none of the above techniques handle
the problem of processing the entire data in real time, but
instead explore the spatial coherence to extract subsets of
the data. In this paper, we handle out-of-core processing
problems for image-set processing which requires the entire
data to be processed. Our technique is orthogonal to
existing out-of-core visualization techniques, and can also
be used to speed up these algorithms.

Our out-of-core strategy exploits two key performance
concepts: prefetching and data-transfer-hiding based on an
asynchronous streaming execution model. Asynchronous
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Fig. 1. Age regression analysis on the ADNI data set by computing the
average brain atlases at different ages (65, 70, 75, and 80) confirms
the proposition that fluid space is larger because the brain atrophies
over time.



processing is a pipeline-concurrent execution model that
exploits the availability of multiple execution units in the
system to run independent tasks concurrently. This strategy
reduces idle stages and increases resource utilization. It can
also hide data transfer by prefetching data. When a proces-
sing unit finishes the current task, it can start subsequent tasks
without delay. In many circumstances, using this model
significantly increases the overall system throughput.

Asynchronous processing is accomplished using stream-
ing models for both tasks and data. Streaming is an efficient
model for parallel processing, in which a task is divided
into smaller entities to allow parallel executions. A stream is
an abstraction of an execution unit; in particular, it
represents a sequence of commands that are executed or
accessed in a particular order. Pure data streams determine
data parallelism processing model, while pure task streams
determine the task parallelism model. In practice, a stream
may be data based, task based, or a mixture. The only
restriction in a stream is the execution order that is satisfied
by a sequential consistency model [35], which makes a
stream equivalent to a synchronous process. Different
streams, on the other hand, may execute their commands
out-of-order with respect to each other.

3 IMAGE-SET PROCESSING OPERATORS

An image-set algorithm involves several image-set opera-
tions, most of which are extensions of single-image proces-
sing operations iterated over all input images. We use the
atlas construction algorithm (Algorithm 1) [26] to illustrate
this point. We build the image-set processing framework
upon the single-image high-performance multiscale proces-
sing framework proposed by Ha et al. [25] to exploit the
optimized performance of the existing framework.

Algorithm 1. Atlas construction framework

We define the image-set processing framework using a
construction method that builds regular image-set opera-
tors from basic building blocks. This strategy allows a fine-
grained and multilevel control of parallelism. It provides
different execution strategies to be applied in each
implementation, and therefore, to make a better use of the
available resources. Here, we classify basic image-set
operators into two main groups based on Flynn’s taxonomy
[23]: the Multiple-Input-Multiple-Output operators (MIMO)
and the Multiple-Input-Single-Output operators (MISO).

The basic MIMO operators (Algorithm 2) are defined as
functions where the nth output image depends only on the
nth input image(s). These functions are the most frequently

used in image-set processing, as they are direct extensions
of single-image operations. Examples of these operations
include adding, shifting, scaling, smoothing, filtering,
denoising images, and normalizing the intensity range.

Algorithm 2. Synchronous out-of-core MIMO operators

The MISO operators (Algorithm 3) produce either one or
just a small number of outputs. Examples include the
computation of an average image, image energy, cross
correlation, cross product of images, and finding the maximal
and minimal values.

Algorithm 3. Synchronous out-of-core MISO operators

The implementation of general image-set operators is
based on a decomposition strategy that breaks a complex
function into multiple, basic operations. For example,
consider a general MIMO function with the number of
outputs M different from the number of inputs N and the
kth image to be output depends on multiple inputs. This
operation can be implemented as M instances of a MISO
operator (Fig. 2).

Another group of frequently used image-set operators is
the sliding-window operator (Fig. 3a). This operator com-
putes an output image-based on all values in a fixed-size
sliding window of the input. This window moves as
we compute the next output image. As shown on Fig. 3b, if
we keep an input buffer with the size of the sliding window,
as the window moves, we need to replace an entry of the
window with the new input data. In other words, the
computation of a current output requires only a single input.
Algorithmically, it is equivalent to the basic MIMO model.
Overall, we can implement arbitrarily complex image-set
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functions based on the basic MIMO and MISO functions. We
focus our discussion on how to efficiently implement these
operators out-of-core.

The framework of Ha et al. [26] already has support for
image-set and large data processing through a GPU-cluster
implementation using MPI. It also offers a multi-GPU
implementation to exploit available computing resources
and to increase the amount of in-core GPU memory on a
single processing node. However, both approaches are
limited by the total amount of system memory. The out-of-
core approach we introduce here has no restrictions on data
input and can process the entire 3D-image brain data set in
a PC desktop equipped with commodity GPUs.

We also offer a more flexible solution to existing methods
with two levels of streaming operations: out-of-core GPU
combined with in-core-CPU, and fully out-of-core. The
former utilizes the availability of the larger CPU memory
system; in some cases the CPU (but not the GPU) memory
may be sufficient for the entire computation. In the latter
case, data that does not fit into CPU memory are transferred
across two memory levels: from disk to CPU memory, and
from CPU memory to GPU memory. We show that our
streaming strategies could be generalized through multiple
memory hierarchy levels. In the following discussion, GPUs
are processing devices in the first out-of-core level; conse-
quently, in-core memory refers to the GPU global memory,
while the CPU memory plays the role of storage devices.

4 ISP OUT-OF-CORE FRAMEWORK

We use synchronous implementations of the MIMO and
MISO operators (Algorithms 2 and 3) as references for the
correctness and performance improvement of our asyn-
chronous implementations. We compare three different
models to implement out-of-core image-set operations:
implicit, hardware-aware, and hardware-independent. We
show that the proposed strategies are optimal. Before that,
we discuss the best achievable performance of an asyn-
chronous algorithm.

4.1 Asynchronous Optimal Performance Analysis

We base the analysis on two main assumptions. The first
one is that image-set operators are order independent, and
therefore return the same results regardless of the order of
the input data. The order-independence assumption allows
us to define a processing order which can be different from

the order given as input. The second assumption is that all
images have similar sizes and therefore require the same
amount of running time. While the former is satisfied with
regular image-set functions, the latter is normally fulfilled
with preprocessing the image-set data. Though our
analysis is directly applied for the first level of out-of-core
models, for the sake of the simplicity and clarity of the
illustrations, the same analogy is applied for higher levels
of out-of-core processing.

To evaluate the performance, we use a typical hardware
configuration with three components: one computational
unit (GPU) and two data transfer units (one for uploading,
another for downloading data). In the performance analysis
we use the following notation:

. n number of input images and ns number of
execution units;

. �i;j : runtime of the ith execution unit on the j-th
input image;

. Ts; Ta : total synchronous/asynchronous processing
time;

. Tu, Te, Td: uploading, executing, and downloading
runtime per image;

. T i total time spent by the execution unit i;

. T u ¼ n� Tu, T e ¼ n� Te, T d ¼ n� Td: total time
spent in the upload, execution, and download
processes;

. T max ¼ maxðT 1; T 2; . . . T nsÞ maximum time spent
by a single execution unit.

We determine the optimal asynchronous runtime, which
we use as a reference to evaluate the efficiency of the
proposed implementation method. In the ideal case, all
execution units run independently in parallel. However,
since each corresponds to a single execution entity, they
perform tasks in sequential order. The total time an execution
unit spends is T i ¼

Pn
j¼1 �i;j, which equals n� �i (where �i is

the runtime of the ith stream on a single-image). Since a
image-set operation is only completed when all the execution
units have completed their tasks, the runtime of the entire
operation is at least T max ¼ maxðT 1; T 2; . . . T nsÞ or Ta �
T max ¼ n� �max. This is the optimum runtime that a system
can achieve. Note that with this hardware configuration, the
maximum time spent by an execution unit is given by
�max ¼ Tmax ¼ maxðTu; Te; TdÞ.

4.2 Asynchronous Processing Benefit

We estimate the performance benefit of an asynchronous
model, called by ra, as the ratio of the synchronous
processing runtime over the asynchronous runtime as

ra ¼
Ts
Ta
¼
Pns

i¼1 T i
T max

: ð1Þ

As defined before, T max ¼ maxðT 1; T 2; . . . T nsÞ, which
allows us to conclude that: ra � ns. We call rp ¼ ns the
potential performance benefit.

There are three interpretations we can draw from this
conclusion. First, for any processing model, the practical
speed up cannot be higher than the number of streams or
concurrent tasks which can be physically performed by the
system. For example, on the system with only one data
transfer unit and one computational unit, we expect a speed
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Fig. 3. Sliding window MIMO operators. (a) sliding window MIMO,
(b) basic MIMO equivalent.



up ratio lower than 2. Second, the equality happens when
T max ¼ T 1 ¼ T 2 ¼ � � � ¼ T ns , or the system is balanced. In
other words, we require load balancing to achieve the
maximum performance benefit out of the system. Third, as
we increase the number of concurrent streams, we push the
potential performance benefit rp of a model even higher.
That is, as we further subdivide the workload, we provides
more opportunities for the system to optimize the program
and reduce the maximum runtime T max. The performance
favors models with a higher number of streams.

We analyze next three different streaming models: one
implicit streaming model and two explicit approaches
(Algorithms 5 and 6). We demonstrate how these perfor-
mance strategies influence our streaming model design.

4.3 Implicit Streaming Model

The implicit streaming model (Algorithm 4) is solely based on
data parallelism. It assigns each image to a stream, which
works as a logical execution unit that performs the entire
processing pipeline (Fig. 4). As streams operate on different
memory spaces, the data transfer on a stream can overlap
with processing tasks on other streams.

Algorithm 4. Implicit pipelining MIMO operator

Streaming models (hardware-aware and hardware-indepen-
dent) which depend on task parallelism. The former maps
each hardware execution unit to a single stream, while the
latter delineates a stream to a fixed function.

Fig. 4 illustrates the execution of an implicit streaming
model for a MIMO problem (Algorithm 4). It can be seen
that when the number of images is significantly larger than
the number of execution units, the overall processing time is
approximately n� Tmax, which is the optimal runtime of
asynchronous processing.

Algorithm 5. Explicit pipelining MIMO operator

Algorithm 6. Explicit pipelining MISO operator

Although in the implicit model a higher benefit can be
achieved by having more streams, our analysis demon-
strated that this benefit has an upper bound on the number
of hardware execution units in the system. Moreover, the
mapping from implicit stream to the real hardware
execution depends entirely on the system scheduler. The
optimal mapping is nontrivial; in fact, it is an NP-hard
problem. This helps to explain the difficulty of achieving
high performance with the implicit model.

4.4 Hardware-Aware Streaming Model

The hardware-aware streaming model, as the name reflects,
is based on the underlying system hardware, in which exists
a one-to-one mapping between streams defined by the
program and the real execution hardware in the system. For
example, assuming that the system allows parallel data
uploads and downloads using separated DMAs, there are
three streams mapping to three execution devices. The
execution of this model for MIMO problems is illustrated in
Fig. 5. A timing analysis of the method shows that the
processing time in this case is also optimal. Because the
hardware-aware model reflects the actual execution of
asynchronous processes in the system, it requires developers
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to provide prior information about the architecture of the
underlying system. In other words, it requires a different
implementation on different hardware. The performance
benefit of this model is limited by the number of streams or
hardware devices defined by the program.

4.5 Hardware-Independent Streaming Model

The last processing strategy, the hardware-independent
model, is a generalization of the hardware-aware model.
Instead of decomposing tasks based on the actual hardware
configuration, we assume that there exists one special
execution unit for every task, and that we can assign each
task a single stream. In the case of MIMO operations, there
are three primary tasks to apply for each image: data
upload, processing, and data download. A system with two
data transfer units and one processing unit results in a
streaming scheme similar to the hardware-aware model;
consequently, this model also achieves the optimal runtime.

Usually there are more tasks than the actual number of
execution units. For example, in a commodity system there
is only one DMA to perform data uploading and down-
loading. In this case, it is possible that several tasks are
mapped to the same execution unit (e.g., data upload and
download can map to the same unit). The question is how
efficient it can be when it incorrectly predicts the under-
lying system-in particular, when there are multiple streams
sharing the same execution unit.

Data independence results in no performance loss, as the
system can instantly switch between tasks. This function is
performed automatically, since the shared information is
available only at the system level. Fig. 6 illustrates the
runtime analysis of an optimal solution for a MIMO
operation in a system with one DMA and one ALU using
the hardware-aware and hardware-independent implemen-
tations. It shows that the hardware-independent model
incorrectly predicts the underlying execution system, but
still performs optimally.

4.6 Discussion on Streaming Modes

The primary advantage of the implicit approach is that
developers are relieved from the burden of asynchronous
scheduling. Furthermore, the stream has the same execution
flow as when processing a single image. No further changes
or synchronization is needed since each stream works on
different data. However, it has several disadvantages

. The implicit model does not reduce the memory
usage and all the data must be loaded in-core.
Hence, it can’t be used for out-of-core processing.

. It requires the decomposition of input data and
combination of output results, which is not always
possible.

. Although automatic scheduling hides executions
from developers, understanding the physical execu-
tion is essential to profile the performance and to
estimate the benefit of the method (an estimation
that is an important factor for making optimization
decisions).

. The performance efficiency of the implicit streaming
model is largely dependent on the scheduling
algorithm used by the operating system or the
concurrent controller. In fact, the optimal scheduling
problem is NP-hard. This explains why, in practice,
this approach does not always provide the predicted
optimal performance.

. The implicit model has an order-dependency that
limits the execution of streams. In particular, streams
execute in the same order of the logical flow:
uploading-processing-downloading. However, reor-
dering is an effective strategy to handle degenerate
cases, including synchronous functions calls.

Most of the weaknesses of the implicit model can be
handled by explicit approaches:

. Explicit methods require a lower memory footprint
OðCÞ, compared to OðNÞ of the implicit model. The
number of memory blocks is either equal to the
number of hardware devices in the hardware-aware
model, or to the number of decomposed tasks in
the hardware-independent model. Therefore, they
are suitable for out-of-core processing.

. As it is always possible to divide an out-of-core
algorithm into three primary tasks, it is easier to
decompose tasks than partition data.

. The explicit method uses an explicit scheduler to
control execution. This allows developers to profile
the performance of their code before execution. It
also reduces the complexity of the scheduling
problem to a trivial mapping, so it is optimal even
without any automatic scheduler support. And
finally, it helps to understand why degeneracy
happens, how it affects performance, and how to
handle it.

Between the two explicit approaches, the independent
model is preferred in practice over the hardware-aware for a
number of reasons. The hardware-aware model requires
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Fig. 6. Although the hardware-independent model incorrectly predicts
the system configuration, the performance is still optimal.



prior information about the underlying architecture of an
execution system. It tights to the particular hardware, and
hence needs to be rewritten to work optimally on a new
hardware system. The hardware-independent model is a
more flexible model based on functional decomposition. It
depends only on the algorithm and hence it is more scalable.
Also, the hardware-independent model can adapt to changes
of the underlying hardware, and hence is easier to maintain.
As illustrated, a hardware-independent model can run
optimally on both single-DMA and dual-DMA systems.

The hardware-aware model uses less memory than the
hardware-independent model, thus it might be the method
of choice on systems with limited memory capacity, such as
embedded systems. In addition, it can be used as a fall back
solution to extend the system processing capability.

5 STREAMING MODELS STAGE REORDERING

The aforementioned approaches are simple and theoreti-
cally optimal. They are straightforward to transfer from
single-image processing to image-set processing through
the generalization of basic image-set operators. However,
the optimal performance is hardly achieved in practice.
As we show here, the primary reason is the streaming
degeneracy.

5.1 Forced Synchronizations

There are three primary reasons that performance degen-
eracies appear in streaming models:

. Synchronous function calls.

. Asynchronous stream mismatches.

. Cross-stream function calls.

The most common reason for an unintended synchronous
function call is that the application requires an external call
to a library function that was designed for synchronous
execution. Another reason is the mixed use of synchronous
and asynchronous functions. Our solution to the problem is
to use a framework that fully supports asynchronous
execution [40] for all essential functions. In addition to
minimizing the demands for external function calls, it
improves the uniformity and maintainability of the code.

Even when all functions support asynchronous execu-
tion, they might be designed using different strategies,
which are often incompatible and can’t work together
efficiently. For example, a kernel function defined to run
on a logical stream is incapable of running in-parallel with
a data-transfer function on the physical stream with the
same identity. These functions frequently require explicit
synchronization to switch between the different asynchro-
nous modes. Again, an unified framework prevents the
misaligned execution models from happening. We have
proved our asynchronous execution mechanism approach
to be simple and effective. Supporting asynchronous
execution at the runtime development level guarantees
this uniformity, and therefore a cross-library execution
model is achievable.

The third reason, cross-stream synchronization, occurs
when a stream requires data from different streams. An
example is the traditional implementation of reduction
functions (sum, average, maximum/minimum values, etc.)

in CUDA. Though the computation runs on GPUs, outputs
of these functions are copied from GPU memory to CPU
memory to be used as parameters of subsequent calls or
branching on CPUs. This is a cross-stream function between
the computational stream on GPUs and the transfer data
stream between GPUs and CPUs. Though the amount of
data transfer between CPUs and GPUs is minimal, it
requires any previous data transfers to be completed,
flushing the pipeline and resulting in a wait. Fig. 7 shows
that the copy of the reduction result to the host, which takes
only a negligible amount of time and has to be delayed until
the data transfer pipeline becomes available. Meanwhile,
the GPUs are idle, thus wasting their computational power.

The popularity of reduction functions is the main
obstacle for applying asynchronous models on existing
GPU architectures. This cross-stream synchronization is
difficult in profiling and might fail in some cases. Typically,
the profiling tool, a probe, is inserted into the execution
stream to collect data. As an event is triggered, the probing
data need to be copied from the device to the host for in-
time visualization purposes. This process “steals” the data
transfer pipeline, and unintentionally becomes a synchro-
nization point. As a result, the profile result fails to
measure the behavior of the program in practice. This
explains why general profiling tools such as the CUDA
profiler [13] incorrectly reports the performance of stream-
ing applications. The lack of profiling tools limits the
understanding of streaming and pipeline processing
techniques. Fortunately, the cross-stream synchronization
can be handled for most cases in practice. We propose two
approaches for these problems.

5.2 Solutions for Cross-Stream Synchronization

Our first solution to the reduction-like function is an on-
device processing model that outputs the result only to
device memory. However, this solution requires subsequent
functions to use on-device parameters. While on-device
parameters seem to add difficulties and incur a performance
penalty on the program, we have found a solution that
minimizes this influence based on texture caching. As shown
on Fig. 8, function calls using parameter caching are as fast as
regular GPU function calls that allocate parameters from
shared memory. The CPU code branching can be delayed or
removed completely by moving it from CPUs to GPUs. Note
that GPUs still provide maximum performance if the
branching happens on the warp boundary (or SIMD width
boundary). The same mechanism can be applied for
profiling problems at the price of delayed visualizations.
We collect the data in the device memory, and only release
results to the host when an explicit synchronization is called,
which is regularly required in a program. The delayed

844 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 6, JUNE 2012

Fig. 7. Though it requires a minimum amount of data transfer, a cross-
stream function creates a forced synchronization that causes an
unintended delay in the execution of the pipeline. In this example, the
GPUs are waiting for the reduction result to update on the CPU.



visualization, which allows for minimal invasive profiling, is
the method of choice for most applications.

A more complete solution for the problem depends on a
special mechanism on the platform that allows a noninva-
sive, small data transfers to instantly copy the data from
and to the device without using the large data communica-
tion specialized DMA. This special communication channel
is able to run concurrently in runtime with other CPU and
GPU computations, and other data channels. This will
naturally remove the need of in-device parameter functions,
reducing the complication and improving the consistency of
application code. It also allows in-time visualization for
profiling tools, especially critical to real-time applications.

5.3 Reordering Pipeline Stages

In many cases a forced synchronization is still unavoidable,
but its negative effects can be minimized using a reordering
technique. This out-of-order execution is applied in modern
compilers to reduce the number of mispredicted branches.
It helps to avoid data spilling, to keep instruction pipelines
filled, and especially, to allow parallel execution on a
system of multiprocessors.

In the case of degeneracies in streaming modes, the
reordering optimization cannot be done automatically using
the compiler. The reason is that the upload and download
tasks are I/O processes that have side effects. This constrains
the order of function execution, and requires the compiler-
generated code to execute in the same order as it appears in
the API levels. Even worse, the forced synchronous functions
impose a restriction in the order of the outputs. Therefore,
reordering without compiler support must be done explicitly.

Allowing different streams to work in independent
images gives explicit models a way to break the order-
execution dependency inside the loop, thus replacing it
with an equivalent order-independent streaming model. As
shown in Fig. 9, the order dependency of the original loop is
still preserved in the order of loop execution. In other
words, the logical correctness of the processing model is
guaranteed by construction.

As the order of streams inside a loop loses importance,
we can change the order of streams at the API level from the
regular order of upload-process-download to upload-
download-process, or even to process-upload-download.
The ability to change the ordering allows streaming
optimization, which is particularly effective when asyn-
chronous stream degeneracies are unavoidable.

In the implicit model, when the synchronizations exist in
the execution process, it is not possible to overlap the upload

and download streams. The upload has to finish before the
synchronization points, and the download only happens
after the synchronization points. As shown on Fig. 10,
changing the order of streams in the code using the explicit
model allows the upload and download streams to fully
overlap, even when a synchronization point is present. Thus,
reordering helps reduce the runtime per iteration, as well as
the overall runtime. The ability to semantically reorder the
stream execution in the code allows us to adapt a
performance heuristic that profiles the performance and
selects the optimal order.

6 MAPPING STREAMING MODES TO SYSTEMS

It is critical in practice to map the streaming mode to the
underlying functions of the system. In CUDA, streams have
a one-to-one mapping to CUDA streams [14]. However, this
relationship is not necessary true in other heterogeneous
platforms. Fortunately, as CPUs have been used to
coordinate operations in the system, we can exploit CPU
threading models to define streams. In this model, each
stream is controlled by a single thread with a fixed function.
These function threads are created at the beginning of the
program and destroyed at the exit. In the hardware-
independent model, the number of threads is based on
the number of stream functions, rather than the number of
execution hardware in the system. The stream synchroniza-
tion is performed using barriers. When two streams access
the same resource, the resource is protected with a mutex to
serialize the access. The job responsible for submitting
streams is queued to be executed in order when resources
become available.

This streaming model can also be exploited on the CPU
with CUDA stream contexts. In the CUDA runtime model,
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Fig. 9. The transformation from a synchronous model to an explicit
streaming model preserves semantic correctness.Fig. 8. Performance test with the GPU function. The texture memory

access gives the same performance as the shared memory parameter
models, global memory access is significantly slower.

Fig. 10. Streaming optimization using a reordering technique eliminates
the negative effect of forced-synchronous function.



streams are defined explicitly for GPU-runtime functions
(through cudaStream_t objects), with no streaming mechan-
ism for CPU counterparts. We use the CPU threading
model to create multiple CPU execution streams. The
synchronous barrier uses the GPU synchronization mechan-
ism (e.g., cudaThreadSynchronization) and the CPU thread
barriers (Fig. 11).

Another option for asynchronous threading is to use the
asynchronous data transfer (AIO) provided by Linux
systems [33], or the equivalent IO Completion Port on
Windows [17]. This is an option if the CPU execution
streams only involve data transmission between external
storage and the main CPU memory. The synchronization
barrier is combined between the GPU synchronization and
the asynchronous transfer barrier (Fig. 11).

7 ASYNCHRONOUS PROCESSING STRATEGY

The generality of our asynchronous processing model
allows us different implementation strategies to improve
the performance of image-set processing functions. Data
transfers are often the performance bottleneck for parallel
systems, and have direct impact in the performance of
asynchronous processing since devices have to wait for the
data to become available. As discussed in Section 4.2, the
system yields the maximum performance when the load
among devices is balanced. We can improve the overall
performance if we are able to increase computation on the
processing devices.

This can be achieved using data compression. In this
approach, data are stored in a compressed format to reduce
the overall bandwidth. Compression algorithms are chosen
based on the requirements of each application, which take
into account the tradeoff between the compression ratio and
the data decompression quality. Data are received in the
processing device, which decompress data to a format that
can be processed. This decompression step increases the on-
device processing time and potentially impacts the load
balancing. We might also consider to apply data compres-
sion to the generated output. This can reduce the data
downloading bandwidth, as well as increase the processing
load on the parallel processing devices, which might
improve the overall load-balancing.

7.1 High Performance Pseudo Loss-Less Data
Compression for Floating-Point Data

Choosing the right data compression strategy for an out-of-
core processing is essential. In this situation, the compression
method must allow real-time processing, with compression

and decompression rates that match the bandwidth of out-
of-core devices. As data compression increases the overall
processing time, it might have a negative impact if it
becomes a bottleneck. Data compression implementations
often require a tradeoff between compression ratio, data
reconstruction quality, and performance penalty. Depend-
ing on the type of data, it is possible to design simple but
effective solutions. Here we consider floating point data,
which is the most popular data format in image processing.

Floating-point data have irregular, dynamic representa-
tions which often lead to low compression ratios using
general integer, dictionary-based techniques such as LZW,
Gzip, Bzip [3]. These techniques are also developed specially
for serial processing model, and make it difficult to imple-
ment effectively on parallel heterogeneous devices such as
GPUs. Furthermore, data compression and decompression
generally show data dependencies, which allow it to leverage
parallel computation. We propose a simple pseudo loss-less
compression [10] strategy, which leads to a simple compres-
sion and decompression strategy for floating-point data.

Floating-point operations are prone to inaccuracy. It is
generally safe to assume that linear operations on floating-
point data do not introduce arithmetical errors to existing
algorithms. There is an interesting observation regarding the
floating-point presentation of numbers in the range of
½2n; 2nþ 1Þ, which share the same leading exponential and
sign bits. These bits are considered redundant for data
storage, which allows a reduction in the number of
information bits from 32 to 24 bits. For this purpose,
fractional data are represented using a normalized linear
mapping from [a; b] to the [0.5; 1) range. This mapping yields
an immediate 25 percent compression ratio, as we can store
four floating-point numbers using only three 32-bit integers.
The only extra information required for the mapping process
is the range of the input data that can be efficiently computed
using a parallel reduction algorithm. This range is also
needed to restore the compressed data to the initial value in
the decompression process. Both the reduction and mapping
operator use the highest memory bandwidth available,
equivalent to a memory copy [27]. Fig. 12 shows that this
strategy can run at 50 GBps for compression and at 65 GBps
for decompression.

An additional advantage of using our compression
scheme is the ability to immediately extend the processing
capability of each level in our out-of-core processing
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Fig. 11. Synchronization strategy for ISP_CUDA streaming extension
model.

Fig. 12. Throughput measurement of our pseudo loss-less data
compression for floating point inputs.



hierarchy by a factor of 1.33. Therefore, if we are capable of
processing 300 subjects on the first level, the compression
stream is capable of processing 400 subjects without
requiring significant changes to existing algorithms.

In addition, the linear mapping preserves the data
coherency and allow it to be exploited by further
compression schemes, such as differential compression
techniques. The loss-less compression predictive coding of
Isenburg et al. [32] or FPC coder by Burtscher and
Ratanaworabhan [8] can also be applied, as these coding
techniques can be implemented efficiently on heteroge-
neous systems. Note that our compression scheme requires
reduction, which potentially leads to cross-stream synchro-
nization. This can be prevented using prior input informa-
tion or our on-device parameter models.

8 HARDWARE-INDEPENDENT MODEL EXTENSIONS

8.1 Extension to a Full Out-of-Core Framework

The extension from a partial out-of-core model (with one
level of memory hierarchy) to a full out-of-core model (with
two-memory levels) comes naturally with the hardware-
independent model. We realize the transition to a fully out-
of-core model by adding two more stages to the algorithm
pipeline. The first stage is at the start of the pipeline,
corresponding to the upload from disk to CPU memory,
and the second stage is at the end of the pipeline,
corresponding to the download from the CPU memory to
disk. The execution of this model for MIMO operation is
given in Fig. 13.

Using the same logic as in the partial out-of-core model,
we can prove that the hardware-independent model for
out-of-core processing is optimal. We use the term full to
indicate that data can be stored on disk of a single machine.
Moreover, the hardware-independent model can be further
extended to other out-of-core models, such as the one with a
data stream on the network in a system with higher
memory hierarchy levels, and we can still prove that the
proposed models are optimal.

8.2 Extension with More CPU Processing Stages

In the discussion above, CPUs are used as control devices
that perform external IOs and coordinate streaming units.
There are circumstances when the processing time is higher
than data transfers. In such cases, we can improve load
balancing using the CPU (or multi-CPUs) as processing
devices to reduce the workload of GPUs.

Due to the lower processing capability, CPUs are suitable
for preprocessing stages (e.g., raw data processing, data

normalization, data compression, etc.) or postprocessing
stages (e.g., data denormalization, data decryption, etc.).
Fig. 14 shows an independent asynchronous processing
model with input data compression on CPUs. The strategy
increases the effective bandwidth between CPUs and GPUs
without adding further workload to GPU processing
devices. This is also the model for a hybrid processing
system, which aims to exploit the computational power of
the underlying hardware.

9 RESULTS

The system we used in our experiments is a PC desktop,
Intel Core i7-980X, 12-GB DDR3 1,600, with a single
NVIDIA GTX 480. Communication from the host to GPU
is via the external x16 PCIe bus and is controlled by a single
DMA. The program is compiled with CUDA NVCC 3.2.
Runtime of each function is measured in milliseconds.

We made a synthetic test on a data set of 32 volumes,
sized 256� 256� 256. The test mimics a typical out-of-core
image-set processing program using three processes: up-
load, execution, and download. Note that the execution
time and data-transfer times scale proportionally to the
number of images and the sizes of the image, we also
achieve similar performance curves with different number
of images ranging from 10 to 180 (the maximum number of
volumes we can fit onto the 12 GB of memory).

As mentioned in Section 7.1, floating point compression
strategy allows us to extend the processing capability in the
first level to 240 compressed volumes immediately (a higher
number might be achieved with more sophisicated com-
pression schemes).

The existing architecture on commodity hardware has a
single DMA unit, therefore the upload and download
processes have to be performed sequentially. This informa-
tion allows a two-device, hardware-aware model with only
two memory buffers. There are two options for its
implementation: 1) the upload of the kth volume in parallel
with the execution and the download of ðk� 1Þth volume
(U_ED); 2) the upload and execution of the kth volume in
parallel with the download of ðk� 1Þth volume (UE_D)
where U, E, and D stand for Upload, Execution, and
Download, respectively. Our hardware-independent model
still decomposes the algorithm into three processes regard-
less of the system configuration. There are six permutations
for the implementation of the hardware independent
model: UED, UDE, EDU, EUD, DUE, and DEU. We have
also experimented with six permutations of our compres-
sion scheme, displayed in dashed lines and the postfix C in
the name (i.e., UED_C). We also keep track the best
performance among noncompression schemes—the HI
curve, and among compression schemes—the HI_C curve.
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Fig. 13. The implementation of hardware-independent model for “full”
out-of-core image-set processing.

Fig. 14. Extension of the hardware-independent model with more CPU
processing stages. The architecture is another option to improve the
load balancing for heterogeneous systems.



Since it is not possible to perform data upload and
download in parallel, there are actually only three distinct
performance pairs UED-DEU, UDE-DUE, and EDU-EUD,
thus we show only one performance curve for each pair.
The same approach is applied for the compression schemes.

9.1 Full Asynchronous Processing

First, we tested using the ideal case: a full asynchronous
processing function without a single synchronous call in the
execution. We measured the influence of the ratio between
computation and data transfer (processing ratio) on the
performance of different asynchronous processing models,
denoted by re ¼ E=ðU þDÞ. This ratio indicates different
types of out-of-core functions: data-transfer dominance
(r� 1), processing dominance (r� 1), and balanced func-
tions (r 	 1). In the ideal case, the results on Fig. 15 show:

. In all tests, the six hardware independent imple-
mentations give us the same performance. The six
compression schemes also give identical results.
The hardware-aware and implicit models give
similar runtimes.

. If the function is transfer dominant (re < 0:5), all
models achieve the optimal solution (equivalent to
the data transfer), and the execution time is comple-
tely hidden. The compression scheme which mainly
reduces transfer time gives an immediate speed up of
25 percent over noncompression technique.

. When the execution time is larger than the upload or
downloading time, the first two models still give
strong performances, approximately T u þ T e. How-
ever, it is not the optimal of maxðT u þ T d; T eÞ
achieved with the hardware-independent model. In
this case, the hardware-independent model is faster
than the hardware-aware model because the aware-
ness from the hardware system requires that a
double-image memory buffer is used instead of a
triple one used by a hardware independent model.
In this configuration, it is impossible for the hard-
ware-aware models to have a single stream with
both the upload and the download when the other
stream is only processing. This condition is required
to achieve the best performance.

. When the function is balanced or processing-
dominant (re � 1), the hardware-independent model
gives the optimal runtime T e and the data transfer is

completely hidden. Note that this is also the
condition for ISP out-of-core functions to outperform
ISP in-core implementation since the in-core version
will spend T e þ n� Tu.

. The asynchronous function gives the best speedup in
comparison to the synchronous models when the
loads between two execution units are balanced
(re ¼ 1).

. The turning point of the compression scheme
happens earlier than noncompression counterparts
due to less amount of data to transfer and the
adding compression/decompression load to execu-
tion process.

. When the process is balanced or execution domi-
nant, the execution fully hides the data transfer. The
compression scheme is no longer effective, and
might even reduce the overall performance.

9.2 Synchronous Functions

Second, we tested a synchronous function. We fixed the

runtime of three basic processes, but changed the position

of the synchronous function inside the execution process to

measure the influence of sync points inside the functions to

different streaming models through the synchronous ratio

rs ¼ E1=ðE1þ E2Þ. From our experiments (detailed result

graphs can be found in the Appendix, which can be found

on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TVCG.2012.32.) we

conclude

. The position of the sync point within the asynchro-
nous code directly affects the performance of the
given implementations.

. The implicit model no longer gives us the optimal
result and is as slow as the synchronous implemen-
tation. It simply cannot find a schedule for asyn-
chronous execution.

. The hardware-aware model cannot give optimal
results in all the tests. However, it is still far better
than the implicit model. Note that their two
implementations also give different runtimes.

. The three hardware-independent pairs give different
performance characteristics but in essence, the best
result is always achieved with one of the hardware-
independent implementations.

. When the execution is low, the UED (or DEU)
strategy gives the best performance. Similarly, the
UED_C (or DEU_C) is the best among compres-
sion schemes.

. As the execution increases, the EDU (or EUD)
performs better in the low synchronous ratio region,
the UED (or DEU) is favorable in the middle range,
while the DUE (or UDE) scheme is best in the upper
range. The same arguments hold for the compres-
sion schemes.

. Similar to the ideal condition, a compression scheme
shows the effectiveness when the execution ratio re
is low, but it becomes less efficient when this ratio
increases and is even slower than noncompression
approaches when this ratio is high (above the
balance region).
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Fig. 15. Runtime comparison of different streaming strategies in
degenerate conditions.



9.3 Regular Out-of-Core Functions

On the third experiment, we focus on the regular out-of-
core function sets such as a maximum value of all images,
normalization, averaging, Gaussian filtering, product (en-
ergy computation), temporal image smoothing using
bilateral filter for movie data, and atlas building. The
results from Table 1 confirm that when the computation
only requires simple functions (max, product, normal-
ization, averaging, etc.), the asynchronous streaming does
give you the benefit of hiding the computational cost.
However, it is negligible in comparison to the transfer cost.
The compression scheme significantly improves the perfor-
mance due to reduced amounts of data. As the complexity
of the functions increases (for example, Gaussian filtering
functions), we start seeing significant benefits of asynchro-
nous streaming strategies, especially with the hardware-
independent model. On the other hand, for expensive
processing functions such as bilateral temporal image
filtering for movie data, we can completely hide the data
transfer time by execution; however, it also leads to low-
performance benefits in comparison to a simple synchro-
nous approach.

In atlas construction, which is taken on the ADNI data
set that we mentioned on Fig. 1, as we increase the
complexity of computational functions and reduce the cost
of data transfer by merging all the functions together on a
single loop, we yield significant performance improvement
over the synchronous out-of-core version. The performance
is comparable to the in-core performance (execution time
only) while we could process a significant amount of data
much larger than that of an in-core version. Besides
increasing the performance about 10 percent, the compres-
sion scheme allows us to process 240 brain volumes on the
first out-of-core level in comparison to 180 subjects with a
noncompression approach.

Overall, results confirm our theoretical analysis. All the
strategies are able to achieve optimal performance; how-
ever, only the hardware-independent model gives the best
performance in all tests. In the degenerate cases, the
implicit model completely fails. The presence of synchro-
nization points makes it impossible to find a efficient
scheduling automatically. Note that in this case, a greedy
approach, which immediately executes whenever the
resource is available, also fails. The hardware-aware model
gives better performance even with the degenerate cases,
although it is not optimal. It is always possible to find the
best runtime between hardware-independent implementa-
tions. In other words, the optimal performance is always
achievable with the hardware-independent model. Our
compression scheme could significantly increase the per-
formance from 10 to 25 percent with minimal additions to
the existing framework.

10 CONCLUSIONS

In this paper, we presented an optimized, parallel, image-
set processing framework on heterogeneous commodity
systems extending from the existing single-image, parallel
processing framework. We introduced image-set operators,
serving as the connection between the single-image proces-
sing model and the image-set processing variant. We
proposed the MIMO and MISO image-set operators, which
are used to construct other image-set operators, allowing us
to build a image-set processing framework.

Optimal streaming models were presented for the image-
set processing framework. We analyzed the advantages and
disadvantages of various streaming strategies, and proposed
a generalized streaming model based on functional decom-
position that is optimal, hardware independent, and highly
scalable on future hardware. Experimental results show that
our hardware-independent model adapts to underlying
hardware configurations, outperforms other streaming
strategies, and gives optimal performance in all tests.

We also evaluated the efficiency of streaming models, and
presented a quantitative evaluation that serves as a model for
developers. We investigated an optimal streaming strategy
in unfavorable conditions based on reordering from order-
independent properties of the explicit-streaming models. We
also gave insights to the causes of unfavorable streaming
conditions that help developers locate the performance
degradation points in their implementations. Though we
use a GPU computational model to illustrate the efficiency,
our framework makes no specific assumptions about the
underlying architecture and hence can be generalized to any
heterogeneous parallel processing system.
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