
Poster Abstract: TinyOS 2.1
Adding Threads and Memory Protection to TinyOS

The TinyOS Alliance

(Including all members of the TinyOS 2.x related working groups)

http://www.tinyos.net/scoop/special/working_groups

1 Introduction
The release of TinyOS 2.0 two years ago was motivated

by the need for greater platform flexibility, improved ro-
bustness and reliability, and a move towards service ori-
ented application development. Since this time, we have
seen the community embrace these efforts and add support
for additional hardware platforms (TinyNode, Iris, Shim-
mer, BtNode, IntelMote2), and new application level ser-
vices (CTP[4], Deluge 2.0[3], FTSP[9], ICEM[5], printf,
TYMO, DIP[8], DRIP[7], ...). These enhancements are im-
portant in the progression of TinyOS as a whole, and have
resulted in several minor releases (i.e. TinyOS 2.0.1, 2.0.2).

TinyOS 2.1 is the next stage in the evolution of TinyOS; it
takes a step towards addressing the need for easier and more
robust application development. TinyOS 2.1 introduces a
number of significant enhancements to core TinyOS com-
ponents and interfaces. The most notable features include
a fully preemptable application-level threads library known
as TOSThreads, and a runtime memory protection service
called Safe TinyOS. The former aims to ease writing event-
driven code while preserving the time-sensitive aspect of
TinyOS. The latter aims to make applications more robust
through memory safety checks.

2 TOSThreads
Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek,
Răzvan Musăloiu-E., Ramesh Govindan, Andreas Terzis,
Philip Levis

TOSThreads is a complete implementation of a fully pre-
emptive application level threads library for TinyOS. It pro-
vides a natural extension to the existing TinyOS concur-
rency model, requiring only a few minor changes to the
TinyOS code base (as documented in [6]). In the existing
TinyOS concurrency model two execution contexts exist:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Task

Scheduler

Thread Scheduler

System Calls

TinyOS

Thread

Application

Threads

Figure 1. Overview of the basic TOSThreads architec-
ture. The vertical line separates user-level code on the
left from kernel code on the right. Looping arrows indi-
cate running threads, and the blocks in the middle of the
figure indicate API slots for making a system call.

synchronous (tasks) and asynchronous (interrupts). These
two contexts follow a strict priority scheme: asynchronous
code can preempt synchronous code but not vice-versa.
TOSThreads extends this concurrency model to provide a
third execution context in the form of user-level application
threads. Threads synchronize using standard synchroniza-
tion primitives such as mutexes, semaphores, barriers, and
condition variables.

Figure 1 presents the basics of the TOSThreads architec-
ture. Any number of application threads can run concur-
rently (barring memory constraints), making calls into a sin-
gle higher priority TinyOS kernel thread through a customiz-
able blocking system call API. Each blocking system call
invokes a particular TinyOS service, managing any neces-
sary state across its underlying split-phase implementation.
One key feature of TOSThreads is its ability to easily ex-
tend this API to include additional TinyOS services. One
simply creates a thin shim layer of code (for which many
examples already exist) that sits on top of the desired ser-
vice. Applications can be written against this API in either
nesC or standard ANSI-C, enabling developers with no prior
knowledge of TinyOS to quickly start writing TinyOS based
applications.

Preliminary results show that performing context
switches and system calls in TOSThreads introduce a
computation overhead of less than 0.92% on representative
sensing applications. Furthermore, TOSThreads has been
successfully used to reimplement existing sensor network
systems such as Tenet, as well as ease the development of

1

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

language extensions for sensor network, such as Latte, a
JavaScript variant for motes. TOSThreads is also the basis
of TinyLD, a dynamic linker and loader for TinyOS. While
not ready for inclusion in TinyOS 2.1, TinyLD will soon be
used to dynamically deploy and execute TOSThreads based
applications at runtime.

3 Safe TinyOS
John Regehr, Eric Eide, Nathan Cooprider, Will Archer, Yang
Chen, David Gay

Forming an actionable hypothesis about why a sensor net-
work is malfunctioning is difficult because many different
root causes have the same effect: nodes drop out of the net-
work, reboot, and otherwise fail. One class of root causes—
pointer and array bugs, or memory safety violations—is par-
ticularly difficult because the typical consequence of a safety
bug is corrupted RAM.

TinyOS 2.1 applications can be optionally compiled in
safe mode where the Deputy compiler [1] is used to enforce
memory safety at runtime. In safe code, the programmer
must provide a few extra annotations describing bounds of
arrays and branches of unions. The Deputy compiler then
adds a safety check before each potentially unsafe operation;
failed checks jump to a fault handler. The source code loca-
tion of the fault can be found by reading an error code from
the node’s LEDs and entering it into a tool. Safe TinyOS has
helped find previously unknown bugs as well as bugs that
were known to exist, but whose location was unknown.

Safe TinyOS permits safe code to be freely mixed with
unsafe code using new module-level nesC attributes @safe
and @unsafe, with unsafe being the default. The overheads
of safety are evaluated in [2].

4 Other Additions
TinyOS Working Groups

TinyOS 2.1 has numerous features and additions beyond
TOSThreads and memory safety. It adds two new platforms,
the IRIS from Crossbow, Inc., and SHIMMER, jointly devel-
oped by Harvard University and the Intel Corporation. It sup-
ports the Flooding Time Synchronization Protocol (FTSP)
on most platforms [9]. The Collection Tree Protocol (CTP)
has been updated to use the state-of-the-art 4-bit link es-
timator [4], resulting in a 35% improvement in efficiency
over MultihopLQI. It includes a second dissemination pro-
tocol, DIP, which has smaller RAM requiremnts and can
scalably manage hundreds of dissemination values [8]. The
802.15.4 frame format has changed to be able to support
6lowpan networking [10] in future releases, and there is an
optional 802.15.4-compliant MAC layer implementation. Fi-
nally, TinyOS 2.1 includes numerous bug fixes, system im-
provements, and additional documentation.

5 Acknowledgements
TinyOS 2.1 was made possible through members of the

TinyOS related working working groups around the globe.
The institutions involved in its development in no particu-
lar order include Vanderbilt University, Johns Hopkins Uni-
versity, Stanford University, UC Berkeley, UCLA, USC, TU

Berlin, Harvard University, University of Szeged, MIT, Uni-
versity of Copenhagen, ETH Zürich, EPFL, University of
Utah, Rincon Research Inc., Intel Research, Crossbow Inc.,
and Arch Rock Co.

We would like to thank everyone from the greater TinyOS
community for their valuable feedback on the mailing lists
during the development of TinyOS 2.1. Without such feed-
back, TinyOS would not be what it is today.
6 References
[1] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and

George C. Necula. Dependent types for low-level programming. In
Proc. of the16th European Symp. on Programming (ESOP), Braga,
Portugal, March–April 2007.

[2] Nathan Cooprider, William Archer, Eric Eide, David Gay, and John
Regehr. Efficient memory safety for TinyOS. In Proc. of the 5th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2007),
pages 205–218, Sydney, Australia, November 2007.

[3] Deluge: TinyOS Network Programming. Available at http://www.
cs.berkeley.edu/˜jwhui/research/projects/deluge/.

[4] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip
Levis. Four-Bit Wireless Link Estimation, 2008.

[5] Kevin Klues, Vlado Handziski, Chenyang Lu, Adam Wolisz, David
Culler, David Gay, and Phil Levis. Integrating Concurrency Control
and Energy Management in Device Drivers. In Proceedings for The
21st ACM Symposium on Operating Systems Principles (SOSP), 2007.

[6] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Razvan
Musaloiu-E., Ramesh Govindan, Andreas Terzis, and Philip Levis.
TEP134: The TOSThreads Thread Library.

[7] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle:
A Self-regulating Algorithm for Code Propagation and Maintenance
in Wireless Sensor Networks. In Proceedings of NSDI 2004, March
2004.

[8] Kaisen Lin and Philip Levis. Data Discovery and Dissemination with
DIP. In IPSN ’08: Proceedings of the 2008 International Conference
on Information Processing in Sensor Networks (ipsn 2008), pages
433–444, Washington, DC, USA, 2008. IEEE Computer Society.

[9] M. Marot, B. Kusy, Gy. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In Proceedings of the 2nd international
conference on Embedded networked sensor systems (SenSys), pages
39–49, November 2004.

[10] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and
David Culler. RFC4944: Transmission of IPv6 Packets over IEEE
802.15.4 Networks, September 2007.

2

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

