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Phase relationship between the long-time beats of free induction decays and spin echoes in solids
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Recent theoretical work on the role of microscopic chaos in the dynamics and relaxation of many-body quantum
systems has made several experimentally confirmed predictions about the systems of interacting nuclear spins
in solids, focusing in particular on the shapes of spin echo responses measured by nuclear magnetic resonance.
These predictions were based on the idea that the transverse nuclear spin decays evolve in a manner governed
at long times by the slowest decaying eigenmode of the quantum system, analogous to a chaotic resonance in a
classical system. The present paper extends the above investigations both theoretically and experimentally. On
the theoretical side, the notion of chaotic eigenmodes is used to make predictions about the relationships between
the long-time oscillation phase of the nuclear free induction decay and the amplitudes and phases of spin echoes.
On the experimental side, the above predictions are tested for the nuclear spin decays of 19F in CaF2 crystals and
129Xe in frozen xenon. Good agreement between the theory and the experiment is found.
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I. INTRODUCTION

The role of microscopic chaos in the observable behavior of
macroscopic objects is a notoriously difficult elusive issue.1–5

On the theoretical side, the notion of chaos in many-body
quantum systems is often brought up in the context of level
spacings statistics,6,7 eigenstate thermalization hypothesis,8–10

or quantum fidelity decay.11 These properties are well defined
mathematically but, at the same time, virtually impossible to
verify for macroscopic systems. The aspect of chaos more
directly related to the observable relaxation in macroscopic
systems is the existence of eigenmodes of the time evolu-
tion operator in chaotic systems known as Pollicott-Ruelle
resonances.1,12 Even though these eigenmodes were originally
defined for classical systems, a number of authors discussed
promising indications that this notion can be extended to many-
body quantum systems.13–18 At the same time, direct numerical
studies of equilibration dynamics in quantum systems are
limited to relatively small numbers of particles and as such
do not reveal a consistent picture.19–24 These difficulties may,
in turn, be related to the possibility that finite quantum systems
tend to exhibit unconventional statistical ensembles under
external perturbations.24,25 It is therefore clear that exploring
the connection between chaos and quantum relaxation requires
help from experiments which can deal with truly macroscopic
quantum systems. In the present paper we focus on a
possible experimental implication of microscopic chaos for
free induction decays (FIDs) and spin echoes measured by
nuclear magnetic resonance (NMR) in solids.

Previously, one of us (B.V.F.) has argued13–15 that as
a consequence of microscopic chaos induced by generic
nonlinear interaction between nuclear spins, the long-time
behavior of nuclear FIDs in solids has the universal long-time
form

F (t) = Ae−γ tcos(ωt − ϕa), (1)

where A, γ , ω, and ϕa are constants. Depending on the
microscopic Hamiltonian of interacting nuclear spins, the
frequency ω may be equal to zero. However, in the most
common case of the magnetic dipole interaction, ω has a

finite value (see the discussion in Ref. 15). Indeed, such
behavior was observed as generic in the experimental26–29 and
numerical14,30 studies of quantum and classical spin systems.
In a typical case, the constants γ and ω fall on the fastest
natural microscopic time scale of the nuclear spin system,
thereby precluding any explanation of the above behavior in
terms of a damped harmonic oscillator—such an explanation
would require a separation of time scales between the slow
observable F (t) and much faster microscopic motion.

The theoretical analysis of Ref. 15 predicted only the
functional form (1) of the long-time FID behavior without
predicting the parameters A, γ , ω, and ϕa . A later paper31 went
further and predicted that different spin echoes initiated in the
same system by perturbing the FID with almost any sequence
of radio-frequency (rf) pulses would have different initial
behavior but then evolve to exhibit the long-time behavior
(1) characterized by the same time constants γ and ω. This
prediction was confirmed experimentally in Refs. 27,28 for
hyperpolarized solid xenon and CaF2. A related possible
experimental indication of chaos was reported earlier in the
context of NMR polarization echo studies.32

The present paper explores the chaos-related notion that
the long-time behavior of many-spin density matrices created
in the course of the FID has a self-similar form accompanying
exponentially decaying oscillations. In Sec. II, we show
theoretically that for the spin echoes initiated by perturbing
the FID in the above long-time regime, all possible shapes
of the echo responses are superpositions of two basics shapes
with the relative weight of each shape determined by the
phase of the FID oscillations at the time of the echo pulse.
This two-shape decomposition is predicted to lead to a
definite relationship between the long-time oscillation phase
of the original FID and the long-time oscillation phases of the
echo responses. In Sec. III, we verify the above predictions
experimentally for CaF2, and include measurements on solid
xenon in the Appendix.

II. THEORY

The prediction of universal behavior of quantum spin
systems in Refs. 15 and 31 was based on the conjecture that
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the long-time behavior (1) is a manifestation of the slowest
decaying chaotic eigenmode of the time-evolution operator,
similar to a Pollicott-Ruelle resonance.1,12 Such eigenmodes
control not just one observable quantity F (t) but also the
evolutions of many-spin density matrices within the system

ρkl(t) = ρ0,kle
−(γ+iω)t + ρ

†
0,kle

−(γ−iω)t , (2)

where ρkl(t) is the density matrix for any finite subsystem of
the entire spin system, i.e., ρkl(t) can be a one-spin density
matrix, two-spin density matrix, or, in general, an n-spin
density matrix, provided n is much smaller than the total
number of spins in the system. As is often done in the NMR
literature, Eq. (2) represents the leading correction to the
infinite temperature density matrix ρkl = 1. The term ρkl = 1
does not contribute to the measured spin polarization. This
high-temperature approximation should remain valid as long
as the initial nuclear polarization is not too large, in the sense
that the initial energy of the nuclear spin system with respect
to the effective Hamiltonian of nuclear spin-spin interaction
in the Larmor rotating reference frame33 is close to the energy
of the infinite temperature state. If the initial polarization
is too large, then the system is expected to relax to a finite
temperature equilibrium determined by its initial energy,
in which case Eq. (2) would represent the correction to the
equilibrium density matrix for the final temperature.

Equation (2) is the only connection between the theo-
retical analysis in this paper and the notion of microscopic
chaos. Namely, the assumption of microscopic chaos justifies
the proposition that well-defined relaxational eigenmodes
of the time-evolution operator of the entire system exist.
In turn, the notion of an eigenmode of the time-evolution
operator implies that the values of γ and ω do not depend
on the order of the density matrix. Whatever the initial form
of the n-spin density matrix, the long-time behavior would
then be dominated by the slowest chaotic eigenmode of form
(2) (among those compatible with the symmetry of the initial
density matrix). The time-independent non-Hermitian form
of ρ0,kl for a given order of the density matrix, as well as
the values of γ and ω, are determined by the microscopic
Hamiltonian of the system. While the above connection to
microscopic chaos is very indirect, we are not aware of
any other framework justifying Eq. (2). Our assumption of
microscopic chaos is, in turn, motivated by the nonintegrable
character of nuclear dynamics governed by the nuclear spin-
spin interaction Hamiltonian in the Larmor rotating reference
frame.15

The experimental evidence available so far is obtained from
the total polarization of nuclear spins and, as such, indicates
that the decay (2) is certainly present in the behavior of the
one-spin density matrix, but not necessarily two-spin, three-
spin, or progressively higher-order-spin density matrices.
Higher-order density matrices are responsible for higher-order
nuclear correlations (spin coherences in NMR language). The
FID starts from a factorizable density matrix for the entire
system,33 meaning that the initial nuclear spin configuration
is uncorrelated. Therefore, the expectation behind Eq. (2) is
that the higher-order correlations first develop dynamically
and then start decaying,34 eventually approaching form (2).
The effect of the echo pulse does not reverse but rather

modifies the higher-order correlations. The predictions made
below about the relationship between the shape of the echo
response and the phase of the long-time FID beats at the time
of the echo pulse are expected to be incorrect if the many-spin
density matrices preceding the echo pulse do not exhibit the
long-time behavior of form (2) with the same parameters γ

and ω independent of the order of the density matrix. On the
other hand, the experimental confirmation of this relationship
significantly strengthens the picture based on the notion of
chaotic relaxation modes (Pollicott-Ruelle resonances).

We use the theoretical framework of Ref. 31. The quantity
called the “signal” is the total polarization of nuclear spins
transverse to the external magnetic field. We consider the NMR
response to the sequence of two rf pulses

90◦
y − τ − X, (3)

where the 90◦
y pulse initiates the free induction decay and, after

the delay time τ , pulse X “scrambles” the time evolution of the
spin system. The FID between the two pulses is to be denoted
by function F (τ ), and the signal at time (t − τ ) after the second
pulse is to be characterized by the echo response function
F̃ (τ,t). Time t is understood to be measured from the time
of the first pulse. Most of the experimental tests of the FID-
spin-echo relationships reported in Refs. 27,28 used the solid
echo pulse sequence characterized by X = 90◦

x .33,35

In the rest of this paper, we focus on the echo response
F̃ (τ,t), which is initiated at a time τ sufficiently long such that
the FID function F (τ ) has already reached the asymptotic form
(1). This long-time FID regime was considered in Ref. 31, but
there the main focus was on obtaining the envelope of the Hahn
spin echo sequence 90◦

y − τ − 180◦
x − τ for heteronuclear spin

systems in an inhomogeneous magnetic field, in which case
the echo can be monitored only at time τ following the second
pulse. In the present paper, we assume that the magnetic
field is homogeneous, and thus that the echo response to the
pulse sequence (3) can be monitored at any moment of time
following the pulse X. We further assume that the shapes of the
FIDs and echoes are determined by the dynamics of an isolated
system of interacting nuclear spins in the Larmor rotating
reference frame. The interaction Hamiltonian is assumed to
be nonintegrable, such as the case of the standard Hamiltonian
of truncated magnetic-dipolar interaction.33

When ω �= 0, the long-time behavior of the density matrix
(2) consists of the sum of the two Hermitian-conjugate terms
ρ0,kle

−(γ+iω)τ and ρ
†
0,kle

−(γ−iω)τ . Each of these terms evolves
in time in a self-similar way, in the sense that the evolution is
controlled by the time-independent matrix ρ0,kl or ρ

†
0,kl , while

the time evolution of the entire density matrix ρkl(t) is reduced
to rescaling each of the above terms and changing their relative
phase. As a result, we can also express the long-time behavior
of the FID signal as the sum of two corresponding contributions

F (τ ) = f (τ ) + f ∗(τ ), (4)

where

f (τ ) = 1
2 a e−(γ+iω)τ , (5)

and a is a complex-valued constant. Following pulse X, the
new density matrix becomes

ρkl(τ+) = e−(γ+iω)τ ÛXρ0,kl + e−(γ−iω)τ ÛXρ
†
0,kl , (6)
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where ÛX is the quantum operator representing the effect of
pulse X in the Liouville space of the appropriate subsystem.
As a result, we obtain

F̃ (τ,t) = f (τ )f̃ (t − τ ) + f ∗(τ )f̃ ∗(t − τ )

= |a|e−γ τ [cos(ωτ − ϕa)Ref̃ (t − τ )

+ sin(ωτ − ϕa)Imf̃ (t − τ )], (7)

where f̃ (t − τ ) is the self-similar shape of the echo response
associated with the first term in Eq. (6), and ϕa is the complex
phase of a.

Equation (7) implies that one can experimentally measure
any two echo responses F̃ (τ1,t) and F̃ (τ2,t), such that ω(τ2 −
τ1) is not equal to a multiple of π , then extract from these
two responses functions Ref̃ (t − τ ) and Imf̃ (t − τ ), and then,
finally, predict F̃ (τ,t) for all other τ . In fact, function Imf̃ (t −
τ ) can be measured directly by applying pulse X at a node of
the FID, where cos(ωτ − ϕa) = 0, while Ref̃ (t − τ ) can be
measured by applying pulse X in the middle between two
nodes, where sin(ωτ − ϕa) = 0.

We can now elaborate on the long-time behavior of f̃ (t − τ )
in order to relate the phases of the FID beats with the phases
of the echo responses. The long-time behavior of f̃ (t − τ ) is
expected to be of the following form:31

f̃ (t − τ ) = b1e
−(γ+iω)(t−τ ) + b2e

−(γ−iω)(t−τ ), (8)

where b1 and b2 are two complex-valued constants. These
constants are not necessarily complex conjugates of each other,
because function f̃ (t − τ ) represents the after-pulse response
for only one of the two terms on the right-hand side of Eq. (2).
Each of these two terms alone is non-Hermitian and thus does
not represent a physical density matrix. The only requirement
here is that F̃ (τ,t) given by Eq. (7) is real. Substitution of
Eq. (8) into Eq. (7) gives

F̃ (τ,t) = 1
2 |a| e−γ t |C(τ )| cos[ωt + ϕC(τ )], (9)

where |C(τ )| and ϕC(τ ) are the amplitude and the complex
phase of the function

C(τ ) = b∗
1e

−iϕa + b2e
i(ϕa−2ωτ ). (10)

Both |C(τ )| and ϕC(τ ) should be independently accessible
experimentally. The convenient representation of Eq. (10) to
test is

|C(τ )|2 = |b1|2 + |b2|2
+ 2|b1||b2|cos

(
2ωτ − 2ϕa − ϕb1 − ϕb2

)
, (11)

|C(τ )| cosϕC(τ ) = |b1|cos
(
ϕa + ϕb1

)

+ |b2|cos
(
2ωτ − ϕa − ϕb2

)
, (12)

where ϕb1 and ϕb2 are the complex phases of constants b1 and
b2, respectively.

The FID function F (τ ) and the family of echoes F̃ (τ,t)
can be measured experimentally choosing τ and t − τ large
enough that the long-time regime (1) is reached for both F (τ )
and F̃ (τ,t). The test of Eqs. (11) and (12) can then be carried
out in the following way:

(1) The parameters |a|, ϕa , γ , and ω are obtained from the
FID asymptotics.

(2) The values of |C(τ )| and ϕC(τ ) are obtained for each τ

by fitting the tails of the echo responses F̃ (τ,t) to Eq. (9) as a
function of t .

(3) Equations (11) and (12) predict that both |C(τ )|2
and |C(τ )| cosϕC(τ ) consist of two terms: a τ -independent
constant and a τ -dependent term oscillating with frequency
2ω. The observation of this behavior as a function of τ already
constitutes a nontrivial test of the theory.

(4) The experimental curves for |C(τ )|2 and
|C(τ )| cosϕC(τ ) are parametrized as follows:

|C(τ )|2 = B1 + D1 cos(2ωτ + φ1), (13)

|C(τ )| cosϕC(τ ) = B2 + D2 cos(2ωτ + φ2), (14)

where the six parameters B1, B2, D1, D2, φ1, and φ2 should
be directly accessible. The choice of the phases φ1 and φ2

are made such that the values of D1 and D2 are positive. The
theoretical formulas (11) and (12) depend on four real-valued
parameters: |b1|, |b2|, ϕb1 , and ϕb2 . Therefore, two further
nontrivial tests are possible.

Test 1: One obtains |b2| = D2, and then |b1| =√
B1 − |b2|2. Prediction: D1 = 2|b1||b2|.
Test 2: One obtains ϕb2 = −φ2 − ϕa , and then ϕb1 =

−φ1 − 2ϕa − ϕb2 . Prediction: B2 = |b1|cos(ϕa + ϕb1 ) =
|b1|cos(φ2 − φ1).

As a final remark, we would like to mention that in the
case of monotonic long-time decays [ω = 0 in Eq. (1)], the
treatment analogous to the one presented above predicts that
the echo responses exhibit a self-similar shape with monotonic
exponential long-time tails, which on a semilogarithmic plots
of the type of Fig. 1 would fall onto the same line.

III. EXPERIMENT

This section is focused on CaF2 where we were able to
initiate echoes in the long-time regime of the FID. We also
have the results from 129Xe in solid xenon, but in this material
the latest echoes we were able to measure were not yet quite
in the long-time regime of the FID. There are also additional
theoretical complications related to the polycrystalline nature
of the solid xenon36 that would make the predictions less
rigorous, even if the echoes obtained were well into the
long-time portion of the FID. As a consequence, the 129Xe
data are included in the Appendix.

The FID and solid echoes of 19F in CaF2 were acquired
at room temperature in an external magnetic field of 2 T (19F
Larmor frequency 83.55 MHz). The CaF2 crystal used in our
experiments was obtained from Optovac, Inc., and is lightly
doped with paramagnetic impurities (0.01% Ce) to reduce T1

to ≈2 s at 2 T. The CaF2 crystal was prepared with [100] axis
along the long dimension of the cylinder. The crystal was then
held with the magnetic field along the [001] direction. The
data were acquired with an Apollo (Tecmag) spectrometer
using 2 μs square pulses with a receiver dead time of 13 μs.
Using these parameters, 1000 transients were averaged with
a repetition time of 10 s for each experiment to enhance the
signal-to-noise ratio. Thirty-two solid echoes were acquired,
one every 2.5 μs from 16 to 96 μs. The family of representative
echoes is shown in Fig. 1.
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FIG. 1. (Color online) 19F solid echoes in CaF2. Half of the 32
acquired solid echoes are shown, split between (a) and (b) for visual
clarity. The echoes shown are acquired every 5 μs from 16 to 96 μs.
The first point of each echo is indicated by a solid circle to guide
the eye. The dashed line represents the long-time FID fit given by
Eq. (1). The inset of (a) shows the experimental FID (solid line)
and the long-time fit (dashed line) on a linear scale in a time interval
around t = 60 μs, where the two lines start deviating from each other.

Operationally, we identify the long-time FID regime as
follows: We measure the FID over as long a time as possible,
fit its tail by Eq. (1), and then define the onset of the long-time
regime as the moment of time when the fit deviates from the
measured FID by 5%. This moment of time occurs during
the second FID beat at t ≈ 60 μs (see Fig. 1). Therefore, we
assume that echoes generated after time t = 60 μs meet the
criteria for testing the predictions made in Sec. II.

Determination of the amplitude |a|, decay coefficient γ ,
beat frequency ω, and complex phase ϕa of the FIDs in CaF2

was made by fits to Eq. (1) (see Table I). The amplitude |C(τ )|
and complex phase ϕC of each echo signal were determined
by fitting each solid echo signal to Eq. (9) with γ , ω, |a|, and
ϕa fixed to the values obtained from the fit to the FID.

In Fig. 2 we plot |C(τ )|2 and |C(τ )| cos φC for the solid
echoes of 19F in CaF2. The solid lines are the fits to either
Eq. (13) or Eq. (14), from which the parameters in Table I
were obtained. Figure 2 shows the results for echoes initiated
in both the early-time and the long-time regimes of the FID

TABLE I. Long-time FID and echo fit parameters for CaF2. The
FID parameters are obtained by fitting the FID to Eq. (1). The echo
parameters are obtained by fitting the amplitudes and phases of the
measured solid echoes to Eqs. (13) and (14).

FID parameters Solid echo parameters

|a| = 9 380 000 ± 45 000 B1 = 18.3 ± 0.2 B2 = 0.0 ± 0.3
ϕa = 1.921 ± 0.006 D1 = 2.1 ± 0.3 D2 = 4.2 ± 0.4
γ = 0.0414 ± 0.0008 μs−1 φ1 = −1.5 ± 0.1 φ2 = 0.4 ± 0.1
ω = 0.120 ± 0.007 μs−1

in order to illustrate the approach to the long-time behavior
described by Eqs. (13) and (14).

Tests 1 and 2 formulated at the end of Sec. II are then carried
out. The predicted and the measured values of parameters D1

and B2 are listed in Table II. We find that in each test the
predicted and the measured values agree with each other within
the experimental uncertainties.

Finally, Sec. II contains a more general prediction: that all
possible shapes of echo responses including both the initial

FIG. 2. (Color online) (a) Amplitudes and (b) phases of 19F solid
echoes in CaF2 as a function of interpulse delay time τ . Open circles
represent echoes generated in the early time of the FID, while solid
circles represent echoes generated in the long time of the FID. The
solid line (red) is the best fit of the long-time data to Eq. (13) for
(a) or to Eq. (14) for (b).
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TABLE II. Two tests of the theoretical predictions formulated at
the end of Sec. II.

Test 1 Test 2

D1,predicted = 2.3 ± 0.3 B2,predicted = −0.01 ± 0.07
D1,measured = 2.1 ± 0.3 B2,measured = 0.0 ± 0.3

and the long-time behaviors can be obtained from two basic
functions Ref̃ (t − τ ) and Imf̃ (t − τ ) as described by Eq. (7).
To determine these functions, we chose two measured echo
responses F̃ (τ1,t) and F̃ (τ2,t) initiated at times τ1 = 81.0 μs
and τ2 = 93.5 μs, respectively. According to Eq. (7)

F̃ (τ1,t
′ + τ1) = A1Ref̃ (t ′) + B1Imf̃ (t ′), (15)

F̃ (τ2,t
′ + τ2) = A2Ref̃ (t ′) + B2Imf̃ (t ′), (16)

where in Eq. (15) t ′ = t − τ1, A1 = F (τ1), and B1 =
F (τ1) tan(ωτ1 − ϕa), while in Eq. (15) t ′ = t − τ2, A1 =
F (τ2), and B1 = F (τ2) tan(ωτ2 − ϕa). Here F (τ1) and F (τ2)
are the measured values of the FID at times τ1 and τ2,
respectively. Now we express functions Ref̃ (t ′) and Imf̃ (t ′) in
terms of the measured functions F̃ (τ1,t

′ + τ1) and F̃ (τ2,t
′ +

τ2) by solving the system of linear equations (15) and (16) and
then substitute Ref̃ (t − τ ) and Imf̃ (t − τ ) back to Eq. (7) to
predict other echo responses initiated in the long-time FID
regime. The functions Ref̃ (t ′) and Imf̃ (t ′) are plotted in
Fig. 3. Since for solid echoes F̃ (τ,τ ) = F (τ ), Eq. (7) implies
that Ref̃ (0) = 1 and Imf̃ (0) = 0; however, due to the finite
(13 μs) recovery time of our spectrometer, we were unable to
measure these functions back to time t ′ = 0.

In Fig. 4, we show several of the measured echoes in
CaF2. Each echo F̃ (τ,t ′ + τ ) in Fig. 4 has been multiplied
by a factor eγ τ to correct for the exponential decay of the
FID at their respective initial time values. Labeled in the
plot legend are the two echoes F̃ (τ1,t

′ + τ1) and F̃ (τ2,t
′ +

τ2) used in determining the shape functions Ref̃ (t ′) and
Imf̃ (t ′). In Fig. 5, the measured echo responses initiated
at τ = 61,66,76,83.5,86, and 91 μs are compared with the
predicted ones obtained by substituting Ref̃ (t ′) and Imf̃ (t ′)
into Eq. (7). We observe in Fig. 5 that the agreement of the

FIG. 3. (Color online) Shape functions Ref̃ (t ′) and Imf̃ (t ′)
obtained from the linear system of Eqs. (15) and (16).

FIG. 4. (Color online) 19F solid echoes in CaF2 labeled by their
interpulse delay times τ . The quantity plotted is eγ τ F̃ (τ,t ′ + τ ). The
81.0 and 93.5 μs echoes represent the echoes used to obtain the shape
functions Ref̃ (t ′) and Imf̃ (t ′).

long-time behavior between the predicted and the measured
echo responses is very good for all echoes, which is consistent
with the results presented in Table II and Fig. 2. The initial
behavior of the early echo responses (τ = 61, 66, and 76 μs)
exhibits some initial discrepancies between the predicted and
measured behaviors. However, it is clear that the predicted
behavior still captures the evolution of the measured echo
shapes in a satisfactory way. In particular, the long-time tails
of the predicted and the measured early echoes converge to
each other. In the later echoes (τ = 83.51, 86, and 91 μs),
the above initial discrepancy no longer appears, and the entire
echo shape is found to agree with the predicted shape.

A possible reason for the above initial discrepancy in the
early echoes may be the presence of the chaotic eigenmodes
that decay faster than the slowest mode controlling the long-
time FID behavior (1), but still not fast enough to completely
disappear by time τ when the echo is initiated. The existence of
a well-separated second slowest eigenmode was demonstrated
by the recent experiment of Meier et al.29 on a CaF2 crystal for
the same orientation with respect to the magnetic field. This
second eigenmode disappears below the noise level on the time
scale of 60 μs. These additional eigenmodes are probably more
pronounced in the higher-order spin correlations, because
these correlations develop in the course of the FID evolution
only after an initial time delay with respect to the beginning
of the FID.34 Therefore, the behavior of many-spin density
matrices should approach the long-time form (2) also with
some delay with respect to the time when the FID starts
exhibiting the universal long-time form (1).

The same additional eigenmode may be controlling the
approach of |C(τ )|2 to the predicted asymptotic behavior in
Fig. 2(a). This approach takes place on the same timescale
of 60 μs. In addition, we observe that the frequency ω of
the second slowest eigenmode measured in Ref. 29 is not
much different from the frequency of the slowest eigenmode,
while the decay constants γ for the two modes are different
by a factor of two. This may explain the fact apparent from
comparison between Figs. 2(a) and 2(b), namely, as a function
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FIG. 5. (Color online) 19F solid echoes in CaF2 (solid lines). The
red (broken) lines show the theoretical echo shapes obtained using
the Ref̃ (t ′) and Imf̃ (t ′) shape functions. The quantity plotted is
eγ τ F̃ (τ,t ′ + τ ). The values of τ are indicated in the plot legend.

of the delay time τ , the phase of the echo beats approaches the
long-time prediction faster than the echo amplitude.

IV. SUMMARY AND CONCLUSIONS

In this paper, we investigated the properties of spin echoes
initiated in the regime where the nuclear FID has reached the
universal exponentially damped oscillatory behavior. Using
the theoretical framework motivated by the notion of mi-
croscopic chaos, we predicted how the shapes of the echo
responses depend on the phase of the FID oscillations at the
time of the echo pulse, and, in particular, obtained the phase
relationships between the long-time oscillation of the FIDs
and the echoes. We further conducted several experimental
tests of the above predictions for FIDs and solid echoes in
CaF2 and solid xenon, and obtained results in good overall
agreement with the theoretical expectations. The long-time
phase relationships between the FID and the echoes were
confirmed particularly well. This good agreement amounts to
an indication that the long-time behavior of the higher-order
spin density matrices has the form given by Eq. (2) with the
same values of γ and ω as the original FID. Such a behavior
is expected for a relaxational eigenmode of the time-evolution
operator in a chaotic system.

While the fundamental difficulties in defining the notion of
microscopic chaos still remain, the present paper demonstrates
that the approach of Refs. 15 and 31 based on making parallels
with relaxational eigenmodes in classical chaotic systems
continues to generate successful quantitative predictions.
These predictions were made in a regime not accessible by
controllable first-principles calculations. We are not aware of
any other approach that would reproduce the same predictions
under conditions that the quantities of interest (nuclear spin
decays) evolve on the fastest microscopic time scale of the
system.
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APPENDIX: MEASUREMENTS IN SOLID XENON

We have carried out measurements on 129Xe in solid xenon
similar to those reported in Sec. III for CaF2, but, due to
experimental constraints described below, we were not able to
generate solid echoes in the long-time regime of the FID. In
this system, the signal-to-noise ratio is limited by the degree
of hyperpolarization we were able to achieve in the solid
xenon through optical pumping techniques (about 10%). The
experimental FID in solid xenon is shown in Fig. 6. Even
though it can be measured over five orders of magnitude, it
exhibits fewer beats than in CaF2 before the signal decays
into the noise. This is because the ratio ω/γ in solid xenon
is about 1.7, while in CaF2 it is closer to 3 (see Tables I and
III). As a result, echo signals generated after the first FID
beat in solid xenon had smaller relative amplitude than in the
case of CaF2 and thus could not be accurately measured over
sufficiently long time intervals. The echoes presented in Fig. 6
were initiated during or before the first beat, which likely
implies that the FID behavior just before the echo pulse was
not entirely dominated by the slowest eigenmode as required
by Eq. (2). However, as the echoes acquired with the longest

FIG. 6. (Color online) 129Xe solid echoes in solid xenon. The
latest four echoes acquired are shown. The first point of each echo
is indicated by a solid circle to guide the eye. The dashed line is the
long-time FID fit given by Eq. (1). The inset shows the experimental
FID (solid line) and the fit (dashed line) on a linear scale.
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TABLE III. Long-time FID and echo fit parameters for solid
xenon. The FID parameters are obtained by fitting the FID to Eq. (1).
The echo parameters are obtained by fitting the amplitudes and phases
of the measured solid echoes to Eqs. (13) and (14).

FID parameters Solid echo parameters

|a| = 151 800 ± 1 600 B1 = 260 ± 30 B2 = 0 ± 3
ϕa = −1.254 ± 0.006 D1 = 290 ± 40 D2 = 12 ± 3
γ = 1.251 ± 0.005 ms−1 φ1 = 0.71 ± 0.05 φ2 = 2.4 ± 0.5
ω = 2.10 ± 0.01 ms−1

interpulse delays show an approach to the predicted forms, we
still present the data.

For this Appendix we use the FID and solid echoes which
are presented in Ref. 28. Polycrystalline xenon samples were
produced in a magnetic field of 2 T (129Xe Larmor frequency
24.56 MHz) using the methods described in Ref. 28. Ten solid
echoes were acquired approximately 0.2 ms apart from 0.4
to 2.5 ms. A fit of Eq. (1) to the FID shows that it does not
enter the long-time regime described by Eq. (1) until after
t = 2.5 ms. As the latest echo was acquired with an interpulse

FIG. 7. (Color online) (a) Amplitudes and (b) phases of 129Xe
solid echoes in solid xenon as a function of interpulse delay time τ .
Open circles represent echoes generated in the early time of the FID,
while solid circles represent echoes generated in the long time of the
FID. The solid line (red) is the best fit of the long-time data to Eq. (13)
for (a) or to Eq. (14) for (b).

FIG. 8. (Color online) (a) 129Xe solid echoes in solid xenon
labeled by their interpulse delay times τ . The quantity plotted is
eγ τ F̃ (τ,t ′ + τ ). The 1.7 and 2.5 ms echoes represent the echoes used
to obtain the shape functions Ref̃ (t ′) and Imf̃ (t ′). (b) The functions
Ref̃ (t ′) and Imf̃ (t ′) obtained from the linear system of Eqs. (15)
and (16).

delay time of 2.5 ms, no echoes were acquired in the long-time
regime of the FID. The xenon FID and solid echoes are shown
in Fig. 6.

The amplitude |a|, decay coefficient γ , beat frequency ω,
and complex phase ϕa of the 129Xe FID were determined by fits
to Eq. (1) (see Table III). The amplitude |C(τ )| and complex
phase ϕC of each echo signal were determined by fitting each
solid echo signal to Eq. (9) with γ , ω, |a|, and ϕa fixed to the
values obtained from the fit to the FID.

In Fig. 7, we plot |C(τ )|2 and |C(τ )| cos φC for the measured
solid echoes. The solid lines are the fits to either Eq. (13) or
Eq. (14), from which the parameters in Table III were obtained.
Figure 7 shows the results for echoes initiated in both the

TABLE IV. Two tests of the theoretical predictions formulated at
the end of Sec. II.

Test 1 Test 2

D1,predicted = 250 ± 60 B2,predicted = −1.0 ± 0.3
D1,measured = 290 ± 40 B2,measured = 0 ± 3
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FIG. 9. (Color online) 129Xe solid echoes in solid xenon (solid
lines). The red (broken) lines show the theoretical echo shapes
obtained using the Ref̃ (t ′) and Imf̃ (t ′) shape functions. The quantity
plotted is eγ τ F̃ (τ,t ′ + τ ). The values of τ are indicated in the plot
legend.

early-time and the long-time regimes of the FID. We observe
that the latest echoes begin to approach the behavior predicted
by Eqs. (13) and (14). These echoes are labeled “late-time
echoes” even though they are not actually in the late-time
region, as is the case in the CaF2.

Tests 1 and 2 formulated at the end of Sec. II are then carried
out. The predicted and measured values of parameters D1 and
B2 are listed in Table IV. In each test, the predicted and the
measured values agree with each other within the experimental
uncertainties.

Finally, we compare the obtained echoes with the predicted
shape functions. We first obtain the shape functions Ref̃ (t ′)
and Imf̃ (t ′) as described in Sec. III. In Fig. 8(a), we show
the measured echoes in 129Xe. Each echo F̃ (τ,t ′ + τ ) in the
figure has been multiplied by a factor eγ τ to correct for the
exponential decay of the FID at their respective initial time
values. The two echoes F̃ (τ1,t

′ + τ1) and F̃ (τ2,t
′ + τ2) used

for determining the functions Ref̃ (t ′) and Imf̃ (t ′) are shown
in Fig. 8(a). The functions Ref̃ (t ′) and Imf̃ (t ′) are shown in
Fig. 8(b).

In Fig. 9, the remaining two late-time echoes are compared
with the predicted ones obtained by substituting Ref̃ (t ′)
and Imf̃ (t ′) into Eq. (7). We emphasize that the theoretical
prediction of the echo shapes is expected to hold only for
echoes initiated after 2.5 ms in this material. Therefore, the
discrepancy in the early parts of the echo shapes is expected
for the reasons discussed in Sec. III in relation to the early-time
echo shapes in CaF2.

We finally mention a possible additional complication in
solid xenon associated with the fact that our xenon samples
are not single crystals but rather polycrystallites. Our very
recent theoretical study36 indicates that the observed long-time
FID behavior of the polycrystalline solid xenon probably
represents a typical long-time behavior of the individual
crystallites contributing to the polycrystallite average, but the
true asymptotic FID behavior of the entire polycrystallite is
expected to appear only at times beyond the range accessible
in our experiments. This asymptotic FID behavior should be
controlled by the small fraction of the constituent crystallites
with the slowest exponential decay constants γ .
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