
Deriving Abstract Transfer Functions
for Analyzing Embedded Software

John Regehr
School of Computing, University of Utah

regehr@cs.utah.edu

Usit Duongsaa
Microsoft

usitdu@microsoft.com

Abstract
This paper addresses the problem of creating abstract transfer func-
tions supporting dataflow analyses. Writing these functions by hand
is problematic: transfer functions are difficult to understand, diffi-
cult to make precise, and difficult to debug. Bugs in transfer func-
tions are particularly serious since they defeat the soundness of
any program analysis running on top of them. Furthermore, imple-
menting transfer functions by hand is wasteful because the result-
ing code is often difficult to reuse in new analyzers and to analyze
new languages. We have developed algorithms and tools for deriv-
ing transfer functions for the bitwise and unsigned interval abstract
domains. The interval domain is standard; in the bitwise domain,
values are vectors of three-valued bits. For both domains, important
challenges are to derive transfer functions that are sound in the pres-
ence of integer overflow, and to derive precise transfer functions for
operations whose semantics are a mismatch for the domain (i.e.,
bit-vector operations in the interval domain and arithmetic opera-
tions in the bitwise domain). We can derive transfer functions, and
execute them, in time linear in the bitwidth of the operands. These
functions are maximally precise in most cases. Our generated trans-
fer functions are parameterized by a bitwidth and are independent
of the language being analyzed, and also of the language in which
the analyzer is written. Currently, we generate interval and bitwise
transfer functions in C and OCaml for analyzing C source code,
ARM object code, and AVR object code. We evaluate our derived
functions by using them in an interprocedural dataflow analyzer.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Algorithms, Reliability, Languages, Verification

Keywords Static Analysis, Abstract Interpretation, Transfer Func-
tions, Embedded Software

1. Introduction
The bottom layer of a dataflow analyzer is a collection of transfer
functions that soundly abstract the behavior of low-level program
operations in order to derive facts about the program that are true
across all possible executions. Typically, transfer functions are im-
plemented by hand and are specific to a particular abstract domain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

and a particular programming language being analyzed. Further-
more, these functions are embedded in, and are specific to, a par-
ticular program analyzer. Each transfer function must be correct
(returning a conservative estimate of the effect of an operation on
the program state), precise (losing as little information as possi-
ble), and as efficient as possible. Our experience is that meeting
these goals is difficult, a view that is backed up by anecdotes we
have heard from a number of other groups who have implemented
sophisticated dataflow engines.

Transfer functions operate on abstract values, each of which
corresponds to some set of concrete data values. Operations on sets
of values are difficult to understand. Tedious but important tasks in-
clude dealing with integer overflow, implementing abstract effects
on a processor’s condition codes, and creating abstract versions of
operations that do not match the domain, such as a bitwise “add”
or an interval “xor.”

The contribution of this paper is a collection of algorithms, and
tools implementing these algorithms, that represent a step towards
solving all of these problems. Specifically, we address the prob-
lem of automatically deriving precise and efficient abstract transfer
functions for ALU operations. We have developed methods to de-
rive these transfer functions with the following properties:

• We support the bitwise and unsigned interval domains. The
interval domain is standard and in the bitwise domain, abstract
values are vectors of three-valued bits (i.e., each bit is true,
false, or unknown).

• Derivation is very efficient.
• The performance of the derived transfer functions is linear in

the bitwidth of the target architecture.
• The derived transfer functions are maximally precise in most

cases.
• The derived functions can be used to analyze different program-

ming languages. Currently we support AVR object code, ARM
object code, and C source code.

• The derived functions can be used in program analyzers writ-
ten in different programming languages. Currently we generate
transfer functions in C and OCaml.

The most closely related previous work is our Hoist project [13],
which treated concrete machine operations as black boxes and
lifted them into abstract domains using brute force algorithms.
This minimized human effort and worked well for small embedded
architectures, but did not scale to 16-, 32-, or 64-bit processors. The
methods described in this paper are scalable, but this scalability
has a cost in developer effort: a new set of algorithms has to be
developed for each new abstract domain that is supported.

This paper is organized as follows. Section 2 provides back-
ground on abstract interpretation, on the two domains that we use,

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and on previous research for creating abstract transfer functions.
Sections 3 and 4 respectively present our new algorithms for deriv-
ing abstract transfer functions for the bitwise and interval domains.
In Section 5 we describe our tools that implement these algorithms
and then in Section 6 we evaluate their precision and performance.
Section 7 presents some discussion on deriving transfer functions
and we conclude in Section 8.

2. Background
Dataflow analysis is a broadly useful technology for verifying,
validating, and optimizing embedded software. For example:

• Lundqvist and Stenström [9] developed a worst-case execution
time analyzer based on path-sensitive constant propagation.

• We bounded stack memory usage for interrupt-driven programs
using a context-sensitive implementation of the bitwise do-
main [14].

• De Bus et al. [3] used constant propagation to optimize ARM
binaries.

Many other applications of these techniques can be found in the
literature.

2.1 Abstract interpretation
Abstract interpretation [2] is a framework that supports formal,
modular reasoning about static program analysis. By manipulating
abstract values, which represent sets of concrete values, an abstract
interpreter can compute the properties of many program executions
using relatively few analysis steps. For example, rather than sep-
arately analyzing the behavior of an embedded system for each of
the possible values returned by a temperature sensor, an abstract in-
terpreter would simply analyze the case where the sensor returns a
single abstract value representing the set of all possible temperature
inputs. Abstract interpretations deliberately make approximations
to avoid undecidability and to achieve reasonable space and time
efficiency.

Abstract domains Abstract values belong to domains, or partially
ordered lattices of abstract values, where each abstract value x cor-
responds to a unique set of concrete values γ(x) and, conversely,
each set of concrete values Y corresponds to an abstract value
α(Y). Although concrete domains are commonly taken to be in-
finite, e.g., Z or <, we observe that in practice, computer programs
manipulate values the come from finite sets: each value must fit into
some number of bits. The semantics of concrete operations come
from the semantics of the processor or programming language for
which we are deriving transfer functions.

The smallest element of a lattice ⊥ represents a complete lack
of information; its concretization is the set of all possible values.
The partial order of a lattice is defined by:

x v y
def
= γ(x) ⊇ γ(y)

In other words, smaller abstract values represent larger sets of con-
crete values, and are consequently less precise estimations of the
contents of a storage location. The greatest lower bound operation
u is the largest (most precise) abstract value such that:

γ(x u y) ⊇ γ(x) ∪ γ(y)

In other words, the concretization of the greatest lower bound of
two values must be a superset of the union of the concretization of
the individual values. We refer to u as the merge operator for two
abstract values; it is used to create a safe and precise estimate of the
state of the machine when two control-flow paths are merged, for
example after analyzing both branches of an if-then-else construct.

In this paper an “imprecise” result is technically correct but has
lost some information. It is important to distinguish between the
different kinds of imprecision that occur during abstract interpreta-
tion. First, an abstract value may be imprecise because the abstract
domain cannot represent a given concrete set. For example, con-
sider a program where a certain storage location contains only the
values “4” and “6” in all executions. A constant propagation anal-
ysis must conclude that the storage location contains the value ⊥,
because this domain is inherently not expressive enough to return
a more precise result. Second, an abstract value may be imprecise
because of approximations made in the implementation of an ab-
stract interpreter. For example, assume that two different interval
domain analyzers for the program above respectively estimate the
storage location to contain [4..6] and [0..6]. Both results are cor-
rect but only [4..6] is maximally precise, given the constraints of
the interval domain. This paper is about avoiding this second kind
of imprecision. All other things being equal a more precise analy-
sis is preferable, but usually precision is gained at the expense of
memory and CPU consumption at analysis time.

Abstract operations The focus of this paper is on deriving an
abstract operation f ′ for every ALU operation f that is provided by
a given processor architecture or high-level language. An abstract
operation must satisfy:

α({f(y)|y ∈ γ(x)}) ⊆ f
′(a)

To understand this equation, consider an abstract value x. We can
apply the concrete function f to each member of the set of concrete
values represented by x. The set of concrete values so obtained
must be a subset of the concretization of the abstract value returned
by applying the abstract function f ′ to x.

The trivial abstract function, which always returns ⊥, is correct—
but useless. The challenge, then, is to obtain a more precise abstract
function. In this paper, we use f] to denote the most precise ab-
stract version of a concrete function f for a given domain. The
maximally precise abstract function can be computed by:

f](a)
def
= α(f(c1)) u . . . u α(f(cm))

where {c1, . . . , cm} = γ(a)
(1)

That is: concretize the abstract value that is the argument to the
function, apply the corresponding concrete function to each con-
crete value, and then merge the concrete results together to form an
abstract value. The maximal precision follows from the fact that we
are merging together only values that need to be merged, and the
facts that u is commutative, associative, and maximally precise.

The straightforward computation of f] for a binary operator has
runtime quadratic in the worst-case size of the concretization set,
which is itself usually exponential in the bitwidth of the operands.
Thus, simply evaluating Equation 1 inside a program analyzer
is far too inefficient, even for 8-bit architectures. The primary
contribution of this paper is a collection of algorithms for deriving
abstract transfer functions such that both deriving and executing the
functions requires linear time in the bitwidth of the operands.

2.2 Bitwise domain
The bitwise abstract domain is a ternary logic in which each bit
either has a concrete value or is unknown. Formally, each bit has a
value from the set {0, 1,⊥} and the concretization function is:

γ(0) = {0}
γ(1) = {1}
γ(⊥) = {0, 1}

Consequently, the merge function for bits is:

a ubit b
def
=

a if a = b
⊥ if a 6= b

(2)

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

⊥1⊥1⊥0

⊥⊥

0 ⊥

0100 10 11

Figure 1. The bitwise lattice for n = 2. In the general case this
lattice has height n + 1 and contains 3n elements.

[0,1] [1,2] [2,3]

[0,2] [1,3]

[0,3]

[0,0] [1,1] [2,2] [3,3]

Figure 2. The unsigned interval lattice for n = 2. In the general
case this lattice has height 2n and contains 2n−1(2n +1) elements.

An abstract word is the composition of multiple bits. We use n
to denote the number of bits in a native machine word. The merge
function for words is simply:

a ubits b
def
= (a0 ubit b0, a1 ubit b1, . . . , an−1 ubit bn−1)

The bitwise lattice, shown for two bits in Figure 1, is useful
for reasoning about partially unknown data that is manipulated
using bitmasks and other logical operations. Our previous work on
bounding the stack memory consumption of embedded software in
the presence of interrupts [14] used the bitwise domain to estimate
the status of the interrupt mask at each program point. The first use
of the bitwise domain for analyzing software that we are aware of
is Razdan and Smith’s 1994 paper [12].

2.3 Interval domain
The interval domain [2] exploits the fact that although many storage
locations contain values that change at run time, it is often the case
that these values can be proven to occupy a sub-interval of the
entire range of values that can be stored in a machine word. For
example, it might be expected that a variable used to index an array
of size i would never have a value outside the interval [0..i − 1].
In the interval domain, abstract values are tuples [low, high] where
low ≤ high. The concretization function is:

γ([lo, hi]) def
= {lo, lo + 1, . . . , hi}

Two intervals can be merged as follows:

[alo, ahi] uint [blo, bhi]
def
= [min(alo, blo), max(ahi, bhi)] (3)

The interval lattice, shown for two-bit unsigned integers in
Figure 2, is best used to model arithmetic operations. It has been
used as part of a strategy for eliminating array bounds checks [7],
for bounding worst-case execution time [4], and for synthesizing
optimized hardware by statically showing that the high-order bits
of certain variables were constant at run time [17].

2.4 Ways to create transfer functions
Figure 3 compares three different ways of creating abstract transfer
functions. This section outlines the problems with the completely
manual and completely automated approaches.

Completely automated Our previous work on Hoist [13] used
brute-force to lift concrete operations into abstract domains. Be-
cause Hoist treated both domains and program operations as black
boxes, it required almost no input from human developers. How-
ever, lacking a semantic representation of domains or program op-
erations, Hoist was forced to use unscalable algorithms. It worked
well for small embedded processors but there is no obvious way to
make it scale.

Completely by hand Transfer functions for simple abstract do-
mains, such as null-pointer analysis and constant propagation, are
easy to create by hand. On the other hand, elaborate domains such
as intervals and bitwise values are not easy to implement, especially
if both efficiency and precision are required. Consider an add in-
struction that has the following assembly language representation:

add dst, src

In a CPU simulator this might be implemented as:

reg[dst] = (reg[src]+reg[dst]) % (MAXUINT+1);

in addition to some code updating the condition code flags. We
assume that the processor running the simulator has a larger word
size than the processor being emulated, and hence MAXUINT+1 does
not overflow.

An abstract add in the unsigned interval domain is complicated
slightly by the case analysis necessitated by the potential for the
low and high ends of the result interval to independently wrap
around:

lo = reg[src].lo + reg[dst].lo;
hi = reg[src].hi + reg[dst].hi;
if ((lo > MAXUINT) ^ (hi > MAXUINT)) {

reg[dst].lo = 0;
reg[dst].hi = MAXUINT;

} else {
reg[dst].lo = lo % (MAXUINT+1);
reg[dst].hi = hi % (MAXUINT+1);

}

Computing the abstract condition codes is also more difficult
than it is in the concrete case, and both result and condition codes
are even more painful for the signed interval domain where there
are more ways to wrap around.

A bitwise abstract add is much trickier, and it is in situations
such as this where implementers often resort to crude approxima-
tions. For example, a first cut at the bitwise add might return an
entirely unknown result if any bit in any input is unknown. A better
approximation is to return a result with m known bits if the bot-
tom m bits of both arguments are known. For example, if bits 0–3
in both arguments are known, then the add functions normally in
this range and returns ⊥ for bits 4 and higher. On the other hand,
if bits in position 4 are the only unknown bits in the inputs, and
if the bits in position 5 of both inputs are zeros, then any possible
carry out of position 4 will be absorbed, and the add can func-
tion normally again in bits 6 through n − 1 as if there were no
unknown bits. Further improvements along these lines are possible
but unattractive—the general case where known and unknown bits
are freely mixed is difficult to reason about, as is the analogous case
of computing the xor operation precisely for arbitrary interval val-
ues. In practice, developing a sufficiently good approximation for
each machine-level operation is a laborious and error-prone process
requiring refinement of approximations when the analysis returns
imprecise results. Developing maximally precise functions without
resorting to brute force is even more challenging.

Other previous work There has been very little work on generat-
ing transfer functions automatically, compared to the vast literature

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

derivation implementation derivation analysis correctness precision scalability
method effort efficiency efficiency to large bitwidths
by hand poor N/A very good typically poor typically poor very good

this work good very good acceptable excellent excellent very good
Hoist [13] very good poor acceptable excellent excellent poor

Figure 3. Comparison of three different ways to obtain abstract transfer functions. The present work occupies a middle ground between two
extremes: zero tool support, and Hoist’s complete (but unscalable) tool support.

on dataflow analysis and abstract interpretation in general. Yorsh
et al. [19] represent abstract values symbolically and manipulate
them using a theorem prover. They generate a sequence of approx-
imations to the answer, using counterexamples to find weaknesses
of the current approximation. It is not really possible to directly
compare this work with ours, as the underlying abstract domains
are very different: Yorsh et al. focus on transfer functions for shape
analysis. Rice et al. [16] derive transfer functions given dataflow
fact schemas. The domains that they attack are traditional compiler
domains such as constant propagation and pointer analysis, and it
is not clear that their method could be extended to handle value
propagation domains like intervals.

2.5 Notation used in this paper
In Boolean formulas we use the conventions that + is Boolean-or,
⊕ is Boolean-xor, Boolean-and is implicit in adjacent terms, and
Boolean complement is signified by a line over a term. In formu-
las we indicate low-level program operations in the concrete do-
main using a sans-serif font, e.g., xor. Abstract transfer functions in
the bitwise and interval domains are indicated with subscripts, e.g.,
xorbit and xorint for bit-vector exclusive-or in the bitwise and inter-
val domains, respectively. When interval abstract values appear in
formulas and in pseudocode, we will use ilo and ihi to extract the
lower and upper bounds, respectively, of interval i. Finally, when
there is no danger of ambiguity we will abuse the notation slightly
by interchangeably using “0” and “false,” and “1” and “true.”

3. Algorithms for the Bitwise Domain
This section presents our algorithms for deriving abstract transfer
functions in the bitwise domain.

3.1 A restricted model of operations
Most ALU operations have a ripple carry structure. A ripple-carry
operation is one where bit i of the output is a function of bit i in
each of the inputs as well as a carry bit from position i − 1. Bit-
vector operations (other than right-shift) are trivially ripple-carry,
as are all arithmetic operations other than multiply and divide.
Multiply and divide are not heavily used in the embedded programs
that we are interested in.

Let a and b be the inputs to a binary operation f that we wish
to lift into the bitwise domain (we do not cover unary operations
here—they are a straightforward degenerate case of the binary
operations). Let r be the result of the operation, so that:

r = f(a, b)

Let c be a carry word that is an intermediate result of the
operation. We identify the ith bits of a, b, c, and r respectively
as ai, bi, ci, and ri.

A ripple-carry operation can be completely specified by Boolean
functions x and y:

ri = x(ai, bi, ci)
ci = y(ai−1, bi−1, ci−1)

in addition to a constant c0 that determines the least significant bit
of the carry word. We call x and y the characteristic functions for
an operation. The value of f is then simply:

f(a, b) =

n−1
X

i=0

ri2
i

In ripple-carry form, integer addition is:

x(a, b, c) = a ⊕ b ⊕ c
y(a, b, c) = ab + ac + bc

c0 = 0

Without loss of generality we henceforth assume that c0 =
0, since for any set of characteristic functions where c0 = 1,
complementing the c term in x and y gives functions with the same
effect where c0 = 0.

Given this limited model for machine operations, it is feasible
to compute the characteristic functions for each operation through
limited use of brute force. Since there are only 216 possible com-
binations of functions x and y, we can simply try each one until
we find the pair corresponding to the desired operation. In practice,
this can be optimized further by a two-pass search where the first
pass limits our search space to only those pairs that match the de-
sired operation at position zero. Given our earlier assumption that
c0 = 0, this first pass can be performed quickly, significantly re-
ducing the search space for the brute-force second pass.

3.2 Lifting Boolean functions into the bitwise domain
Reps et al. [15] showed how to compute a maximally precise three-
valued version of a two-valued function. This requires exponential
time and is analogous to a straightforward evaluation of Equation 1.
In practice this is prohibitive for operations on 16 or more bits. On
the other hand, characteristic functions are small enough that it is
possible to rapidly create maximally precise three-valued functions.
We wrote a solver that does this using brute force. The three-valued
characteristic function can then be run in a loop to create the overall
transfer function.

3.3 Multiplication
Multiplication does not fit the ripple-carry model. Nevertheless,
we implemented a not-maximally-precise multiplication transfer
function by exploiting our existing (maximally precise) shift and
add transfer functions. In pseudocode form:

Bitwise Multiply (Bitwise in1, Bitwise in2)
Bitwise Sum = IntToBitwise (0)
For int i=0 to N-1
Bitwise Product =

MultiplyBit (in1, getBit(in2, i))
Sum = Add (Sum, shiftLeft (Product, i))

return Sum

In this example Add and shiftLeft are the existing transfer
functions and MultiplyBit is a simple function that kills all “1”
bits in its first argument if its second argument is bottom. We
quantify the precision of this function in Section 6.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

3.4 Condition codes
The model we have described so far does not consider condition
codes. Of course, most computer architectures support both input
and output condition codes. A common flag is carry, which cap-
tures the extra bit that would ordinarily be lost when adding or sub-
tracting two n-bit quantities. The add-with-carry instruction, for
example, uses the carry flag both as input and output, allowing two
n-bit operations to be chained together into a 2n-bit operation.

Our bitwise domain algorithms support carry as in input by
dropping our earlier assumption that c0 is always zero and instead
letting it be a function of the incoming condition codes. Thus, the
algorithms that we have already described suffice to handle carry
inputs. Arbitrary condition code inputs would be difficult to handle,
but no architecture that we have looked at uses any bit other than
carry as input.

To derive transfer functions for condition codes that are outputs
of instructions, we require that a developer provide a symbolic
version of the condition code computation using a collection of
building blocks that we have provided. For example, the following
code describes three flags for the Atmel AVR processor:

Z = new FFResultEqualsZero();
H = new FFCarryOutBit (3,1);
V = new FFColumn (new FFColumn (7, 1, 1, 0),

new FFColumn (7, 0, 0, 1));

The Z (zero) flag uses a built-in primitive to check if the result of
an instruction is zero. The H (half-carry) flag checks if the carry out
of bit three is one. Finally, the V (two’s complement overflow) flag
is true if the tuple (top bit of operand one, top bit of operand two,
top bit of the propagated carry) matches either the pattern (1, 1, 0)
or (0, 0, 1). These computations are straightforward translations of
information from the AVR instruction set reference.

For most flags, we lift the concrete functions for condition
code flags into the bitwise domain in the same way we lift the
characteristic functions of each operation. The Z flag is special in
that it depends on values from every column as opposed to other
flags which can be determined by looking at a single column of
the operands and/or result. To support the Z flag we implemented
a small custom SAT solver that gains efficiency by exploiting our
ripple-carry model of instructions.

4. Algorithms for the Interval Domain
This section describes our algorithms for lifting concrete operations
into the unsigned interval domain. The interval domain is more
difficult than the bitwise domain in two ways. First, its lattice
is larger, containing on the order of 4n elements, as opposed to
3n for the bitwise domain. Second, bits in the interval domain
are not independent, as they are in the bitwise domain, making a
divide-and-conquer approach to generating transfer functions more
difficult.

Abstract arithmetic operations in the interval domain are rela-
tively simple: they can be implemented by operating only on the
upper and lower bounds of the input intervals, as illustrated in
Section 2.4. The challenge is implementing precise and efficient
abstract versions of bit-vector operations: these cannot be imple-
mented solely in terms of their lower and upper bounds. Consider
for example the interval version of the bit-vector “and” function:

[7..12] andint[10..17] = [0..12]

No straightforward function of the bounds on the input intervals
leads to the output intervals. Rather, the lower bound of the result,
0, comes from anding together 7 from the first input interval and
16 from the second. The upper bound of 12 comes from anding
together 12 from the first input interval and 15 from the second.

2*2k

3*2k

4*2k

5*2k
S Line
R Line

Output:
c with bit k killed

2k 2*2k 3*2k 4*2k 5*2k
0

Input:
integer c

2k

Figure 4. Visualizing the KillBit(c, k) function, which subtracts
2k from an integer only if its kth bit is set, in which case we say
that c lies on the “reduced” (R) line rather than the “standard” (S)
line

Considering all such pairs is basically an implementation of Equa-
tion 1, which is unacceptable since it has performance exponential
in the bitwidth of the operands. Subsequent subsections present a
series of building blocks that eventually support derivation of max-
imally precise interval transfer functions for bit-vector operations.

4.1 The notint function
The bit-vector complement operator flips each bit in a word. The
interval transfer function for bit-complement, notint, works as fol-
lows. First, the complements of the upper and lower bounds of
the input interval are computed. Second, these two numbers are
swapped to form the lower and upper bounds of the result interval,
respectively. This works because the bit-vector complement func-
tion for unsigned integers is monotonically decreasing.

4.2 The KillBitint function
KillBitint is a function from intervals to intervals that we use as a
building block for other interval transfer functions. It is:

KillBitint(a, k)
def
= α(KillBit(c1, k)) u . . . u α(KillBit(cm, k))

where {c1, . . . , cm} = γ(a)

and KillBit(c, k)
def
=

c if c mod 2k+1 < 2k

c − 2k otherwise

In other words, the effect of KillBitint is to enumerate the con-
cretization set of its interval argument, zero the kth bit of each re-
sulting concrete value, and then merge the results back together into
an abstract value. For example KillBitint([13..21], 4) = [0..15].

The naive implementation of KillBitint is exponential in the
bitwidth of the argument interval. Our constant-time version of
KillBitint is suggested by Figure 4, which illustrates the effect of
the KillBit function. A case analysis is required to compute each of
the bounds in the result interval.

Upper bound If the upper bound of the input interval lies on the
S line, KillBitint is trivial: the upper bound of the output interval
is just the upper bound of the input interval. On the other hand, if
the upper bound of the input interval lies on the R line, things are
more complicated. Observe graphically that if there is a point on
the S line to the left of an R point, the S point is guaranteed to be
vertically higher (i.e., numerically greater once transformed). It is
therefore necessary to check for the predecessor of the upper end

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

point. The predecessor is the right-most S point. If the input interval
contains no S point, then the original upper end will be used. Pred
is defined as follows:

pred(c, i)
def
=

d if d ≥ ilo
c otherwise

where d = c − (c mod 2k) − 1

Lower bound If the lower bound of the input interval lies on
the R line then the lower bound of the result interval is simply
2k subtracted from the lower bound of the input interval. If the
lower bound lies on the S line, things are more complicated in a
way analogous to the upper bound lying on the R line, and can be
computed be evaluating the “successor” function of the input lower
bound:

succ(c, i) def
=

d if d ≤ ihi

c otherwise

where d = c − (c mod 2k) + 2k

4.3 The orint function
Let r be a orint b. A straightforward way to compute r using Equa-
tions 1 and 3 is:

rlo = min(x or y) for all x ∈ γ(a), y ∈ γ(b)

with rhi defined analogously. Of course, implementations of ab-
stract operations based on explicit concretization are too slow. For
example, using this formula to compute ⊥ orint ⊥ for 32-bit inte-
gers requires on the order of 264 operations.

Given KillBitint, we can derive an efficient and maximally pre-
cise unsigned interval transfer function for bit-vector “or.” We
claim that

rlo = min

alo or mb

blo or ma

where ma and mb are numbers carefully chosen from intervals a
and b. First we argue that this is true, and second we will show how
to compute ma and mb.

The first step is to argue that the lower bound of the result is
computable using either the lower bound of the first operand and
the entire interval of the second, or else the lower bound of the
second operand and the entire interval of the first, whichever is
lower. The argument is as follows. Suppose a lower bound r is
computed as a or b where a and b are numbers from the two operand
intervals but neither is a lower bound. It can be proven that a new
bound r′ such that r′ ≤ r can always be calculated from some
numbers a′ and b′ such that a′ < a or b′ < b.

Furthermore, we argue that a′ and b′ can be computed by simply
subtracting one from either a or b, or both. Specifically, if either
variable is odd, we subtract one from it, making it even. If both a
and b are odd, we subtract one from each. Either way, the result
is that both variables end up even. When we or them together, the
result r′ will be identical to r except its least significant bit will be
zero, effectively making it one less than before, thus proving that a
better lower bound exists.

The difficult case happens when both a and b are already even,
i.e., the least-significant bit of each is zero. In this case we succes-
sively look at more significant bits until in one variable or the other
we find a one bit. We then subtract one from that variable, or from
both of them, if their right-most one bits are in the same position.
Orring the resulting variables together will once again yield a better
lower bound.

The second step is to compute ma using the following algo-
rithm:

int lowerBound (Interval a, Interval b)
for int i=N-1 downto 0

if isBitSet (b.lo, i)
a = killBit_int (a, i)

return a.lo

Computing mb can be done by swapping all as with bs and vice-
versa in the above algorithm. The logic behind the computation
of ma is as follows. Recall that we are trying to find the smallest
value in the interval a that, once orred with blo, yields the smallest
result possible. We find all bits of blo that are ones and kill the
corresponding bits in the interval a. These bits are killed because
they do not contribute to the result: they are already ones in blo,
and the or operation only needs one side of the operand to be one.
Once we kill these non-performing bits, we know that all remaining
ones do contribute to the result, and orring any value from this
interval with blo is equivalent to adding it to blo. Because we want
the smallest result, we simply pick the lower bound of this interval.

4.4 The andint and xorint functions
Finally we are in a position to derive interval versions of the
remaining bit-vector operations as follows:

a andint b
def
= notint(notint(a) orint notint(b))

a xorint b
def
= (a andint notint(b)) orint(notint(a) andint b)

Both functions are correct and maximally precise, although
more efficient versions could no doubt be created by deriving the
functions from first principles. Although we have not proved max-
imal precision, our informal argument is that it follows from the
maximal precision of the building blocks and from the fact that in-
formation is not “remembered” across multiple building-block op-
erations. We have verified maximal precision and correctness of
these operations using exhaustive testing for small bitwidths.

4.5 Condition codes
To support input condition codes, we need to detect the appropriate
bit in the input flag word and adjust the lower and upper bounds of
one of the operands accordingly. For all architectures that we are
aware of, the only flag we need to worry about here is the carry
flag. If the carry bit is set, both the lower and upper ends must be
incremented, where as if the bit is unknown, we increment only the
upper end of the interval to reflect the wider range of uncertainty.

The interval output condition codes are computed from the same
symbolic representation of instructions that are used for the bitwise
condition codes. However, we currently only support a subset of the
codes that can be implemented maximally precisely. The Z (zero)
flag is straightforward to implement: since zero lies on one end of
the unsigned integer number line, we can easily determine whether
an interval is exactly zero, may or may not be zero, or cannot be
zero.

Another class of flags that we implemented is the one that, for
the concrete domain, can be determined by examining only one bit
of either operand or one bit of the result. The S (sign) flag found
in most architectures is one example. For the two’s complement
encoding, the sign of a value can be determined by examining its
most significant bit. For the interval domain, however, we need to
employ the algorithm we used before. First we check the distance
between the lower and upper bounds. If the distance is sufficiently
far apart (greater than or equal to 2k where k is the bit in question)
then the bit must be unknown. Otherwise, we check whether the
lower and upper end points are on the S or R line. If they fall on
different lines, then clearly this bit is also unknown, as it is set
during some parts of the line (the S part) but not the other. On the
contrary, if they both fall on the S line then the bit is a known one,
and a known zero if they both fall on the R line.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

domain

algorithms

concrete

operation

specs

derivation

compilable

transfer functions

PSU code

translation

Figure 5. Deriving transfer functions

5. Implementation
We implemented the algorithms described in Sections 3 and 4 in a
collection of tools totaling about 11,000 lines of C++ and 2,000
lines of OCaml. Figure 5 shows the flow of information in our
implementation, which operates as follows:

1. The derivation algorithms are applied to the concrete opera-
tions, lifting them into the abstract domains. The resulting ab-
stract transfer functions are independent of the bitwidth of the
analyzed datatypes and they are in PSU: a simple and generic
imperative language that we developed as an intermediate rep-
resentation for transfer functions.

2. A back-end instantiates the PSU functions with specific bitwidths
and translates them into a programming language.

3. The derived transfer functions are compiled and linked into a
program analysis tool.

5.1 Analyzing multiple languages
We can currently generate transfer functions in the bitwise and
interval domains for the following languages:

• AVR object code [1]
• ARM7 object code [8]
• C source code

Independence of the language being analyzed is accomplished
using a specification language that is embedded in C++. A devel-
oper using this language writes C++ code instantiating objects that
we have provided in order to build up a model of the behavior of
each operation.

For example, the following code specifies the ARM or instruc-
tion:

void ArchArm::Or (const ConcrValue in1,
const ConcrValue in2,
const ConcrValue inCC,
ConcrValue& out1,
ConcrValue& outCC,
InstrDesc& desc)

{
desc.name = "or";
desc.op = new OpOr();
ConcrValue mask = getArch().getMaxInt();
out1 = (in1 | in2) & mask;
useDefaultArmFlags(desc,"NZC");

}

This specification language is somewhat ad-hoc. In the long run
we plan to exploit existing formal semantics for machine archi-
tectures, such as Lambda-RTL [11] or HOL’s model of the ARM
architecture [6].

5.2 Supporting analysis tools in multiple languages
Our tools emit transfer functions in PSU: a small imperative lan-
guage that we designed to be strongly typed, easy to parse, and easy
to translate into other languages. PSU supports expressions, condi-
tionals, function calls, and for-loops. Values and operations in PSU
are conceptually arbitrary precision; it is up to the PSU translator to
choose appropriate types so that information is not lost. For exam-
ple, interval transfer functions for n-bit integers require n + 1 bits
of precision. Therefore, transfer functions for datatypes of 16 and
fewer bits can use native 32-bit integers. Analyzing 32-bit integers
requires 64-bit integers, and analyzing 64-bit integers requires ac-
cess to a bignum package. Because many languages do not provide
a uniform interface to native and non-native integer types, the PSU
translator must be made aware of the different interfaces.

This fragment of PSU code is taken from the orbit function for
the ARM architecture:

INT_VAR r;
ASSIGN r GETS (((((((b)BITWISE_OR(a)))BITWISE_AND

(0xffffffff)))BITWISE_AND(rk)));
ASSIGN outCCk

GETS ((((EXTRACT_KNOWN(inCC)))BITWISE_AND(0x1fffffff)));
ASSIGN outCCv

GETS ((((EXTRACT_VALUE(inCC)))BITWISE_AND(0x1fffffff)));
IF (INT2BOOL(((dk)BITWISE_AND((1)SHIFT_LEFT

((ARCH_WORD_SIZE)MINUS(1)))))) BEGIN_BLOCK
ASSIGN outCCk

GETS ((((EXTRACT_KNOWN(outCC)))BITWISE_OR(0x20000000)));
END_BLOCK

Currently we translate PSU into C and OCaml. A Java backend
would be straightforward to write, and would permit us, for exam-
ple, to replace the hand-written transfer functions for the bitwise
domain for the AVR architecture in Avrora [18] with our derived
functions.

5.3 Supporting diagonal operations
The precision of many transfer functions can be improved when
both operands come from the same physical location. For example,
x xorint x = 0 even if x = ⊥ before the operation. The generic
xorint transfer function has to return bottom in this case. We refer
to operations where both inputs come from the same location as
diagonal because their results can be found on the diagonal of
the result table for the function. Support for diagonal operations is
important when analyzing object code because, for example, many
compilers use exclusive-or to clear variables rather than loading an
immediate zero. Our tools automatically create a diagonal version
of every transfer function that they emit.

6. Evaluation
This section evaluates our derived transfer functions.

6.1 Validation
We exhaustively tested our generated transfer functions for both
correctness and precision whenever possible. To exhaustively test
a transfer function, all possible combinations of abstract values
are tested against a slow—but obviously correct—version of the
transfer function that implements Equation 1.

To make exhaustive testing practical we had to artificially re-
strict the bitwidth of most transfer functions. Of course limited-
bitwidth testing reduces our confidence in the test results. How-
ever, intuitively, it is difficult to see how a 32-bit interval xor could

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

fail when the 8-bit operation (which is derived from the same PSU
code as the 32-bit version) succeeds. Even so, we also performed
probabilistic testing of large-bitwidth operations. We did this by
generating random abstract values whose concretization sets were
small enough that Equation 1 could be evaluated in a reasonable
amount of time.

Although exhaustive and probabilistic testing uncovered bugs
early in our work, the final versions of our transfer functions are
believed to be correct, and to be maximally precise except in cases
where we have indicated that maximal precision was not achiev-
able.

6.2 Microbenchmarks
We compared the precision and throughput of our derived transfer
functions with brute-force transfer functions and also with two
kinds of manually implemented transfer functions. First, those that
we optimized for speed, and second, those that we optimized for
precision. Because manual implementation is extremely tedious—
the point of this work is to avoid it in the first place—only a few
of these functions were implemented. The results are summarized
in Figure 6. The derived transfer functions evaluated here were the
ones for analyzing C code, and they were implemented in C.

These results confirm that automatically generated transfer
functions are more precise than manually written ones. While
the automatically generated functions are maximally precise, the
manually written ones lose anywhere from 2.8 to 11.2 bits per
operation, or as much as 48% of the information that could have
been gained. If precision is an important goal, the automatically
generated functions are clearly preferable. On the other hand, our
automatically generated functions are also slower than those writ-
ten by hand. The performance penalty ranges from 11% (compar-
ing against 32-bit precision-optimized functions) to 500% (8-bit
performance-optimized functions).

Our tool implementations do not attempt to generate optimized
code, either during PSU generation, or in the translation of PSU
code into C and OCaml. We optimized some of our generated trans-
fer functions by hand and found that it was not difficult to speed
them up by a factor of two. This benefit was attained by apply-
ing standard compiler optimizations that—for whatever reason—
gcc was not applying, even at high optimization levels. It is likely
that these optimizations could be automatically applied by our
toolchain. We discuss two more aggressive ways to improve per-
formance of the generated code in Section 7.

6.3 Macrobenchmarks
To evaluate our transfer functions in the context of actual program
analyses, we ported them into an interprocedural dataflow analyzer
that we have developed. Our analyzer is based on CIL [10] and is
implemented in OCaml. It handles all of C and specifically targets
embedded software, for example by supporting analysis of concur-
rent programs. Figure 7 uses several different metrics to compare
interval and bitwise analyses based on our transfer functions to the
well-known constant propagation analysis. Dead code is the per-
centage of statements in the original program that our analyzer can
show to be unreachable. Constant variables refers to uses of vari-
ables that can be replaced with constants, as a percentage of the
total number of static uses of variables in the program. Bits known
is a domain-independent measure of analysis precision that tracks
the number of bits in program variables that the analysis can show
to be invariant across all executions. Finally, analysis time is just
the time to run our analyzer, including the (often substantial) time
taken by CIL’s pointer analysis.

6.4 Ease of use
The main goal of our research is to reduce the work required to gen-
erate abstract transfer functions. Although we do not have quantita-
tive results about this, we do have some anecdotal evidence. One of
the authors estimates that it takes less than 10 minutes to write the
specification for an instruction, and another 5–15 minutes to set up
an automated tester. On the other hand, writing an abstract trans-
fer function from scratch, debugging it, and tweaking it to improve
precision and performance can take anything from a few minutes
to several hours, depending on the complexity of the instruction,
the desired level of precision, and the desired level of performance.
Moreover, lingering errors in transfer functions can directly lead to
overall unsound results. Similarly, lingering imprecision can easily
lead to overall analysis failures because some critical piece of in-
formation remains unknown. Both kinds of failure are difficult to
debug because they occur at such a low level.

We find abstract transfer functions to be hard to think about.
Condition code flags and wraparound conditions are particularly
tricky. In several instances, the authors of this paper spent up to half
an hour arguing with each other about the correctness or precision
of a manually implemented transfer function.

7. Discussion
Transfer functions comprise the bottom layer of a dataflow analyzer
and are consequently independent of higher-level analysis design
choices such as flow (in)sensitivity, path (in)sensitivity, and context
(in)sensitivity. Consequently, our derived transfer functions should
be broadly useful, and we believe that our approach can be straight-
forwardly applied to more programming languages, byte codes, and
assembly languages.

On the other hand, it is not clear how to generalize our work to
additional abstract domains. In fact, in our view the most dissatisfy-
ing thing about this work is that we were unable to create a unified
model of ALU operations that generalized across many different
abstract domains. In contrast, Hoist [13] did have such a unified
model. However, we have achieved linear function derivation times
compared to Hoist’s exponential runtime.

In Section 6 we showed that hand-written transfer functions
typically outperform our automatically derived functions. We have
two ideas—that we leave for future work—that could greatly speed
up the generated code:

1. Our generated functions are Boolean formulas that almost cer-
tainly contain some redundancy. Consider, for example, our im-
plementation of xorint in Section 4.4—it clearly contains con-
siderable low-level redundancy. Redundant subcomputations
could be eliminated by creating a vector of binary decision di-
agrams (BDDs) for each transfer function, and then generating
code that evaluates the BDDs instead of evaluating the function
in its original form. This would eliminate redundant computa-
tions even, for example, across multiple condition code bits.

2. Our transfer functions fail to exploit the parallelism that all
processors expose through bit-vector instructions. A technique
such as SIMD within a register [5] could be used to recapture
some of this available parallelism.

The work presented in this paper is just a first step. In the future
we plan to derive transfer functions for additional abstract domains,
and to develop proofs of correctness for our existing algorithms.
We would also like to create a less ad-hoc specification language
for concrete operations, or to reuse existing formal semantics for
high-level languages, byte codes, and assembly languages.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

Performance (1000x ops/sec) Average precision loss per op. (bits)
operation bits domain

brute manual manual auto. brute manual manual auto.
force (speed) (precision) gen. force (speed) (precision) gen.

subtract 8 bitwise 2 3948 1549 882 0 3.9 2.8 0
subtract 32 bitwise �1 1641 356 321 0 11.2 6.5 0
xor 8 bitwise 2 4841 - 1943 0 0 - 0
xor 32 bitwise �1 4760 - 875 0 0 - 0
subtract 8 interval <1 - - 847 0 - - 0
subtract 32 interval �1 - - 818 0 - - 0
xor 8 interval <1 - - 42 0 - - 0
xor 32 interval �1 - - 16 0 - - 0
multiply 8 bitwise 2 - - 4 0 - - 4.2
multiply 32 bitwise �1 - - 0.4 0 - - 4.6

Figure 6. Transfer function microbenchmark results

dead constant bits analysis
benchmark lines of C domain code (%) variables (%) known (%) time (sec.)

constant 5.51 0.71 4.96 1
yacr2 4001 bitwise 5.51 0.71 6.43 10

interval 5.51 0.71 5.40 5
constant 3.28 0.00 2.82 39

bzip2 7565 bitwise 3.53 0.34 8.52 74
interval 3.53 0.34 6.04 73
constant 2.86 0.10 0.21 85

bc 7341 bitwise 2.86 0.10 4.26 132
interval 2.86 0.10 4.06 120
constant 12.69 0.00 13.14 103

kitchen 8466 bitwise 57.42 1.51 55.33 114
interval 57.42 1.51 55.09 119

Figure 7. Whole-program static analysis results for the two derived domains, compared to the constant propagation domain

8. Conclusion
Precise and correct abstract transfer functions are an essential in-
gredient for static analyses, but they are difficult to implement. The
paper has two main contributions. First, a collection of algorithms
for lifting concrete program operations into the bitwise and un-
signed interval abstract domains. The derived transfer functions are
bitwidth-independent and in most cases they are maximally pre-
cise: they lose no precision beyond what they are forced to lose by
the structure of the abstract domain. Our second main contribution
is a collection of tools instantiating these algorithms in such a way
that they can be easily used to analyze a new instruction set or pro-
gramming language, and such that the resulting transfer functions
are easy to automatically translate into a new programming lan-
guage. The main idea is to amortize our work on algorithmically
lifting concrete operations into abstract domains to the largest pos-
sible extent. We have shown that transfer functions for analyzing
AVR object code, ARM object code, and C source code can be de-
rived, and also that they can be mechanically translated into C and
OCaml code that is ready to be linked into static analysis tools. We
have shown that the derived transfer functions can be used in an
actual program analysis tool.

9. Acknowledgments
We thank the reviewers for their helpful comments. This work is
supported by National Science Foundation CAREER Award CNS-
0448047.

References
[1] Atmel Corp. Atmel AVR 8-bit RISC family. http://www.atmel.

com/products/avr.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. of the 4th Symp. on Principles of
Programming Languages (POPL), pages 238–252, Los Angeles, CA,
January 1977.

[3] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique Chanet,
and Koen De Bosschere. Link-time optimization of ARM binaries.
In Proc. of the 2004 Conf. on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 211–220, Washington, DC, June
2004.

[4] Jakob Engblom, Andreas Ermedahl, Mikael Nolin, Jan Gustafsson,
and Hans Hansson. Worst-case execution-time analysis for embedded
real-time systems. Journal of Software Tool and Transfer Technology
(STTT), 4(4):437–455, August 2003.

[5] Randall J. Fisher and Henry G. Dietz. Compiling for SIMD within
a register. In Proc. of the 11th Intl. Workshop on Languages and
Compilers for Parallel Computing, pages 290–304, Chapel Hill, NC,
1998.

[6] Anthony Fox. Formal specification and verification of ARM6. In
Proc. of the 16th Intl. Conf. on Theorem Proving in Higher Order
Logics (TPHOLs), pages 25–40, Rome, Italy, September 2003.

[7] John K. Gough and Herbert Klaeren. Eliminating range checks
using static single assignment form. In Proc. of the 19th Australian
Computer Science Conf., Melbourne, Australia, January 1996.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

[8] ARM Ltd. ARM7 32-bit RISC Family. http://www.arm.com/
products/CPUs/families/ARM7Family.html.

[9] Thomas Lundqvist and Per Stenström. An integrated path and timing
analysis method based on cycle-level symbolic execution. Journal of
Real-Time Systems, 17(2/3):183–207, November 1999.

[10] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation
of C programs. In Proc. of the Intl. Conf. on Compiler Construction
(CC), pages 213–228, Grenoble, France, April 2002.

[11] Norman Ramsey and Jack W. Davidson. Machine descriptions to
build tools for embedded systems. In Proc. of the 1998 Workshop on
Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 176–192, Montreal, Canada, June 1998.

[12] Rahul Razdan and Michael D. Smith. A high-performance microar-
chitecture with hardware-programmable functional units. In Proc. of
the 27th Intl. Symp. on Microarchitecture (MICRO), pages 172–180,
San Jose, CA, November 1994.

[13] John Regehr and Alastair Reid. Hoist: A system for automatically
deriving static analyzers for embedded systems. In Proc. of the 11th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 2004.

[14] John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack
overflow by abstract interpretation. In Proc. of the 3rd Intl. Conf. on
Embedded Software (EMSOFT), pages 306–322, Philadelphia, PA,
October 2003.

[15] Thomas Reps, Alexey Loginov, and Mooly Sagiv. Semantic
minimization of 3-valued propositional formulae. In Proc. of the 17th
IEEE Symp. on Logic in Computer Science (LICS 2002), Copenhagen,
Denmark, July 2002.

[16] Erika Rice, Sorin Lerner, and Craig Chambers. Automatically
inferring sound dataflow functions from dataflow fact schemas. In
Proc. of the 4th Intl. Workshop on Compiler Optimization Meets
Compiler Verification, Edinburgh, UK, April 2005.

[17] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth
analysis with application to silicon compilation. In Proc. of the Conf.
on Programming Language Design and Implementation (PLDI),
pages 108–120, Vancouver, Canada, June 2000.

[18] Ben L. Titzer, Daniel Lee, and Jens Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Proc. of the 4th Intl. Conf.
on Information Processing in Sensor Networks (IPSN), Los Angeles,
CA, April 2005.

[19] Greta Yorsh, Thomas Reps, and Mooly Sagiv. Symbolically
computing most-precise abstract operations for shape analysis.
In Proc. of the 10th Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Barcelona, Spain,
March 2004.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

