
Presented as a work in progress at the 23rd IEEE Real-Time Systems
Symposium (RTSS 2002), Austin, TX, December 3-5 2002.

How to Rapidly Prototype a Real-Time Scheduler

Luca Abeni
ReTiS Lab

Scuola Superiore S. Anna, Pisa, Italy
luca@sssup.it

John Regehr
School of Computing

University of Utah
regehr@cs.utah.edu

Abstract

Implementing a new scheduling algorithm in an OS ker-
nel is often an important step in scheduling research be-
cause it permits evaluation of the algorithm’s performance
on real workloads. However, developing a new scheduler is
not a trivial task because it requires sophisticated program-
ming skills and a deep knowledge of kernel internals. In
this paper we show how to use the HLS scheduling frame-
work to develop new schedulers in a user-level simulator,
where advanced debugging tools can be used to achieve a
high level of robustness before the scheduler is converted to
a loadable kernel module simply by recompiling it. Besides
facilitating debugging and porting, the HLS abstraction has
the benefit of bringing the programming model very close to
what, in our experience, scheduler developers want.

1. Introduction

In recent years there has been a lot of interest in inte-
grating real-time techniques in general-purpose operating
systems (OSs) to run, for example, time-sensitive applica-
tions in desktop environments. New and interesting real-
time scheduling algorithms have been developed to meet
the requirements of these applications.

One of the most critical aspects of this kind of research
is to implement a proposed algorithm in a real kernel so
it can be validated and evaluated. However, such an im-
plementation requires a deep knowledge of the kernel and
better than average programming skill. Systems software
programming is more complex than application-level pro-
gramming because there are many non-obvious rules about
what kinds of actions can be performed in different parts of
the code, because systems code is often highly concurrent,
and because some important tools, such as source-level de-
buggers, are not usable in the kernel. Although most ker-
nels provide debugging support, these kernel debuggers are
usually much less sophisticated than comparable user-space
tools. Moreover, the implementation of the new scheduling
algorithm is often tightly bound to a specific kernel organi-

zation — this can be a serious problem with continuously
evolving systems like Linux.

Some research projects, like MaRTE OS [8] and
Shark [2], have proposed solutions for implementing user-
defined scheduling policies, but the implemented sched-
ulers have not been shown to be portable and they cannot
be used in common general purpose OSs such as Windows
or Linux. Bossa [4], on the other hand, supports loadable
schedulers in the Linux kernel using a safe domain-specific
language, eliminating the possibility of crashing the kernel
with a stray pointer and also enabling high-level checks on
the protocol that exists between schedulers and the kernel.
Functional testing, however, must still be performed in the
difficult kernel environment.

In this paper, we propose a solution for these problems
where schedulers are portable and can be debugged en-
tirely at user level. Our solution is based on the Hierarchi-
cal Loadable Schedulers (HLS) framework, an infrastruc-
ture originally developed for hierarchically composing soft
real-time schedulers [7]. Here we exploit another useful
property of HLS: its ability to separate a library of HLS
schedulers from several OS-dependentbackends. This is
accomplished through a clean separation between portable
schedulingpolicies, implemented by loadable schedulers,
and non-portable schedulingmechanisms, implemented in
the HLS backends. TheHLS application programming in-
terface (HLS API) provides a common language for di-
alogue between schedulers, and between schedulers and
backends. A real-time researcher or a student can rapidly
develop a portable scheduler in user space, testing it using
simulated task sets, and then, once it is debugged, insert it
into a supported kernel. We currently support Linux and
Windows 2000.

2. The HLS Framework

Since HLS framework was developed for hierarchically
composing schedulers there are child/parent relationships
between schedulers. Each scheduler only communicates
with its parent scheduler, its child schedulers (note that there

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


can be more than one), and the HLS infrastructure. All these
interactions happen according to a well-defined interface:
the HLS API. In this paper we give only a quick overview
of HLS concepts.

A child scheduler canregisterandunregister itself with
a parent,requestallocation of a physical CPU from its par-
ent, releasea CPU that it is using (block), andsendmes-
sages to the parent (e.g. to request a change in priority,
share, or deadline). On the other hand, the parent sched-
uler cangrant a CPU to a child scheduler, andrevoke a
CPU from the child (i.e. preempt it). Finally, interactions
between the infrastructure and a scheduler happen when
the scheduler is initialized/deinitialized or when a timer re-
quested by the scheduler fires.

An important invariant provided by the HLS API is that
each scheduler is aware, at all times, of the number of phys-
ical processors allocated to it. In other words, the HLS API
is in the style ofscheduler activations[1].

T3

unblock, create, delete

T1 T2

notifications: block,

timer
expirations

thread
dispatches

loadable

bottom schedulers

S1

S3S2

threads:

HLS backend

schedulers

root scheduler

Figure 1. The structure of HLS: the shaded
backend isolates portable schedulers from
the rest of the system

Schedulers are not permitted to interact except through
the HLS API. All communication between schedulers is
synchronous and is efficiently implemented through direct
function calls. Finally, there is no concurrency within the
scheduling hierarchy: all HLS entry points are explicitly
serialized using a spinlock.

To provide a uniform interface, each system processor
is represented as an HLSroot scheduler that has some spe-
cial properties: every root scheduler has exactly one child
and it never revokes the CPU from the child. Similarly, ev-
ery thread in the system is represented as a specialbot-
tom scheduler that explicitly gives up the processor each
time the thread blocks, and requests the processor each
time it unblocks. Root and bottom schedulers are “spe-

cial”: they provide glue that is necessary for the HLS back-
end to present the standard HLS API to all loadable sched-
ulers. Because loadable schedulers interact with each other,
and with the HLS backend, through the standard HLS API,
schedulers are agnostic with respect to their position in the
scheduling hierarchy. This structure is depicted in Figure 1.

When developing a new scheduler it is possible to imple-
ment only a subset of the full HLS interface. Two restric-
tions that make development significantly easier are unipro-
cessor schedulers that control the allocation of at most one
physical processor, androot-only schedulers that do not
handle processor revocation. For example, it took one of
us less than a day to implement a root-only, uniprocessor
proportional share scheduler.

3. HLS Backends

A backend for HLS that runs in the Windows 2000 ker-
nel was described in [7]. In this section we describe two
additional HLS backends. The first implements an event-
driven simulation that facilitates testing of HLS schedulers
in a user-level process and the second supports HLS sched-
ulers in the Linux kernel.

3.1. Simulation

The simulator backend accurately simulates the behavior
of a kernel exporting the HLS API. The simulated task set
is described in terms of number of tasks, duration of each
task, distribution of the execution time of each task instance
(i.e., distribution of the time for which a task executes be-
fore blocking), distribution of the interarrival time of each
task, and so on. Although the simulator is always deter-
ministic, nondeterminism can be emulated by seeding the
pseudo-random number generator with a true random num-
ber.

Special events can be defined that change task schedul-
ing parameters and move tasks from one HLS scheduler to
another. For example, a user who starts up some multime-
dia applications can be modeled by defining an event that
moves tasks from the default time sharing scheduler to a
real-time scheduler.

Although loadable schedulers in a real OS kernel are dy-
namically loaded at run time, we currently statically link
schedulers into the simulator. Scheduler instances are then
dynamically created when the simulator starts up, and there-
fore the scheduling hierarchy is defined by some C code
in the simulator. We are considering making the hierarchy
configurable at execution time or describing it in a text file
parsed by the simulator at startup.

The output of the simulator is a trace describing the gen-
erated schedule, which can be parsed using some filters (that
are distributed with HLS) to generate graphical representa-
tions of task executions.

2



3.2. Linux

We implemented HLS on Linux as a kernel module that
must be loaded into the kernel before any scheduler mod-
ules can be loaded. The HLS module interfaces with the
Linux kernel by intercepting scheduling events (described
in Section 2), and exports the HLS interface to loadable
schedulers.

To intercept the proper events the HLS module must be
inserted in a patched Linux kernel that exports 6 hooks:
fork hook , cleanup hook , block hook , un-
block hook , setsched hook , andgetsched hook .
The patch is not large or complicated: it changes only a
few files in the Linux kernel, adding a total of less than 150
lines of C. For every hook the patched kernel contains a
function pointer that is initially set to null. When the HLS
module is inserted it sets these pointers to its handlers, so
that the kernel will invoke the proper HLS handlers when
processes are created, destroyed, blocked, and so on. The
HLS handlers in turn convert each one of these events
into an HLS event, invoking the proper HLS scheduler
according to the HLS API.

When a scheduler is inserted into the kernel it registers
itself with the HLS infrastructure. New instances of this
scheduler can be created using the Linux proc filesystem. A
scheduler instance can be set as default scheduler, so that all
threads will be scheduled by it.1 The Linux backend makes
extensive use of the proc filesystem for exporting the sched-
uler hierarchy to the user and for visualizing information
about the registered HLS schedulers and currently existing
scheduler instances. When the HLS infrastructure is loaded,
some new procfs entries are created, and when a scheduler
is loaded or a new instance is created they are updated.

Threads can be moved between scheduler instances us-
ing the sched setscheduler() syscall. To make
this possible we extendedsched setscheduler() in
a backward compatible way: if the syscall is invoked us-
ing the standard syntax, it will behave as usual, but new
“HLS aware” programs can use some extended fields in the
sched param structure to access the new schedulers. Of
course, if this extendedsched setscheduler() syn-
tax is used on a standard kernel, or when the HLS module
is not loaded, the call will fail and return an error code.

Implementing a new scheduler in a general-purpose OS
always begs the question of whether the basic OS mecha-
nisms are capable of supporting real-time applications. We
believe that this problem should be considered separately
from the problem of implementing new scheduling algo-
rithms. There are well-known solutions [3] to problems
such as dispatch latency and coarse-grained timers. These
solutions are almost completely orthogonal to HLS and we

1When the default scheduler is created, all existing threads are moved
to it and when a new thread is created it is assigned to the default scheduler.

assume that the HLS implementation can make use of them
when they are available.

4. Developing a New Scheduler

The implementation of a new scheduling algorithm usu-
ally goes through three stages (in practice, of course, there
may be overlap between these stages).

In thefirst stage, the scheduling algorithm is fleshed out:
the developer’s main goal at this point is to create code that
does not crash the system. That is, it must respect all rele-
vant operating system invariants (e.g. don’t block in certain
kernel contexts, permit only one running thread per proces-
sor) and avoid corrupting memory (e.g. by dereferencing a
null pointer or walking off the end of an array).

HLS helps the developer avoid breaking some invariants
because its restricted API simply does not provide functions
that cannot be safely called from the scheduler. The HLS
simulator is also helpful during this stage because it can
subject the scheduler to systematic deterministic and ran-
domized testing to elicit errors. User-mode testing is prefer-
able to in-kernel testing for many reasons. First, advanced
debugging tools such as Purify, Valgrind, ElectricFence,
and gdb/ddd can be used on the scheduler’s code. Second,
when a bug is found it crashes only a process and not a
real machine — system crashes are slow to recover from,
they typically destroy useful machine state that would have
helped debug the problem, and sometimes they cause last-
ing filesystem corruption.

Finally, HLS takes advantage of the fact that the simula-
tor can invoke a scheduler both much more frequently and
much less frequently than a real system would. For exam-
ple, while a real scheduler is usually called at most a few
hundred times per second, the simulator can invoke it hun-
dreds of thousands of times per second.

The second stageof the scheduler’s development is
functional testing. Once a scheduler can handle arbitrary
workloads without crashing, the developer’s next concern is
ensuring that it actually implements the specified schedul-
ing algorithm in all cases. In our experience this is quite
easy for simple algorithms like priority and EDF, but can
be more difficult for schedulers that tend to have significant
internal state, such as those providing CPU reservations [5].
Also, details like dealing correctly with missed timer inter-
rupts due to unfriendly kernel code can be difficult to get
right.

The HLS simulator is helpful in this stage of develop-
ment because it provides an idealized environment where
simple and complex workloads can be provided to a sched-
uler and the results quickly analyzed, e.g. with a Perl script
or a graphing program. Perhaps the most important prop-
erty of the simulator at this stage is determinism — trouble-
some cases can be replayed over and over until the correct

3



solution is found. It is also possible to simulate hardware
configurations not available to the developer, such as a 5-
processor machine.

In the third stage of the scheduler’s development, it is
tested on real applications to show real-world benefit when
compared to other schedulers. This typically motivates a
number of minor changes to the scheduler, for example to
tweak constants and speed up performance-critical code.
Since the HLS simulator does not yet model operating sys-
tem overheads or the detailed behavior of real applications,
at this point the developer should migrate her scheduling
code into a real kernel in order to run real benchmarks and
application code. Fortunately, this can be accomplished
through a simple recompilation against a different set of
header files and libraries.

HLS provides two main benefits at this stage. First, since
the scheduler is implemented as a loadable kernel module, a
buggy scheduler can be unloaded and a new version loaded
without rebooting the machine, assuming that the bug did
not corrupt kernel memory. And second, since a loadable
scheduler augments, rather than replacing, the default time-
sharing scheduler, it is possible to schedule as few or as
many threads under the new scheduler as is desired.

At this point it also makes sense to use a scheduling anal-
ysis tool to ensure that the schedule produced by inserting
the scheduler in a real kernel matches with the schedule pro-
duced by the simulator. For example, we used Hourglass [6]
to verify the consistency between the results obtained with
the Linux backend and the simulated results.

5. Status and Availability

The Windows 2000 backend, described in [7], is com-
plete and functional but cannot be freely redistributed. The
Linux and simulator backends are free software, released
under the GNU Public License, and can be downloaded
here:

http://feanor.sssup.it/˜luca/hls
This package includes a proportional share scheduler,
a CPU reservation scheduler, and a priority/round-robin
scheduler.

The Linux backend is still under development, but it
works on version 2.4 kernels on uniprocessor x86 and Pow-
erPC systems. Some infrastructure for supporting SMP sys-
tems is already in place, but we currently do not support
SMP on Linux. We are currently debugging a backend that
works in the Linux 2.5 kernel. The simulator backend sup-
ports multiprocessors, but still needs more work in the area
of workload definition and the extraction of statistics about
task execution.

6. Conclusions

We have presented a novel method for rapidly prototyp-
ing new real-time schedulers based on Hierarchical Load-
able Schedulers (HLS). HLS has numerous advantages over
the traditional method of ad-hoc changes to OS internals.
For common classes of scheduling algorithms a good pro-
grammer can expect to write a new scheduler that runs in
a real OS kernel in a few days or less. We have also de-
scribed a new backend for HLS that is freely redistributable
and runs in the Linux kernel.

Acknowledgments:The authors would like to thank Alas-
tair Reid, Sai Susarla, and Leigh Stoller for their helpful
comments on a draft of this paper.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy. Scheduler Activations:
Effective kernel support for the user-level management of
parallelism. InProc. of the 13th ACM Symp. on Operating
Systems Principles, pages 95–109, Pacific Grove, CA,
October 1991.

[2] Paolo Gai, Luca Abeni, Massimiliano Giorgi, and Giorgio
Buttazzo. A new kernel approach for modular real-time
systems development. InProceedings of the 13th IEEE
Euromicro Conference on Real-Time Systems, Delft, The
Netherlands, June 2001.

[3] Ashvin Goel, Luca Abeni, Charles Krasic, Jim Snow, and
Jonathan Walpole. Supporting time-sensitive applications on
general-purpose operating systems. InProc. of the 5th Symp.
on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[4] Julia L. Lawall, Gilles Muller, and Luciano Porto Barreto.
Capturing OS expertise in a modular type system: The Bossa
experience. InProc. of the ACM SIGOPS European
Workshop, Saint-Emillion, France, September 2002.

[5] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda.
Processor capacity reserves for multimedia operating
systems. InProc. of the IEEE Intl. Conf. on Multimedia
Computing and Systems, May 1994.

[6] John Regehr. Inferring scheduling behavior with Hourglass.
In Proc. of the USENIX Annual Technical Conf. FREENIX
Track, pages 143–156, Monterey, CA, June 2002.

[7] John Regehr and John A. Stankovic. HLS: A framework for
composing soft real-time schedulers. InProc. of the 22nd
IEEE Real-Time Systems Symp., pages 3–14, London, UK,
December 2001.

[8] Mario Aldea Rivas and Michael Gonzalez Harbour.
Posix-compatible application-defined scheduling in MaRTE
OS. InProceedings of the 14th IEEE Euromicro Conference
on Real-Time Systems, Wien, Austria, June 2002.

4


