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Abstract
We report our experience in implementing type and
memory safety in an efficient manner for sensor network
nodes running TinyOS: tiny embedded systems running
legacy, C-like code. A compiler for a safe language must
often insert dynamic checks into the programs it pro-
duces; these generally make programs both larger and
slower. In this paper, we describe our novel compiler
toolchain, which uses a family of techniques to mini-
mize or avoid these run-time costs. Our results show that
safety can in fact be implemented cheaply on low-end
8-bit microcontrollers.

1 Introduction

Type safety and memory safety are useful in creating re-
liable software. In practice, however, safety comes at a
price. The safe operation of a program usually cannot be
assured by static methods alone, so dynamic checks must
be inserted into the program to assure safety at run time.

To be practical in the development of resource-
constrained embedded systems, the run-time costs of
these checks must be extremely low. Consider that two
of the most popular sensor network node types are the
Mica2, based on an 8-bit Atmel AVR processor with
4 KB of RAM and 128 KB of flash memory, and the
TelosB, based on a 16-bit TI MSP430 processor with
10 KB of RAM and 48 KB of flash. Programmers of such
devices are loathe to surrender any resources to achieve
the benefits that arise from safety. Moreover, developers
are generally unwilling to use an entirely new program-
ming language to obtain these benefits.

In this paper, we investigate whether language-based
safety can be made suitable for the development of
tiny embedded systems: in particular, systems based on
microcontrollers and programmed in C-like languages.
We describe our novel toolchain for programming these
systems: our tools leverage the properties of tiny em-
bedded systems to minimize the run-time overheads of
safety. For example, small system size means that whole-
program optimization is feasible, a well-defined con-
currency model greatly minimizes the locks needed to
maintain safety, and a static memory allocation model

means that garbage collection is not required. The goal
of our present work is tocharacterize and minimize the
run-time overheads of safety. Utilizing the benefits of
safety—e.g., to implement operating systems for embed-
ded devices [8]—is outside the scope of this paper.

Our research builds directly on three existing projects:
TinyOS, CCured, and cXprop. We use these tools in
combination to create “Safe TinyOS” applications for the
Mica2 and TelosB platforms.

TinyOS [5] is a popular set of components for imple-
menting embedded software systems. Components are
written in nesC [3], a C dialect that is translated into
plain C. Components generally allocate memory stati-
cally: this policy helps programmers avoid difficult bugs.

CCured [6] is a source-to-source C compiler that trans-
forms programs into ones that obey type and memory
safety. As described above, these properties are gener-
ally enforced through a combination of static analyses
and dynamic checks. In our toolchain, CCured processes
the output of the nesC compiler.

Finally, cXprop [2] is an aggressive whole-program
dataflow analyzer that we developed for C. It un-
derstands the TinyOS concurrency model, and in our
toolchain, we use cXprop to optimize the safe programs
produced by CCured. Like CCured, cXprop is based on
CIL [7].

2 Efficient Safety for TinyOS Applications

Figure 1 shows our toolchain that produces Safe TinyOS
applications. The crux of the problem is to ensure that
the output of CCured is made as efficient as possible, and
safe even in the presence of interrupt-driven concurrency.

2.1 Whole-program optimization

To ensure safety at run time, CCured must insert a check
before every operation that cannot be proven safe at com-
pile time. This potentially leads to a large number of
checks and a significant increase in code size. CCured’s
internal optimizers reduce the number of checks that
must be inserted into a program, but as we show in Sec-
tion 3.1, many checks remain.
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strip out source code
locations, add FLIDs

modified CCured
runtime library

refactor accesses
to hardware registers

run CCured

run nesC compiler

helper functions

error message
decompression

run inliner

run cXprop

run gcc

Figure 1: Our toolchain for Safe TinyOS applications. Boxed
tools are ones we did not develop. The first and final steps—the
nesC and C compilers—are the original TinyOS toolchain.

To reduce CCured’s footprint, we post-process
CCured’s output with cXprop. Unlike CCured’s opti-
mizer, which only attempts to remove its own checks,
cXprop will remove any part of a program that it can
show is dead or useless. To support the current work, we
improved cXprop in the following ways.

Concurrency analysis: Instead of relying on nesC’s
concurrency analysis, as we previously did [2], we im-
plemented our own race condition detector that is con-
servative (nesC’s analysis does not follow pointers) and
slightly more precise. The results of this analysis,
in addition to supporting sound analysis of concurrent
code, supports the elimination of nested atomic sections
and the avoidance of the need to save the state of the
interrupt-enable bit for non-nested atomic sections.

Pointer analysis: We implemented a flow sensi-
tive, field sensitive pointer analyzer that supports both
may-alias and must-alias relations. May-alias informa-
tion supports precise dataflow analysis while must-alias
information supports strong updates and helps eliminate
useless indirections after functions are inlined.

Function inlining: We wrote a source-to-source
function inliner in CIL, which has several benefits. First,
it greatly increases the precision of cXprop by adding
some context sensitivity. Second, inlining before running
GCC results in roughly 5% smaller executables than does
relying on GCC to inline exactly the same functions, be-
cause GCC runs its inliner too late in the compilation
process.

Dead code elimination: The DCE pass in GCC is not
very strong; for example it fails to eliminate some of the
trash left over after functions are inlined. Our stronger
DCE pass does a better job, resulting in 3–5% improve-

ment in code size. Also we implemented a copy propaga-
tion pass that eliminates useless variables and increases
cXprop’s dataflow analysis precision slightly.

2.2 Handling concurrency

CCured enforces safety for sequential programs only.
Interrupt-driven embedded programs can invalidate
CCured’s invariants by, for example, overwriting a
pointer between the time it is bounds-checked and the
time it is dereferenced. Furthermore, programmers often
expect that pointer updates occur atomically. CCured’s
fat pointers,1 however, generally cannot be updated
atomically without explicit locking.

We addressed these problems by taking advantage
of the nesC programming model, which underlies all
TinyOS programs. In TinyOS applications, nearly all
variable accesses are already atomic due to the nature of
nesC’s two-level concurrency model—non-preemptive
tasks and preemptive interrupt handlers—or due to ex-
plicit atomic sections in the code. These variables need
no extra protection to preserve safety. Some variables are
accessed non-atomically, however, and the nesC com-
piler outputs a list of these variables when a TinyOS
application is compiled. We modified the CCured com-
piler to input this list and then insert locks around safety-
critical section (i.e., our injected dynamic checks) that in-
volve one or more non-atomic variables. We also needed
to suppress uses of thenorace nesC keyword, which
causes the compiler to ignore potential race conditions.

2.3 Adapting the CCured runtime library

The CCured runtime library is substantial (several thou-
sand source lines), and there are three problems with
using it as-is on small devices. First, dependencies on
OS services such as files and signals are woven into the
runtime in a fine-grained way. Second, the runtime con-
tains x86 dependencies: e.g., several of CCured’s checks
cast a pointer to an unsigned 32-bit integer to verify that
it is aligned on a four-byte boundary. On the Mica2
and TelosB platforms, however, pointers are 16 bits and
do not require four-byte alignment. Third, although the
RAM and ROM overheads of the runtime are negligible
for a PC, they are prohibitive for a sensor network node.
For example, a version of the CCured runtime modified
just enough to compile for a Mica2 mote used 1.6 KB of
RAM, 40% of the total, and 33 KB of code memory, 26%
of the total.

We removed the OS and x86 dependencies by hand
and used an existing compile-time option to have CCured

1A fat pointer is implemented by three addresses: the pointer’s
value and the bottom and top of the pointer’s allowable range. CCured
may replace an “ordinary” pointer with a fat pointer in order to imple-
ment dynamic safety checks.
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drop support for garbage collection. TinyOS applications
have a static memory allocation model and do not require
GC. Then, we applied our improved DCE analysis men-
tioned above to eliminate parts of the runtime that are un-
used by the TinyOS program being compiled. Together
these techniques reduce the overhead of the CCured run-
time library to 2 bytes of RAM and 314 bytes of ROM,
for a minimal TinyOS application running on the Mica2
platform.

3 Evaluation

This section quantifies the cost of making TinyOS appli-
cations safe using our toolchain. Our duty cycle results
are from Avrora [12], a cycle-accurate simulator for net-
works of Mica2 motes. We used a pre-release version
of CCured 1.3.4, Avrora from current CVS as of Febru-
ary 2006, and TinyOS 1.x from current CVS.

3.1 Eliminating safety checks

CCured attempts to add as few dynamic safety checks
as possible, and it also optimizes code to remove redun-
dant and unnecessary checks. Our cXprop tool and GCC
eliminate additional checks. To measure the effective-
ness of these different optimizers, we transformed ap-
plication source code so that for each check inserted by
the CCured compiler, a unique string would be passed to
the run-time failure handler. If an optimizer proves that
the failure handler is unreachable from a given check,
then the string that we added becomes unreferenced and
a compiler pass eliminates it. The checks remaining in
an executable can therefore be determined by counting
the surviving unique strings.

Figure 2 compares the power of four ways of opti-
mizing Safe TinyOS applications: (1) GCC by itself;
(2) the CCured optimizer, then GCC; (3) the CCured op-
timizer, then cXprop without inlining, then GCC; and
(4) the CCured optimizer, then cXprop with inlining,
then GCC. The results show that the last technique, em-
ploying both cXprop and our custom inliner, is best by
a significant margin. It was always the most effective,
and it was the only strategy that always removed most
of the checks. GCC alone was always the least effective,
but we were nevertheless surprised that it could eliminate
so many checks. These are primarily the “easy” checks
such as redundant null-pointer checks. The CCured op-
timizer also removes easy checks and consequently it is
not much more effective than GCC alone. Without inlin-
ing, cXprop is also not much more effective than GCC
at removing checks. Although cXprop optimizes aggres-
sively, it is hindered by context insensitivity: its analysis
merges information from all calls to a given check, such
as CCured’s null-pointer check, making it far less likely

that the check can be found to be useless. Inlining the
checks provides the necessary context sensitivity.

3.2 Code size

Figure 3(a) shows the effect of various permutations of
our toolchain on the code size of TinyOS applications,
relative to the original, unsafe applications.

Similar to the safety check metric, the data show that
cXprop and its inliner must be applied to achieve the
best results. The first (leftmost) bar for each application
shows that simply applying CCured to a TinyOS appli-
cation increases its code size by approximately 20–90%.
The second bar is even higher and shows the effect of
moving the strings that CCured uses in error messages
(file names, function names, etc.) from SRAM into flash
memory. The third shows the effect of using CCured’s
“terse” option, which suppresses source location data in
error messages. This reduces code size but the result-
ing error messages are much less useful. The fourth bar
shows the effect of compressing error messages using
FLIDs (as described in our technical report [8]). The fifth
and sixth bars show that optimizing an application using
cXprop, without and with an inlining pass, results in sig-
nificant code size reductions.

The seventh bar shows that inlining and optimizing the
unsafeapplication typically reduces its code size by 10–
25%. Thus, cXprop represents a tradeoff: it can typically
optimize a safe program so that its code size is near that
of the unsafe original, or it can shrink the unsafe pro-
gram. One might reasonably measure the cost of safety
against the original baseline or the “new baseline” estab-
lished by cXprop. Our ongoing work seeks to improve
cXprop and thereby reduce both measured costs.

3.3 Data size

The value of cXprop is again apparent when we measure
the cost of safety in terms of static data size. The first
three bars of each group in Figure 3(b) show that simply
applying CCured to a TinyOS application results in unac-
ceptable RAM overhead. Many of the overheads are out-
rageously high—thousands of percent—though we have
clipped the graph at 100%. The fourth bar shows that
using FLIDs reduces RAM overhead substantially be-
cause many strings from the CCured runtime are elim-
inated. The fifth and sixth bars show that cXprop re-
duces RAM overhead still more, primarily through dead-
variable elimination. The rightmost bar in each group
shows that cXprop reduces the amount of static data for
unsafeapplications slightly, by propagating constant data
into code and removing unused variables.
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Figure 2: Percentage of checks inserted by the CCured compiler that can be eliminated using four different combinations of tools.
The numbers at the top indicate the number of checks originally introduced by CCured.

3.4 Processor use

The efficiency of a sensor network application is com-
monly evaluated by measuring itsduty cycle: the per-
centage of time that the processor is awake. For each
application, we created a reasonable sensor network con-
text for it to run in, and ran it for three simulated minutes.

Figure 3(c) shows the change in duty cycle across dif-
ferent versions of our applications. In general, CCured
by itself slows an application by a few percent, while
cXprop by itself speeds an application up by 3–10%.
We were surprised to learn that using cXprop to opti-
mize safe applications generally results in code that is
about as fast as theunsafeoriginal program—our origi-
nal baseline. However, we again see a tradeoff: cXprop
can eliminate the CPU cost of safety relative to the origi-
nal baseline, or it can optimize the unsafe program. In
future work we will see how further improvements to
cXprop, designed to reduce the cost of safety, continue
to apply to unsafe programs in general.

4 Related Work

As far as we know, until now no safe version of C has
been run on sensor network nodes or any other embed-
ded platform with similar resource constraints. However,
other safe languages have been in use for a long time:
e.g., Java Card [10] for smart cards based on 8-bit micro-
controllers, and Esterel [1] for implementing state ma-
chines on small processors or directly in hardware. De-
spite the existence of these languages, most embedded
software is implemented in unsafe languages.

We know of three ongoing efforts to bring the benefits
of safe execution to sensor network applications. First,
t-kernel [4] is a sensor net OS that supports untrusted
native code without trusting the cross-compiler. It sacri-
fices backwards compatibility with TinyOS and was re-
ported to make code run about 100% slower. Second,
Rengaswamy et al. [9] provide memory protection in the
SOS sensor network OS. The SOS protection model is
weaker than ours: it emulates course-grained hardware

protection, rather than providing fine-grained memory
safety. Finally, Virgil [11] is a new safe language for tiny
embedded systems such as sensor network nodes. Like
TinyOS, Virgil is designed around static resource alloca-
tion, and like Java Card it supports objects.

5 Conclusion

We have reported our experience in developing, apply-
ing, and evaluating a tool chain for type- and memory-
safe embedded systems. We have shown that these fea-
tures can be supported for “Safe TinyOS” programs,
and we have described our techniques that collectively
enable safe and efficient programs for tiny microcon-
trollers. Our results show that language-based safety
can be practical even for systems as small as sensor
network nodes—in fact, safe, optimized TinyOS appli-
cations often use less CPU time than their unsafe, un-
optimized counterparts. Our ongoing research seeks to
further reduce the run-time costs of safety and thereby
make its benefits applicable to a wider range of resource-
constrained embedded systems.
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