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Ultrasound Beam Simulations  
in Inhomogeneous Tissue Geometries  

Using the Hybrid Angular Spectrum Method
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Abstract—The angular spectrum method is a fast, accurate 
and computationally efficient method for modeling wave prop-
agation. However, the traditional angular spectrum method 
assumes that the region of propagation has homogenous prop-
erties. In this paper, the angular spectrum method is extended 
to calculate ultrasound wave propagation in inhomogeneous 
tissue geometries, important for clinical efficacy, patient safety, 
and treatment reliability in MR-guided focused ultrasound 
surgery. The inhomogeneous tissue region to be modeled is 
segmented into voxels, each voxel having a unique speed of 
sound, attenuation coefficient, and density. The pressure pat-
tern in the 3-D model is calculated by alternating between 
the space domain and the spatial-frequency domain for each 
plane of voxels in the model. The new technique was compared 
with the finite-difference time-domain technique for a model 
containing attenuation, refraction, and reflection and for a seg-
mented human breast model; although yielding essentially the 
same pattern, it results in a reduction in calculation times of 
at least two orders of magnitude.

I. Introduction

Magnetic resonance-guided focused ultrasound sur-
gery (MRgFUS) has received a great deal of atten-

tion in recent years because of its non-invasive nature, lo-
calized tissue effects, and temperature feedback. For safe, 
effective, and efficient treatment, controlling the energy 
deposited by the ultrasound beam is imperative. Refrac-
tion, reflection, and particularly absorption of the ultra-
sound beam in inhomogeneous tissue geometries of the 
human body determine the specific power deposition pat-
tern. Fast and accurate prediction of this pattern will help 
in control and guidance of the MRgFUS treatment.

The Rayleigh-Sommerfeld integral [1] is a popular 
technique to calculate pressure fields from rectangular 
[2], circular [3], triangular, and irregular multisided poly-
gon-shaped sources [4], assuming a homogeneous, isotro-
pic medium for propagation. It has also been extended 
to layered media (composed of homogeneous layers, each 
layer with different properties) [5]. The finite-difference 
time-domain (FDTD) approach, which employs numerical 
approximations of the spatial and temporal partial deriva-
tives about each node of a grid, has been implemented to 
model wave propagation in inhomogeneous media [6]. Al-

though it is a powerful technique, limits on the maximum 
size of the voxels and time steps that can be used lead to 
long computation times. The Fourier split-step technique 
has been used for modeling wave propagation in underwa-
ter acoustics [7] and seismic migration [8]. The technique 
calculates the effect of a varying velocity in the medium 
by alternating back and forth between the frequency-
wavenumber and frequency-space domains. The technique 
handles slowly changing values of velocity without taking 
into account changes caused by attenuation.

For rapid beam simulations, the angular spectrum 
method has been used extensively [9]–[11]. This approach 
assumes linear propagation and steady-state conditions. 
The numerical implementation and parameter selection 
for the angular spectrum method have been discussed in 
the literature [12]–[14] and the method has been shown to 
be fast and accurate for homogeneous tissue. The method 
has also been extended to model wave propagation in lay-
ers of homogeneous media [15]–[16].

The hybrid angular spectrum (HAS) technique [17] 
presented here can model linear wave propagation in in-
homogeneous media and the irregular geometries of the 
human body. It is an extension of the traditional angular 
spectrum method that accounts not only for layers of ho-
mogenous tissue but also within-layer differences in tissue 
properties.

II. Traditional Angular Spectrum Method

Fig. 1 shows the traditional angular spectrum method, 
which assumes that the tissue between the initial and fi-
nal pressure planes has homogeneous acoustic properties. 
Using the fast Fourier transform (FFT) algorithm, the 
pressure pattern on the initial plane p′(x, y, 0) is encoded 
into a spectrum A′(α/λ, β/λ; 0) of traveling plane waves in 
the spatial-frequency domain [11]. These waves travel at 
different angles that depend on their spatial frequencies fx 
and fy according to direction cosines α = λfx and β = λfy 
(with the zero spatial-frequency component propagating 
perpendicular to the plane). Propagation of the waves to 
the next plane is then calculated in the spatial-frequency 
domain by multiplying the initial spectrum by the propa-
gation transfer function

	 H e j z( , ) ( )α β π λ α β= − −2 1 2 2/ ∆ 	 (1)

to account for the longitudinal path length Δz between 
the two planes. An inverse fast Fourier transform (IFFT) 
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of the angular spectrum of the propagated waves gives the 
pressure pattern p(x, y, Δz) at the final plane in the space 
domain. The use of FFT and IFFT makes this technique 
very fast.

III. Hybrid Angular Spectrum Method

In the hybrid angular spectrum (HAS) method, the 3-D 
inhomogeneous tissue geometry is divided into rectangular 
voxels (i.e., rectangular cuboids), each voxel associated 
with a unique tissue type having its own speed of sound, 
attenuation coefficient, and density, as shown in Fig. 2(a). 
For MRgFUS, the model is often obtained by segmenting 
a magnetic resonance image of the object and selecting 
the nominal acoustic parameters for the tissue types from 
literature values. The pressure pattern in the model is 
calculated sequentially, plane-by-plane, through successive 
transverse planes of voxels progressing in the direction of 
propagation away from the transducer. Within each plane, 
the acoustic properties may change between voxels in the 
x- and y-directions, but within each individual voxel, the 
tissue properties are considered constant. The calculation 
sequence alternates back-and-forth between the space do-
main and the spatial-frequency domain for each plane of 
voxels. Wave propagation through each plane is therefore 
calculated in two steps, one in the space domain and one 
in the spatial-frequency domain, as described shortly. The 
method simulates the propagation of linear longitudinal 
pressure waves at steady state.

The angular spectrum technique allows the decomposi-
tion of the pressure wave into a set of tilted plane waves. 
The transmission of one of these plane-wave components 
(at one given angle in the angular spectrum) of the pres-
sure pattern pn−1(x, y) through the nth plane can be de-
scribed in the space domain by

	 p x y p x y t x yn n n( , ) ( , ) ( , ),= ⋅−1 	 (2)

where tn(x, y) is a transmission function given by

	 t x y en
jb x y r a x y rn n( , ) ,( , ) ( , )= ′− 	 (3)

with the first term in the exponent representing phase 
change and the second term representing attenuation as 
functions of x and y. Here, bn(x, y) = 2π/λn = 2πf/cn(x, y) 
is the propagation constant at various x-y voxel locations 
[found from the specific speed of sound cn(x, y) and tem-
poral frequency f ], an(x, y) is the pressure attenuation co-
efficient of the individual voxels, r′ is the perpendicular 
distance measured between two parallel wavefronts of the 
tilted plane wave component, and r is the oblique dis-
tance across the layer at the angle of the plane wave, as 
shown in Fig. 2(a). The two distances r′ and r are used to 
take into account different effects as the wave component 
travels through the layer: r′ is the effective path length 
between two tilted wavefronts that intercept the origins of 
the two planes forming the layer and is used in the phase 

Fig. 1. Traditional angular spectrum method with the angular spectrum 
expressed in terms of direction cosines α = λfx and β = λfy, where fx and 
fy are spatial frequencies.

Fig. 2. Hybrid angular spectrum method. (a) The inhomogeneous model 
is divided into rectangular voxels and calculations are done plane-by-
plane in the propagation direction, first in the space domain, then in 
the spatial-frequency domain; in 3-D, r and r′ are usually tilted out of 
the plane of the figure. (b) To help conceptualize the two-step process 
at each plane of voxels, the variations in the voxels’ acoustic properties 
from the planar average are collapsed into a thin layer through which the 
beam first travels in the space domain, then is propagated to the next 
plane by an average transfer function in the frequency domain.
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term that expresses the phase change encountered by the 
plane wave component, whereas the distance r is the en-
tire propagation path of the wave component inside the 
layer and is used in the term that models attenuation of 
that component inside the layer.

To facilitate the two-step process, the phase change 
bn(x, y)r′ across each plane of voxels is divided into two 
parts, an average phase shift b rn′ ′ calculated for that plane, 
and the difference Δbn(x, y)r′ from the average phase shift 
for the various voxels inside the plane. Thus the transmis-
sion function becomes

	 t e ex y en
jb r j b x y r a x y rn n n( , ) .( , ) ( , )= ′ ′ ′ −∆ 	 (4)

In determining the x-y-averaged propagation constant 
bn′ for each plane, the averaging is weighted by the magni-
tude of the pressure spatial pattern (that is, weighted ac-
cording to where the preponderance of the beam is esti-
mated to be in that plane). Thus,
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and
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n( , ) ( , ) .= − ′
2π

	 (6)

The two-step process then proceeds as follows: propa-
gation changes due to the term e ej b x y r a x y rn n∆ ( , ) ( , )′ −  are calcu-
lated in the space domain, whereas changes due to term 
e jb rn′ ′ are calculated in the spatial-frequency domain. This 
may be most easily visualized conceptually by considering 
that the x-y-varying portions of the plane’s voxels (i.e., 
the phase shift difference and attenuation) are collapsed 
into a thin layer at the front of each plane through which 
the pressure pattern is transmitted in the space domain 
(still maintaining the values of r and r′), after which the 
pattern is propagated to the next plane in the spatial-
frequency domain. This concept is illustrated in Fig. 2(b) 
and described next.

A. Space Domain Step

If pn−1(x, y) is the pressure at the entrance to plane n, 
then the pressure p x yn′( , ) after passing through the thin 
layer in the space domain is

	 p ex y p x y en n
j b x y r a x y rn n′ = −

′ −( , ) ( , ) .( , ) ( , )
1

∆ 	 (7)

As shown in Fig. 2(a), r and r′ will vary depending on the 
angles of the various plane-wave components of the angu-
lar spectrum. To account for this variation, the values of 
r and r′, which are constants in (7) for a given plane, are 

calculated with a weighting factor based on the magnitude 
of the angular spectrum at the entrance of this plane.

B. Spatial-Frequency Domain Step

The resulting pressure pattern p x yn′( , ) is then Fourier 
transformed (denoted by the symbol F{ })…   to obtain the 
angular spectrum A zn′( ), ;α λ β λ/ /  before propagation across 
the plane:

	 A z p x yn n′ ( ) = ′α
λ
β
λ, ;

{ ( , )}.F 	 (8)

Propagation across the plane is accomplished in the 
spatial-frequency domain using the propagation transfer 
function incorporating the average propagation constant 
bn′ :

	 A z z A z en n
jb znα

λ
β
λ

α
λ
β
λ

α β, ; , ; ,+( ) = ′ ( ) ′ − −∆ ∆1 2 2
	 (9)

where r′ (now a variable) has been replaced with an equiv-
alent geometric expression involving direction cosines α 
and β, effectively implementing the propagation transfer 
function of (1).

The pressure pn(x, y) at the entrance to the next plane 
of voxels in the space domain is found from an inverse 
Fourier transform:

	 p x y A z zn n( , ) , ; .= +( ){ }−F 1 α
λ
β
λ ∆ 	 (10)

This sequence is repeated for each subsequent plane of 
voxels to obtain the forward-propagating pressure pattern 
in the 3-D model.

In summary, the pressure wave is propagated through 
each plane by dividing the acoustic properties of the plane 
into two parts: the average phase shift for the plane and 
the difference from the average phase shift for each voxel 
in the plane. In the space-domain step (7), the effect of the 
attenuation and the difference from average phase shift 
of each voxel in the plane is calculated and the incoming 
pressure pattern is multiplied by these two effects. In the 
spatial-frequency domain step (9), the effect of the aver-
age phase shift for the entire plane is incorporated in the 
propagation transfer function. Propagation takes place 
plane-by-plane through the entire 3-D model.

C. First-Order Reflections

First-order reflections in the model are calculated in 
the space domain using the reflection coefficient at each 
interface. The pressure reflection coefficient [18] at an in-
terface is determined by the impedance mismatch between 
voxel pairs:

	 R x y
Z x y Z x y
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where Zn(x, y) = ρn(x, y)cn(x, y) is the acoustic impedance 
and ρn(x, y) is the density of the voxels. At each interface, 
the corresponding reflection coefficient is used to calculate 
the part of the forward pressure that is reflected (and tem-
porarily stored), the rest being transmitted. First, the full 
forward wave is assembled plane-by-plane, as described in 
the previous section, using only the transmitted pressure 
component at each interface. Following this, the reflected 
wave is initiated with zero magnitude at the rear model 
boundary and propagated plane-by-plane in the backward 
direction (opposite to the direction of forward propaga-
tion), with the stored reflected pressure patterns at each 
interface added to this backward propagating wave. The 
backward propagation uses the same alternation between 
the space domain and the spatial-frequency domain as the 
forward propagating wave. Finally the forward and the 
backward propagating waves are added together in com-
plex notation to give the final pressure pattern for the 3-D 
inhomogeneous model.

IV. Numerical Implementation Details

The effects of sampling in the space domain and spa-
tial-frequency domain in the traditional angular spectrum 
method have been described previously [19], [20]. The gen-
eral angular spectrum approach is independent of the par-
ticular algorithms used to obtain the Fourier transforms, 
but because we use the popular Matlab functions FFT 
and IFFT (The MathWorks, Natick, MA), the sampling 
interval and extent of the spatial-frequency domain are 
linked to the sampling interval and extent of the space 
domain.

A. Size of Voxels

The size of the voxels in the space domain (∆x and 
∆y) sets the overall size of the spatial-frequency domain; 
for example, fx,max = 1/(2∆x), a consequence of the FFT 
algorithm. The maximum size of the voxels in the space 
domain, therefore, is limited by the highest desired spa-
tial-frequency content in the beam’s features. To eliminate 
aliasing resulting from under-sampling in the space do-
main, the sampling frequency in the space domain should 
be at least as high as the Nyquist criterion (1/∆x ≥ twice 
the highest desired spatial frequency). If needed, the high-
est spatial-frequency components of the angular spectrum 
can be restricted using ray theory truncation [10] or an-
gular restriction techniques [19]. (Frequencies higher than 
1/λ are effectively non-propagating because they are eva-
nescent.) Smaller voxels result in longer calculation times 
but produce smoother beam patterns; they also reduce 
the stair-stepping effect at oblique interfaces that results 
from segmenting the model into rectangular voxels. For 
our application, which uses this simulation software to 
guide MRgFUS, the size of the voxels is normally set equal 
to the resolution of the magnetic resonance images, usu-
ally on the order of 1-mm isotropic resolution.

B. Size of the Space Domain

The overall extent of the space domain (Lx and Ly) 
should be at least as large as the model itself, but may 
need to be increased due to consideration of wraparound 
errors, a consequence of having a sampling interval Δfx 
in the frequency domain that is too large. Because ∆fx =  
1/Lx, wraparound errors, which are due to under-sampling 
in the frequency domain, as explained in Section VI, can 
be eliminated by increasing the overall size of the space 
domain by zero padding.

C. Number of Voxels

The number of voxels in the model is then determined 
by the size of the voxels (∆x and ∆y) and the overall size 
of the space domain (Lx and Ly). To avoid the half-sample 
phase-shift error [21] the number of voxels in the model in 
the x- and y-directions should be odd.

D. Pressure Pattern on the Initial Plane

One of the requirements for both the angular spectrum 
method and our implementation of the HAS technique is 
that the initial pressure pattern must be specified on a 
plane. When using curved transducers with either tech-
nique, a separate beam simulation method is required to 
calculate the pressure pattern from the curved transducer 
surface to the initial plane of the inhomogeneous model. 
A homogeneous beam propagation technique, such as the 
Rayleigh-Sommerfeld integral, can be used to calculate 
this initial pressure because the space between the trans-
ducer and the front plane of the model in almost all simu-
lations is comprised of water (or a similar homogeneous 
coupling liquid).

To keep the overall calculation time of our simulation 
short we have developed a faster method to calculate the 
initial pressure field from a curved phased-array trans-
ducer using pre-calculated Rayleigh-Sommerfeld patterns, 
called the element response function array (ERFA) tech-
nique [17]. The response of each element of the phased 
array (normalized by assuming zero phase and unit am-
plitude) is pre-calculated and stored as one page in the 
ERFA. During run time, each page is multiplied by the 
appropriate element phase and amplitude (to account for 
electronic steering and an arbitrary excitation pattern) 
and all pages are summed in complex notation (a fast 
calculation) to obtain the resulting pressure pattern at the 
initial plane of the inhomogeneous model. This reduces 
the run-time calculation time by three orders of magni-
tude compared with a full Rayleigh-Sommerfeld calcula-
tion at run time.

V. Results

For validation purposes, the HAS technique was first 
compared with a FDTD simulation [6] using a high-reso-
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lution three-medium inhomogeneous 3-D wedge/cylinder 
model configured to exhibit reflection, refraction, and at-
tenuation. The validation model contained 141 × 141 × 
121 voxels with 0.15-mm isotropic resolution, as shown in 
Fig. 3, with acoustic properties (Table I) purposely cho-
sen to emphasize the effects on beam propagation. Both 
numerical techniques assumed a solid (i.e., single-element 
spherically focused) 1.5-MHz transducer with an outer 
diameter (aperture diameter) of 10 cm and a geometric 
focus (radius of curvature) of 18 cm. The transducer was 
located 17 cm away from the initial model plane; the pres-
sure at the initial plane was calculated using the Rayleigh-
Sommerfeld integral. The numerical simulations for this 
model were done on a 2.0-GHz dual-core Windows (Mi-
crosoft Corp., Redmond, WA) laptop with 3 GB of RAM 
using Matlab version 7.10.

To quantify the comparison between the two methods, 
the normalized root-mean-square (nrms) difference be-
tween the two pressure patterns was calculated accord-
ing to

	 ∆nrms
HAS FDTD=

−=∑ p i p i
N

i
N ( ) ( )

,
2

1 	 (12)

where pHAS(i) and pFDTD(i) are the normalized pressures 
calculated using the HAS technique and the FDTD tech-
nique, respectively, at each voxel i in the 3-D volume. This 
metric accounts for both magnitude and phase differences 
between the two methods. Each beam pattern was nor-
malized to the highest pressure found in their respective 
3-D volumes (i.e., at the beam focus).

Longitudinal slices through the center of focus of the 
magnitude of the calculated pressure using the HAS and 
FDTD methods are shown in Figs. 4(a) and 4(b), respec-
tively. There was a significant difference in the calculation 
times for each method (not including the time for the ini-
tial Rayleigh-Sommerfeld calculation): the HAS technique 
took 9.5 s for the full 3-D simulation, whereas the FDTD 
technique took 67 min. (The FDTD pressure pattern was 
actually calculated for a model 25% longer in the direction 
of propagation than shown in Fig. 4(b), then truncated to 
avoid displaying reflections from the far boundary of the 
model, which did not employ radiating boundary condi-
tions; the HAS technique inherently incorporates effective 
radiating boundary conditions at the far model bound-
ary.) The root-mean-square difference between the two 
simulated patterns was found to be Δnrms = 0.013 over 
the 3-D model.

Further, to illustrate the technique in a clinically rele-
vant situation, we chose an inhomogeneous model derived 

from a segmented magnetic resonance image of a patient 
with breast cancer. The 3-D breast model was segmented 
by hand into three tissue types—breast fat, fibro-glandu-
lar tissue, and breast cancer—and divided into 301 × 301 
× 300 voxels with 0.15-mm isotropic resolution (λ/10 at 
1 MHz). One longitudinal slice view is shown in Fig. 5. 
The ultrasound properties for the tissue types, listed in 
Table II, were estimated using values from [22] and [23]. 
A 256-element, 1-MHz, spherically curved, 14.5-cm outer 
diameter phased-array transducer with a geometric focus 
of 13 cm and located 11 cm away from the initial plane of 
the breast model was assumed. The pressure pattern on 
the initial plane was calculated using the ERFA method, 
described previously. First-order reflections were included 
for all results. These numerical simulations were done on a 
2.67-GHz i7-core (Intel Corp., Santa Clara, CA) Windows 
desktop with 12 GB of RAM using Matlab version 7.10.

Figs. 6(a) and 6(b) are longitudinal slices through the 
beam’s focal center showing the magnitude of the pres-
sure calculated using the HAS technique and the FDTD 
technique, respectively, when the beam was electronical-
ly steered away from its geometric focus by 10.6, 0, and 
2.6 mm in x, y, and z directions. This particular steering 
direction was chosen such that the focus was located in a 

Fig. 3. Longitudinal slice view of the 3-D model for comparing the results 
of the hybrid angular spectrum technique with the finite-difference time-
domain technique. The acoustic properties of the three features (given in 
Table I) were chosen to emphasize refraction, reflection, and attenuation. 
The wedge and cylinder extend through the entire width of the model 
in the x-direction. The model has 141 × 141 × 121 voxels with 0.15-mm 
isotropic resolution. A solid (i.e., single-element spherically focused) 1.5-
MHz, 10-cm aperture diameter transducer (18-cm radius of curvature) is 
located 17 cm to the left of the figure with its focus at the dot.

TABLE I. Ultrasound Properties Used in Validation Model. 

Speed of sound 
(m/s)

Attenuation 
(Np/(cm∙MHz))

Density 
(kg/m3)

Wedge 2000 0 600
Cylinder 1500 2.0 1000
Water 1500 0 1000
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region of breast cancer. The full 3-D calculation time (not 
including the Rayleigh-Sommerfeld calculations to the ini-
tial plane) using the HAS technique for this model was 
approximately 46 s, whereas the FDTD technique took 
467 min. The normalized rms difference between the two 
patterns calculated over the entire 3-D model was Δnrms 
= 0.028.

VI. Discussion

The traditional angular spectrum technique and, hence, 
the HAS approach are both plane-to-plane propagation 
techniques; a prerequisite for these methods is that the 
initial pressure pattern must be calculated on the model’s 
first plane using a homogeneous beam propagation tech-
nique, such as the Rayleigh-Sommerfeld integral or the 
ERFA pre-calculation technique used in this paper, to ac-
count for propagation from the curved transducer to the 
first plane. The ERFA method has proven to be fast and 
can handle changing electronic beam-steering conditions 
at run time.

The HAS technique does not require the user to explic-
itly set any boundary conditions; the implicit boundary 
conditions for the model are: 1) a radiating boundary at 
the model’s rear face normal to the axis of propagation, 
because no reflections are implemented there; and 2) to-
tally reflecting boundaries at the model’s edges parallel 
to the axis of propagation, a consequence of spatial wrap-
around [10]. Wraparound can be explained as follows: Be-
cause of the discrete frequency domain sampling employed 

in the HAS technique (for example at intervals Δfx in the 
fx-direction), the effective space domain pattern can be re-
garded as an infinitely large patchwork made up of repeat-
ing source planes at repeat distances equal to, in this ex-
ample, Lx = 1/Δfx in the x-direction. As the plane waves 
of the angular spectrum propagate deeper into the model 
at various angles, high-angle (high-frequency) waves from 
adjacent source planes can enter the propagating space 

Fig. 4. Longitudinal slice views of the magnitude of the pressure pattern through the focus of the model shown in Fig. 3 using (a) the hybrid angular 
spectrum method, and (b) the finite-difference time-domain method. Both patterns are normalized to the highest pressure found in their respective 
3-D volumes. 

Fig. 5. Longitudinal slice view of 3-D breast model segmented into three 
tissue types, as labeled. A 256-element, 1-MHz phased-array transducer 
with a 13-cm geometric focus is located 11 cm to the left of the figure.

http://dx.doi.org/10.1109/TUFFC.2012.2300/mm1
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of the central volume. This results in wraparound in the 
space domain as the waves propagate deeper into the 
model, and is equivalent to total reflecting boundary con-
ditions at the model edges parallel to the axis of propaga-
tion. For the examples presented in this paper, the beams 
were focused tightly enough near the center of the models 
that any reflections from lateral walls were negligible.

Fig. 4 displays the comparison between the pressure 
patterns calculated using the HAS and the FDTD tech-
niques for the model of Fig. 3. Because of the impedance 
mismatch at the wedge–water interface, reflections and 
a partial standing wave pattern can be seen in front of 
the oblique wedge interface in both patterns. The angle 
of beam refraction resulting from the tilted wedge–water 
interface is essentially equal for both techniques. A high-
pressure region can be seen just beyond the wedge in both 
patterns, due mainly to focusing of the beam, but attenu-
ation by the highly attenuating cylinder significantly re-
duces the intensity in the beam propagating through and 
past the cylinder. The two techniques yielded effectively 
the same pressure patterns: the nrms difference in pres-
sures over the 3-D model was only 1.3%.

Fig. 6 shows that the HAS technique is able to calcu-
late pressure patterns for an inhomogeneous 3-D model, 
including accounting for electronic steering of the ul-
trasound beam. It correctly predicts the location of the 
steered focus, and simulates details of the first-order re-

flections from the rear surface of the breast cancer region 
when the phased-array transducer is electronically steered 
toward that location, as seen in Figs. 6(a) and 6(b). The 
nrms difference between the calculated pressure patterns 
using the HAS and FDTD techniques over the 3-D model 
was 2.8%.

VII. Conclusions

The HAS technique calculates the complex pressure 
pattern in an inhomogeneous 3-D model. It assumes 
steady-state and linear propagation conditions. The tech-
nique is rapid, resulting in a decrease in calculation time 
of more than two orders of magnitude compared with the 
FDTD technique, while giving essentially the same pres-
sure pattern.
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geometric focus by 10.6, 0, and 2.6 mm in the x, y, and z-directions. 
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