
The Case for Hierarchical Schedulers with Performance Guarantees

Technical Report: University of Virginia CS-2000-07, March 2000

John Regehr∗ Jack Stankovic Marty Humphrey
Department of Computer Science

Thornton Hall, University of Virginia
Charlottesville, VA 22903-2242, USA
{regehr,stankovic,humphrey}@cs.virginia.edu

Abstract

Audio and video applications, process control, agile
manufacturing and even defense systems are using com-
modity hardware and operating systems to run combina-
tions of real-time and non-real-time tasks. We propose
an architecture that will allow a general-purpose operat-
ing system to schedule conventional and real-time tasks
with diverse requirements, to provide flexible load iso-
lation between applications, users, and accounting do-
mains, and to enforce high-level policies about the alloca-
tion of CPU time. This is accomplished by implementing
a dynamic, hierarchical scheduling infrastructure. The
infrastructure is integrated with a resource manager that
provides a level of indirection between resource requests
and the scheduling hierarchy. A scheduling infrastructure
separates scheduler code from the rest of the operating
system. To demonstrate the utility of our architecture, we
describe its application to three existing real-time sched-
ulers. For each of the three, we show added flexibility
while retaining the original scheduling guarantees.

1 Introduction

Workstations, personal computers, and servers are
becoming increasingly powerful, enabling them to
run new kinds of applications, and to run combina-
tions of applications that were previously infeasible.
For example, a modern machine might be able to si-
multaneously decode and display a video stream, en-
code an audio stream, and accurately recognize con-
tinuous speech; any one of these would have been

∗Supportedin part by a grant from Microsoft Research.

impossible on an inexpensive machine just a few
years ago. Furthermore, price pressure is encourag-
ing vendors to migrate functionality previously per-
formed in dedicated hardware onto the main proces-
sor; this includes time-dependent tasks such as sound
mixing and modem signal processing [3]. Classical
real-time systems such as agile manufacturing and
process control are also using commodity hardware
and operating systems for real-time control, moni-
toring, and hosting web servers.

Of course, fast hardware is not enough—to per-
form these combinations of tasks well, the oper-
ating system must effectively manage system re-
sources such as processor time, memory, and I/O
bandwidth. This paper focuses on management of
processor time, the effectiveness of which is an im-
portant factor in overall system performance [15]. In
particular, we propose modifying the scheduler of
a general-purpose operating system for commodity
uniprocessor and multiprocessor machines in order
to provide flexible real-time scheduling for time de-
pendent applications, as well as high performance
for non-real-time applications.

Conventional scheduling algorithms are designed
with a set of tradeoffs in mind; applications running
under these schedulers are forced to cope with these
tradeoffs. It is therefore difficult to select, in ad-
vance, the right scheduler for an operating system.
In fact, a premise of our work is that itshould not
be chosen in advance. Rather, we enable different
scheduling policies to be dynamically loaded into the
kernel in response to application needs, and to be ar-
ranged in a hierarchical structure. Processor time is
then allocated in response to application demands by

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resource
Manager

FP

RM TS

policy 1

policy 2

request

reject
accept /

interface
privileged

Hierarchical Infrastructure

applications

user mode

kernel mode

Scheduling
Hierarchy

Figure 1: The hierarchical scheduler architecture.

thescheduling hierarchy in cooperation with a CPU
resource manager that enforces user-specified poli-
cies about processor allocation.

Our architecture is depicted in figure 1. The
scheduling hierarchy exists in the kernel, where it
is supported by the hierarchical infrastructure. In
this example we use a fixed-priority scheduler (FP)
to give a rate-monotonic scheduler (RM) higher pri-
ority than a time-sharing scheduler (TS). Applica-
tions may request a guarantee for a certain type of
scheduling by calling the resource manager—a gen-
eralized admission control system. (By “guaran-
tee” we mean a contract between a scheduler and an
application thread or another scheduler; we do not
mean to imply that we are able to achieve perfect
real-time performance on a general-purpose operat-
ing system.) The resource manager is implemented
as a user-level server that uses a privileged kernel in-
terface to manipulate the scheduling hierarchy (for
example, to attach an application thread to a partic-
ular scheduler or to load a new scheduler). To deter-
mine whether a request should be accepted, the re-
source manager first verifies that it does not violate
any user-specified policies, and then uses scheduler-
specific admission tests to ensure that the request is
feasible. Although the resource manager is responsi-
ble for accepting and rejecting requests for schedul-
ing, all of the actual processor scheduling decisions
are made by the scheduling hierarchy.

We have identified four main challenges to provid-

ing flexible, high-performance scheduling of appli-
cations with diverse requirements. First, the schedul-
ing hierarchy needs to be able to avoid losing infor-
mation that is necessary to make good scheduling
decisions; we discuss this in sections 2 and 3. Sec-
ond, we must provide support for composing sched-
ulers in a way that makes sense, allowing all of them
to provide the scheduling properties that they were
designed to provide; this is thescheduler compos-
ability problemthat we discuss in section 4. Third,
a resource manager must provide a level of indi-
rection between requests for processor time and the
scheduling hierarchy; this is discussed in section 5.
Fourth, an infrastructure supporting modular sched-
ulers must be developed; we discuss this in section
6. In section 7 we apply our architecture to three
real-time schedulers: the integrated hard and soft
real-time scheduler by Kaneko et al. [13], the Ri-
alto scheduler by Jones et al. [12], and the SMART
scheduler by Nieh and Lam [16]. In section 8 we dis-
cuss efficiency issues. Section 9 presents a compari-
son with the state-of-the-art. Section 10 summarizes
the paper and gives a status report on the work.

2 Scheduling Applications with Diverse Re-
quirements

Broadly speaking, recent efforts to provide
scheduling support for diverse sets of applications
can be divided into hierarchical schedulers and
monolithic schedulers. Monolithic schedulers are
designed to schedule both time-dependent and non-
time-dependent applications. For example, SMART
acts like a real-time scheduler when there are no
time-sharing applications, a time-sharing scheduler
when there are no real-time applications, and other-
wise balances the requirements of the different types
of applications. Algorithms such as start-time fair
queuing [6] and stride scheduling [18] can provide
bounded delay and guaranteed throughput for time-
dependent applications while providing proportional
sharing for conventional applications. Hierarchical
schedulers run different scheduling algorithms con-
currently, scheduling each application with an appro-
priate scheduler. Schedulers that schedule applica-
tions directly are calledlow-level, orleafschedulers.
A higher-levelor root scheduling algorithm then ar-

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

bitrates between leaf schedulers. Although research
efforts have used proportional-share schedulers as
root schedulers [6, 7], mainstream operating systems
such as Linux, Windows NT, and Solaris have sched-
ulers that (in effect) use a static priority scheduler at
the root of the hierarchy, giving real-time applica-
tions strictly higher priority than non-real-time ap-
plications.

Scheduler design involves a series of tradeoffs—
monolithic schedulers, even if they are tunable, must
make these tradeoffs in advance at system design
time; applications are then forced to live with them.
This is a primary drawback of monolithic schedulers.
There have been many research efforts to overcome
various limitations of schedulers found in general-
purpose operating systems; each of these involves a
set of modifications to an existing monolithic sched-
uler; the result is a new monolithic scheduler. Al-
though the scheduling community is producing new
and useful scheduling algorithms, it is unlikely that
any one of these algorithms will solve everybody’s
problems. The purpose of our work, then, is to allow
schedulers to be modular, and to provide a frame-
work that supports simultaneous execution of a num-
ber of innovative (and traditional) schedulers in a
way that is tailored, at any given time, to the running
set of applications.

Because domain- and application-specific knowl-
edge is compartmentalized in special-purpose sched-
ulers, hierarchical schedulers may fail to propagate
valuable information to where it is needed in the
hierarchy. For example, if a real-time scheduler is
given a static priority that is higher than a time-
sharing scheduler, then it is impossible for even the
most critical time-sharing application to preempt the
lowest priority real-time application. This may be
the desired behavior in some situations, but it is easy
to picture scenarios where the importances of real-
time and non-real-time applications overlap. In these
cases, schedulers must propagate some information
about the importance of their scheduling choices to
higher-level schedulers. This technique will allow us
to compose schedulers that, like SMART and Rialto,
balance the requirements of different kinds of appli-
cations.

3 Sharing and Isolation

A key issue in resource management is the tension
between sharing and isolation. To isolate applica-
tions from each other the system gives them perfor-
mance guarantees; for example, providing a lower
bound on the amount of processor time that an ap-
plication will receive over some time period. There
is an inherent conflict between such guarantees and
flexible sharing of processor time—allocating cycles
on the fly to the application that needs them most. In
other words, when the scheduler guarantees cycles to
a particular application, it is giving up the freedom
to later allocate those cycles to some other appli-
cation. Typically, monolithic multimedia schedulers
like SMART emphasize flexible sharing of CPU time
at the expense of isolation; this creates a difficult pro-
gramming model because applications will receive
fluctuating amounts of CPU time when resources are
scarce. They will learn about missed deadlines later
than they otherwise would, and they must gracefully
degrade their performance.

Isolation is expensive: it restricts future decision
making in proportion to the strength of the guaran-
tee. Therefore, schedulers should only provide as
much isolation as is warranted by a particular sit-
uation. Isolation can be weakened, for example,
when an application supports graceful degradation
or is able to tolerate renegotiation of its guarantee
when a more important task enters the system. It
is not reasonable to expect all applications to cope
with weak forms of isolation. By supporting di-
verse scheduling policies, we will isolate applica-
tions only as much as is necessary, based on the char-
acteristics of the application and on user-specified
policies about application importance. For exam-
ple, although a video-conferencing application and
a software modem driver may have similar timing
characteristics (requiring, say, 5ms of CPU time ev-
ery 30ms), the modem driver should have a stronger
guarantee because it will drop the connection if it
misses a deadline—the video application can just
drop a frame without severely degrading the quality
of its output.

It is often desirable to isolate a collection of
threads, rather than just a single thread; this is use-
ful, for example, to isolate users, administrative do-
mains, or accounting domains from each other. Hi-

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

erarchical isolation is easily accomplished using hi-
erarchicalschedulers [2, 6]. We previously argued
that it is crucial that a hierarchical scheduling system
avoid losing information that is necessary to make
good scheduling decisions. When the purpose of a
scheduler is isolation, it is acceptable to lose infor-
mation between the domains that are being isolated.
For example, when we give a fair share of the pro-
cessor to each of two users, we intend it to be the
case that no application belonging to user A, no mat-
ter how many threads it contains or how important it
is, uses any of user B’s share of the processor. There-
fore, the scheduler that arbitrates between the users
acts as a firewall across which no crosstalk is desired.

4 Scheduler Composability

Clearly, there are hierarchical arrangements of
schedulers that do not make sense. For example, we
could arrange for a real-time scheduler to be sched-
uled by a time-sharing scheduler; this makes no more
sense than directly scheduling a real-time applica-
tion using a time-sharing scheduler. In general, we
want to put the schedulers with the strictest timing
requirements near the top of the hierarchy, allowing
us to avoid a difficult heterogeneous schedulability
analysis. We call the problem of deciding which
schedulers can be safely stacked with which other
schedulers thescheduler composability problem.

There are two main aspects to the problem of
deciding what schedulers compose with what other
schedulers. First of all, we need to ensure that lower-
level schedulers can provide the scheduling proper-
ties that they were designed to provide, given the
kind of scheduling that they receive from their par-
ent. For example, a start-time fair queuing scheduler
has the property that it provides a proportional share
of the CPU to each thread that it schedules, regard-
less of the amount of CPU that it receives [6]. There-
fore, this scheduler can be scheduled by any other
scheduler, provided that it only guarantees propor-
tional sharing and not any absolute amount of CPU
time. A rate-monotonic scheduler, on the other hand,
may or may not be able to operate correctly when
scheduled by a proportional-share scheduler. If it is
guaranteed to receive a large enough fraction of the
CPU with a fine enough granularity relative to the

periods of the tasks or schedulers that it schedules,
then it can work.

The second issue is establishing a semantic match
between schedulers. For example, a multilevel feed-
back queue scheduler may make the priority of the
thread that it wants to run available to its parent
scheduler; this priority will be of little use to a sched-
uler that does not use priorities. Similarly, an EDF
scheduler may make its earliest deadline available to
its parent scheduler; this would be comprehensible to
another EDF scheduler, but not to a priority-based or
proportional-share scheduler. When schedulers can
share semantic information, we can compose flexible
schedulers that balance the requirements of different
classes of applications; we discuss some examples of
this in section 7.

The ability of schedulers to maintain their guaran-
tees even when the full CPU bandwidth is not avail-
able to them is a key issue in hierarchical schedul-
ing. We will say that a particular scheduling hier-
archy ishierarchically correctwhen all schedulers
are able to maintain their guarantees. As we saw in
the rate-monotonic example above, hierarchical cor-
rectness depends not only on the way schedulers are
arranged, but also on the characteristics of the tasks
being scheduled.

A variety of techniques can be used to determine
the conditions under which combinations of sched-
ulers are hierarchically correct. For example, most
time-sharing schedulers are automatically hierarchi-
cally correct in all cases because they make no spe-
cial guarantees to threads that they schedule. A hi-
erarchy in which a real-time scheduler does not re-
ceive the full CPU bandwidth might be correct if the
scheduler can determine in advance what intervals
of CPU time are not going to be available to it, or if
the unavailable time has a short enough period that
that it can act as if it has exclusive access to a uni-
formly slower processor. We will draw upon existing
techniques for providing real-time guarantees in the
presence of high-priority interrupt handlers [8], and
for scheduling aperiodic tasks in systems where hard
guarantees are given to periodic tasks [17].

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

5 The Resource Manager

New threads or threads that are changing mode
make a request to the resource manager in order to
obtain a guarantee for a particular type of schedul-
ing. The resource manager is responsible for en-
suring that the request is in conformance with user-
specified policies about the allocation of CPU time
and for mapping the request to an appropriate sched-
uler. If an appropriate scheduler is not present in
the hierarchy, the resource manager may load a new
scheduler (ensuring that the new arrangement of
schedulers is hierarchically correct). The resource
manager may revoke existing guarantees in order to
satisfy a request from an important application, if
this is allowed by the semantics of those guarantees.

The difficulty of mapping threads to schedulers
depends on how threads specify their scheduling
needs. In the simplest case, a new thread supplies
the name of the scheduler that provides the kind of
scheduling that it needs; then, the resource manager
must simply find an instance of the named sched-
uler to which the user is allowed to attach a thread.
The resource manager has a more difficult job if a
thread requests, for example, periodic scheduling at
some granularity; it must be able to determine which
schedulers can provide such a guarantee. The re-
source manager will have some reflective informa-
tion about schedulers and their capabilities in order
to perform these more difficult mappings.

The resource manager enforces a set of user-
specified policies; policies may be global, or may be
attached to a particular user or scheduler. One of our
design principles is to keep as much policy as pos-
sible out of the schedulers themselves. Policies will
typically prevent certain actions from occurring; for
example, suppose that a user is guaranteed to receive
a fair share of the processor, and she wants to sched-
ule that time using a standard time-sharing sched-
uler. She would then attach a rule to her instance of
the timesharing scheduler that prevents other users
attaching threads or schedulers to it; this will en-
sure that nobody can steal her share of the proces-
sor. In a slightly more sophisticated situation, a sys-
tem administrator could create a global rule restrict-
ing users to their fair shares of the processor, across
all schedulers. Then, if the user mentioned above
wants to schedule a hard real-time thread, she would

have to give up part of her proportional share be-
fore requesting a guarantee from a real-time sched-
uler, in order to keep her total guaranteed proces-
sor allocation (over some time period) below the
administrator-determined threshold.

In addition to enforcing user policies, the resource
manager must ensure that any request it grants is
feasible. It does this by calling admission control
routines provided by the schedulers themselves. For
real-time schedulers, these are the existing schedula-
bility tests; time-sharing schedulers are likely to ad-
mit all tasks. Schedulability tests allow schedulers to
be opaque to the resource manager in the sense that
it does not have to reason about schedulers’ internal
state.

6 The Hierarchical Infrastructure

A contribution of our work is the design of the
hierarchical infrastructure, which consists of a well-
defined API for schedulers and the implementation
to support the API. Because the infrastructure iso-
lates schedulers from the rest of the operating sys-
tem, it will greatly reduce the cost of entry to imple-
menting novel schedulers.

A number of functions and variables must be
available to the scheduler, and it has to provide cer-
tain callbacks. First, the scheduler must be able to
make scheduling decisions; that is, to cause a thread
to be dispatched on a specific processor. Second,
the scheduler needs to be called every time an event
happens that could possibly necessitate a reschedule.
A subset of the events that could cause a resched-
ule are the events that modify the set of runnable
threads. So, the scheduler needs to receive a callback
whenever a thread is created or destroyed and when
a thread blocks or unblocks. When a thread blocks,
the scheduler should be able to tell what thread, de-
vice, or synchronization primitive it blocked on. Pri-
ority and processor affinity adjustments are another
class of events that can cause rescheduling. In the
general case, threads must be able to send messages
to the scheduler, which can then optionally resched-
ule. In addition to receiving messages from threads,
the scheduler should be able to send asynchronous
messages to threads to notify them of missed dead-
lines, revoked guarantees, etc. Hierarchical sched-

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

ulers cannot assume that they have exclusive access
to the CPU; the hierarchical infrastructure will no-
tify schedulers when a processor becomes available
or is revoked—this is reminiscent of the upcalls in
scheduler activations [1]. In response to notifica-
tions schedulers will have the opportunity to change
the set of threads or schedulers that they are running,
which may cause notifications to be sent to sched-
ulers lower in hierarchy. Finally, the scheduler must
have access to timing facilities; it should be able to
accurately determine the current time, and also to ar-
range to be called at some time in the future. Pe-
riodic timer interrupts for quantum-end calculations
in time-sharing schedulers are a special case of this.
The execution model for schedulers is similar to the
execution model for interrupt handlers: the sched-
uler is called in the context of no particular thread, it
cannot block, and it must run quickly.

Because the focus of our research is the commod-
ity, general-purpose operating system, we plan to
implement hierarchical scheduling under Windows
2000. It is (or soon will be) a common, off-the-
shelf operating system for which many interesting
time-dependent applications are available. Although
Windows 2000 lacks many of the features that we
expect from a real-time operating system it is capa-
ble of scheduling threads at the millisecond granu-
larities that are commonly required for multimedia
tasks [11].

Schedulers will be implemented as loadable de-
vice drivers. In Windows 2000, a subset of the inter-
nal kernel APIs are available to loadable drivers, but
by default this subset is not powerful enough to allow
drivers to act as schedulers. Our modified version of
the OS will export functionality that is required for
drivers to act as schedulers.

7 Application of Hierarchical Scheduling

Although our architecture does not propose any
new scheduling algorithms of its own, we demon-
strate in this section that it permits existing algo-
rithms to be expressed in a modular way, allow-
ing them to be more easily extended, restricted, and
modified. We will consider three applications of hi-
erarchical scheduling.

Kaneko et al. [13] describe a method for integrated

scheduling of hard and soft real-time tasks using a
single hard real-time task as a server for scheduling
soft real-time multimedia applications, amortizing
the overhead of a heavyweight planning scheduler.
This solution provides excellent isolation at the ex-
pense of zero sharing between the hard real-time and
soft real-time tasks. To implement this using hierar-
chical scheduling we would put the hard real-time
scheduler at the root of the scheduling hierarchy,
with the multimedia scheduler at the second level.
The resource manager in this system would allow
us to attach an appropriate admission policy to each
scheduler. This kind of server-based approach to in-
tegrated support for different classes of applications
is precisely the kind of scheduling that our architec-
ture is designed to support. The composability of the
schedulers allows real-time guarantees for the hard
real-time tasks and a guaranteed minimum execution
rate for the soft real-time (multimedia) tasks. How-
ever, in Kaneko [13] the infrastructure is fixed—our
architecture permits dynamic changes to the schedul-
ing hierarchy.

Jones et al. [12] developed a scheduler for the
Rialto operating system that is designed to sup-
port multi-threaded time-dependent applications. It
implements two principal scheduling abstractions:
CPU Reservations, which provide isolation for col-
lections of threads calledactivitiesby guaranteeing
a minimum execution rate and granularity, andTime
Constraints, which allow structured sharing of CPU
time in the form of deadline-based one-shot CPU
guarantees for individual threads. Time that is re-
served for activities is divided among the activity’s
threads by a round-robin scheduler unless there are
active constraints, in which case threads with con-
straints are scheduled earliest-deadline first. Threads
that block during reserved time can build up a certain
amount of credit—they are given a second chance
to meet their deadlines during unused time. Finally,
free time in the schedule is distributed among all
threads by a round-robin scheduler.

We can implement a hierarchical scheduler equiv-
alent to Rialto by putting a fixed-priority sched-
uler at the root of the scheduling hierarchy that al-
ways schedules a reservation-based scheduler when
it has something to run, then a briefly-blocked sched-
uler, and finally a round-robin scheduler. Below
the reservation scheduler we attach “activity” sched-

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

Reservation Briefly−Blocked Round−Robin

Fixed Priority

Thread1

Thread2

Thread3

..........

(high)
(med) (low)

.........
Thread1 Thread3

Thread2

Activity1 Activity2 Thread2

Figure 2: A scheduling hierarchy implementing the
Rialtoscheduling algorithm [12].

ulers, which schedule application threads; this hi-
erarchy is depicted in figure 2. When a thread re-
quests a time constraint, its activity scheduler at-
tempts to satisfy the constraint from its reservation;
if this time is insufficient it sends a request to the
reservation scheduler that tries to satisfy the request
from unreserved time. (A more aggressive decom-
position might divide activity schedulers into a con-
straint scheduler and a round-robin scheduler, with
the constraint scheduler having strictly higher pri-
ority.) When a thread awakens after being blocked
during reserved time, its activity scheduler sends a
message to the briefly-blocked scheduler telling it
to credit the thread with the amount of time it spent
blocking.

The benefits of implementing the Rialto scheduler
as a hierarchical scheduler are as follows: first, com-
ponents of the scheduler can be easily and selectively
replaced. For example, we can replace round-robin
activity schedulers on a case-by-base basis with a
scheduler that provides stronger fairness guarantees.
In fact, since activities are isolated by the reser-
vation scheduler, the activity schedulers can be re-
placed with any scheduling algorithm that we choose
without risk of affecting the schedulability of the
rest of the system. If the briefly-blocked scheduler
is not needed it can be left out, although removing
this scheduler requires the activity schedulers to stop
sending messages when threads unblock. Second,
the resource manager gives us flexible control over
admission policies. By default, we might expect that
only threads belonging to the process that created an
activity are allowed to join that activity; this policy

is too restrictive to implement multi-process applica-
tions, and it could be loosened in those cases. By de-
fault, the reservation scheduler may grant any reser-
vation request that is feasible. If we wish to restrict
users to a certain proportion of the CPU across all
activities, this can be accomplished by adding a rule
to the reservation scheduler’s admission test. None
of these scheduling policy changes require changes
to the schedulers themselves—high level policies are
kept separate from the scheduling mechanism. A fi-
nal benefit of the hierarchical Rialto scheduler is that
unlike the Rialto scheduler, it can operate on a mul-
tiprocessor machine. It will only be able to make use
of a single CPU, but other schedulers can make use
of other processors.

A more challenging scheduler to decompose into
a hierarchy is SMART [16]; this scheduler provides
integrated support for real-time and non-real-time
activities, but provides no real isolation guarantees
(real-time activities can be preempted by higher-
priority activities at any time). Since SMART is dif-
ficult to analyze and provides no performance guar-
antees, our architecture identifies it as only being
suitable for use as a leaf scheduler.

SMART assigns a tuple to every activity; the first
component of the tuple is the activity’s priority, and
the second is its biased virtual finishing time. If
the largest tuple (sorted lexically) is not a real-time
activity, it is scheduled. If the largest tuple is a
real-time activity, SMART pre-computes an earliest
deadline first schedule using all tuples with values
larger than the largest non-real-time activity. This
allows low-priority activities with close deadlines to
run ahead of higher-priority activities in the cases
where the scheduler estimates that it will not cause
the higher-priority activity to miss a deadline.

Although we could decompose SMART into a set
of closely-coupled schedulers (one for each priority),
it would seem that SMART’s value comes from its
elaborate balancing act between the needs of real-
time and non-real-time activities. It would therefore
be unproductive to decompose SMART into a hierar-
chy of schedulers in order to modify them. However,
to gain real isolation guarantees we might want to
run SMART in a hierarchy that also contains a hard
real-time scheduler, or to use the resource manager
to restrict admission of high-priority activities.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

8 Efficiency Issues

Efficiency should be a concern whenever a mono-
lithic, performance-critical piece of code is divided
into communicating components. By placing the
scheduling hierarchy in the kernel (as opposed to
structuring it as a set of communicating processes)
we avoid unnecessary protection boundary cross-
ings and allow schedulers to communicate using
lightweight mechanisms such as procedure calls and
shared-memory queues. In addition, we will imple-
ment a number of optimizations in the hierarchical
infrastructure. Certain common schedulers like the
fixed-priority scheduler can have an optimized im-
plementation built into the infrastructure (they will
still appear to be loadable). When schedulers do
not need certain types of notifications they will be
able to suppress the notifications at the source in-
stead of receiving and ignoring them. We will cache
and reuse scheduling decisions when the hierarchical
infrastructure can infer that no event has happened
that invalidates them. Adding interfaces to critical
paths will unavoidably add a certain amount of over-
head; we believe that the benefits of flexible schedul-
ing will outweigh the costs.

9 Related Work

The Vassal system by Jones and Candea [10] is
a modified version of Windows NT 4.0 that allows
a single scheduler to be loaded, whose decisions al-
ways take precedence over the decisions of the native
Windows scheduler. Our work generalizes this re-
sult by integrating resource management, allowing a
hierarchy of schedulers, and notifying loaded sched-
ulers of a number of events that Vassal schedulers
were unaware of.

Goyal et al. [6] use start-time fair queuing (SFQ)
to partition CPU time hierarchically, with other
scheduling algorithms present at the leaf nodes of
the scheduling tree. They analyze the hierarchical
correctness of the SFQ schedulers but not the leaf
schedulers. They posit a QoS manager similar to
our resource manager, but do not provide details.
Deng et al. [4] describe a similar scheme, but using
an EDF scheduler at the root of the scheduling tree;
their work was recently extended by Kuo and Li [14]

to use a rate-monotonic scheduler at the root of the
scheduling hierarchy.

CPU Inheritance Scheduling [5] runs schedulers
in separate, unprivileged protection domains; they
communicate through an IPC-based interface. The
basic primitive is CPU donation—scheduler threads
“hand off” the CPU to other schedulers, and finally
to a program thread. This allows flexible compo-
sition of scheduling policies, although we expect
the extra context switches to have much more over-
head than our in-kernel hierarchy, and there is no ac-
companying resource management framework with
which to manage allocation of CPU time.

The resource management aspects of our work are
similar to those proposed by Jones for the Rialto op-
erating system [9], although we are only concerned
with the management of processor time.

10 Conclusion

We have outlined an architecture for providing
flexible scheduling for the diverse real-time and non-
real-time applications that users expect to run un-
der commodity operating systems. The contribu-
tions of our work are as follows: first, providing ag-
gressive support for diverse scheduling algorithms,
each of which can concentrate on scheduling a sin-
gle class of applications well. Second, integrating
a resource manager with hierarchical scheduling in
order to make it possible to specify high-level poli-
cies, and to avoid having to implement these policies
in the schedulers themselves. Third, understanding
the scheduling behavior that results when schedulers
are composed. Finally, the design of an infrastruc-
ture for schedulers—an interface that separates the
scheduler from the rest of the operating system. We
have applied our architecture to three current algo-
rithms. We are currently in the process of imple-
menting the infrastructure in a release candidate of
Windows 2000.

Acknowledgment

The authors would like to thank Mike Jones for his
helpful comments on previous drafts of this paper.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy. Scheduler Activa-
tions: Effective Kernel Support for the User-Level
Management of Parallelism. InProc. of the 13th
ACM Symposium on Operating Systems Principles,
pages 95–109, October 1991.

[2] Gaurav Banga, Peter Druschel, and Jeffery C.
Mogul. Resource Containers: A New Facility for
Resource Management in Server Systems. InProc.
of the 3rd Symposium on Operating Systems Design
and Implementation, February 1999.

[3] Intel Corporation. Soft Migration. http://
developer.intel.com/ial/sm/.

[4] Zhong Deng, Jane W.-S. Liu, Lynn Zhang, Seri
Mouna, and Alban Frei. An Open Environment for
Real-Time Applications.Real-Time Systems Jour-
nal, 16(2/3):165–185, May 1999.

[5] Bryan Ford and Sai Susarla. CPU Inheritance
Scheduling. InProc. of the 2nd Symposium on Op-
erating Systems Design and Implementation, pages
91–105, Seattle, WA, October 1996.

[6] Pawan Goyal, Xingang Guo, and Harrick M. Vin.
A Hierarchical CPU Scheduler for Multimedia Op-
erating Systems. InProc. of the 2nd Symposium
on Operating Systems Design and Implementation,
pages 107–121, Seattle, WA, October 1996.

[7] James G. Hanko, Eugene M. Kuerner, J. Duane
Northcutt, and Gerard A. Wall. Workstation Sup-
port for Time-Critical Applications. InProc. of Net-
work and Operating System Support for Digital Au-
dio and Video, pages 4–9, November 1992.

[8] Kevin Jeffay and Donald L. Stone. Accounting for
Interrupt Handling Costs in Dynamic Priority Task
Systems. InProc. of the Real-Time Systems Sym-
posium, pages 212–221, Raleigh-Durham, NC, De-
cember 1993.

[9] Michael B. Jones, Paul J. Leach, Richard P. Draves,
and Joseph S. Barrera, III. Modular Real-Time Re-
source Management in the Rialto Operating System.
In Proc. of the 5th Workshop on Hot Topics in Op-
erating Systems, May 1995.

[10] Michael B. Jones and John Regehr. Issues in
Using Commodity Operating Systems for Time-
Dependent Tasks: Experiences from a Study of
Windows NT. In Proc. of the 8th International
Workshop on Network and Operating System Sup-
port for Digital Audio and Video, July 1998.

[11] Michael B. Jones and John Regehr. The Problems
You’re Having May Not Be the Problems You Think
You’re Having: Results from a Latency Study of
Windows NT. InProc. of the 7th Workshop on Hot
Topics in Operating Systems, pages 96–101, March
1999.

[12] Michael B. Jones, Daniela Roşu, and Marcel-
Căt̆alin Roşu. CPU Reservations and Time Con-
straints: Efficient, Predictable Scheduling of Inde-
pendent Activities. InProc. of the 16th ACM Sympo-
sium on Operating Systems Principles, pages 198–
211, Saint-Mal̂o, France, October 1997.

[13] Hiroyuki Kaneko, John A. Stankovic, Subhabrata
Sen, and Krithi Ramamritham. Integrated Schedul-
ing of Multimedia and Hard Real-Time Tasks. In
Proc. of the 17th IEEE Real-Time Systems Sympo-
sium, Washington, DC, December 1996.

[14] Tei-Wei Kuo and Ching-Hui Li. A Fixed-Priority-
Driven Open Environment for Real-Time Applica-
tions. InProc. of the 20th IEEE Real-Time Systems
Symposium, Phoenix, AZ, December 1999.

[15] Jason Nieh, James G. Hanko, J. Duane Northcutt,
and Gerard A. Wall. SVR4 UNIX Scheduler Un-
acceptable for Multimedia Applications. InProc. of
the 4th International Workshop on Network and Op-
erating System Support for Digital Audio and Video,
November 1993.

[16] Jason Nieh and Monica S. Lam. The Design, Imple-
mentation and Evaluation of SMART: A Scheduler
for Multimedia Applications. InProc. of the 16th
ACM Symposium on Operating Systems Principles,
Saint-Mal̂o, France, October 1997.

[17] Brinkley Sprunt, Lui Sha, and John P. Lehoczky.
Aperiodic Task Scheduling for Hard Real-Time Sys-
tems.Real-Time Systems Journal, 1(1):27–60, June
1989.

[18] Carl A. Waldspurger.Lottery and Stride Schedul-
ing: Flexible Proportional-Share Resource Man-
agement. PhD thesis, Massachusetts Institute of
Technology, September 1995. Also appears as Tech-
nical Report MIT/LCS/TR-667.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

