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Abstract

In this paper, we address a method to reduce the number of species equations that must be solved via
application of Principal Component Analysis (PCA). This technique provides a robust methodology to reduce

the number of species equations by identifying correlations in state-space and defining new variables that
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are linear combinations of the original variables. We show that applying this technique in the context of
Large Eddy Simulation allows for a mapping between the reduced variables and the full set of variables that
is insensitive to the size of filter used. This is notable since it provides a model to map state variables to
progress variables that is a closed model.

As a linear transformation, PCA allows us to derive transport equations for the principal components,
which have source terms. These source terms must be parameterized by the reduced set of principal com-
ponents themselves. We present results from a priori studies to show the strengths and weaknesses of such
a modeling approach. Results suggest that the PCA-based model can identify manifolds that exist in state
space which are insensitive to filtering, suggesting that the model is directly applicable for use in Large Eddy
Simulation. However, the resulting source terms are not parameterized with an accuracy as high as the state
variables.

Keywords: Manifold, Data analysis, Dimensionality reduction, Principal component analysis, PCA,

Turbulent combustion modeling

1. Introduction and Background

Modeling turbulent combustion processes requires solution of a large number of equations due to the
large number of reacting species present. Furthermore, the computational cost of resolving turbulent flows
scales as Re3. Reducing the range of scales that must be resolved as well as the number of equations to be
solved is, therefore, of utmost importance to achieve simulations of practical combustion systems.

Classical turbulence theory indicates that resolution requirements scale with the Reynolds number as
Re? for isotropic, homogeneous turbulent flow [1]. Species with large Schmidt numbers further increase the

range of scales. In addition to the separation of length scales due to turbulence, the large number of species
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involved in combustion and the stiff chemistry associated with the reactions further increase the cost of direct

simulation so that it is prohibitively expensive for all but the simplest of systems.
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Typically, time averaging (RANS) or spatial filtering (LES) is used to reduce the resolution requirements.

To reduce the number of thermochemical degrees of freedom, there are two broad approaches:

e mechanism reduction, where the chemical mechanism is modified to reduce the number of species and

the stiffness, and

e state-space parameterization, where the state of the system is assumed to be parameterized by a small

number of variables which are evolved in the CFD.

The techniques proposed in this paper fall into the second category: they seek to obtain a set of variables
that parameterizes the thermochemical state, and these variables are then evolved in the CFD calculation.

There have been numerous efforts to reduce the dimensionality of a combustion process (see, e.g. |2, 3, 4,
5,6,7,8,9,10, 11, 12] for a few). Flamelet models such as Steady Laminar Flamelet Method (SLFM) |2, 3, 4],
flamelet-generated manifold (FGM) [5, 6, 7, 9] or flamelet-prolongation of ILDM model (FPI) [11, 12, 13] are
examples of state-space parameterization model.

The remainder of this paper is organized as follows: we first identify the datasets that will be used
to evaluate the proposed model in section 2. We then review Principal Component Analysis (PCA) as a
technique to obtain a reduced parameter set (section 3), discuss how PCA can be formulated as a predictive
model (section 3.1.2), and introduce adaptive regression to enable parameterization of nonlinear functions
of the principal components (section 3.2). Section 4 then examines the model in the context of turbulent
closure and shows that the model is closed, i.e. it requires no explicit closure model for the thermochemistry.

Finally, conclusions are presented in section 6.

2. Datasets

In the discussions below we will consider two datasets:

1. A dataset from a One-Dimensional Turbulence (ODT) simulation which has been done on a temporally
evolving nonpremixed CO/Hs-air jet with extinction and reignition [14, 15]. This was shown to be
a statistically accurate representation of a corresponding high-fidelity DNS dataset [15]. The calcula-
tions include detailed chemical kinetics, thermodynamics, and transport and exhibit significant local
extinction and reignition and the dataset is, therefore, a modeling challenge. The state variables are:
temperature and species mass fractions for Hy, Oo, O, OH, H2O, H, HO5, CO, CO9, HCO and Ns.

2. Sandia TNF CHy/air Flame D [16]. This flame does not exhibit significant amounts of extinction or
reignition, and is a standard modeling target flame. The state variables are temperature and mass
fractions for Os, No, Ho, HoO, CHy4, CO, CO2, OH and NO.

The Flame D dataset is “incomplete” in that it does not contain species reaction rates or a complete set
of species. The ODT/DNS dataset, on the other hand, is “complete” in that it has the full set of species,
reaction rates, etc. resolved in space and time, but relies on simulation to obtain the data, and is only as
accurate as the thermodynamic, kinetic and transport properties that were used in the simulation.

When comparing against the datasets, we report R? values to measure the accuracy with which the model

represents the original data,
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where ¢; is the observed value, ¢! is the predicted value, and (¢) is the mean value of ¢. For the PCA
analysis, we consider data sampled from all space and time in the ODT dataset, and the full dataset for the

TNF data. In other words, the PCA does not vary in Z or ¢ since we sample all £ and ¢ to obtain the PCA.

3. Parameterization using Principal Component Analysis

3.1. Principal Component Analysis

Principal Component Analysis (PCA) provides a robust methodology to reduce the number of species
equations by identifying correlations in state-space and defining new variables (principal components) that
are linear combinations of the original variables (state variables) [17, 18, 19, 20]. Details of the formulation
have been published elsewhere [19, 20, 21, 22|, and here we only review the concepts behind the PCA analysis.

The basic process of a PCA reduction is

1. Identify a new basis in the multidimensional dataset that is a rotation of the original basis. We call
this new basis 17 and the original data ¢. The new basis is obtained via an eigenvalue decomposition of
the correlation matrix for many observations of ¢ for a system. At this point, we have only performed

a rotation, and no information loss has occurred.

2. Truncate the new basis and project the data onto the new basis to obtain an approximation (compres-

sion) of the data on the new basis.

3. Given an observation in the truncated basis, we can approximate the value of the original data. This

“reconstruction” is a linear reconstruction and is thus very efficient.
Steps 1 and 2 are illustrated conceptually in Figure 1.
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Figure 1: Illustration of the principal components of a hypothetical 2D data set where we retain a single
principal component.

The PCA modeling approach thus requires “training” data which should (ideally) be observations of the
a system at conditions close to where we wish to apply the model. Once 7; is known, the original state
variables (e.g. T, y;) can be easily obtained. Furthermore, the accuracy of the parameterization is obtained
a priori, and can be adjusted to obtain arbitrary accuracy by increasing the number of retained PCs. This is
illustrated in Figure 2, where the eigenvalues (relative importance of a given PC in representing the data) as
well as the percent of the variance in the original variables are shown as a function of the number of retained
eigenvalues. The eigenvalues can assist in determining how many PCs should be retained to maintain a

desired level of accuracy in the resulting model.
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Figure 2: Eigenvalue magnitude (left axis, bars) and percent variance captured (right axis, line) by retaining
the given number of components.

Table 1: Brief descriptions of the scaling options considered here.

ydosnuey soyany Y1 NN

Method Factor used to scale each state variable
STD Standard deviation
VAST  Ratio of the standard deviation to the mean.
Range Maximum-minimum
Level Mean
Max Maximum
Pareto  Square-root of the standard deviation

3.1.1. Effects of Scaling

Prior to applying PCA, the original data should be centered and scaled [23, 24, 19, 25, 20]. There are
many different scaling options, some of which are enumerated in Table 1. Further details regarding scaling
may be found in the aforementioned sources. For the purposes of this paper, it is sufficient to recognize that
the choice of scaling affects the accuracy of the resulting PCA parameterization. To illustrate this point,
consider the results shown in Table 2, where R? values are shown for parameterization of the original state

variables by three PCs for various choices of scaling. The effects of scaling will become even more pronounced

Table 2:  R? values for PCA projection of state variables with different scaling methods using 2 PCs on the
temporal CO/Hs dataset.
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Scaling T Ho Oy O OH H5O H HO»9 CO CO, HCO Average
VAST 0.999 0.952 1.000 0.777 0.853 0.954 0.822 0.075 0.996 0.985 0.893 0.846
STD 0.978 0.939 0.995 0.862 0.920 0.927 0.841 0.056 0.988 0.984 0.911 0.855
Level 0.944 0.947 0978 0.906 0.951 0.877 0.824 0.037 0.976 0.965 0.933 0.849
Range 0.987 0.946 0.999 0.817 0.881 0.952 0.862 0.059 0.996 0.985 0.876 0.851
Max  0.984 0.945 0.999 0.820 0.884 0.950 0.866 0.057 0.996 0.984 0.875 0.851
Pareto 1.000 0.948 0.998 0.746 0.832 0.956 0.809 0.085 1.000 0.981 0.864 0.838

when source terms are considered in section 3.2.1.

However, from Table 2, it is evident that scaling can have

an appreciable impact in the accuracy of a PCA reconstruction.

Unless explicitly stated otherwise, the results presented in this paper were obtained with VAST scaling.
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3.1.2. Transport Equations for PCs

The governing equations can be written as

%:—v-pqm—vjﬁs@ (2)
where ¢ = {1,,y;, T} (or any suitable energy variable in place of T'), 4 is the mass-averaged velocity, J_(;, is
the diffusive flux of p¢, and Sy is the volumetric rate of production of pg. Due to the large number of species
present in combustion, Eq. (2) represents a large number of strongly coupled partial differential equations
that must be solved. The thermochemical state variables (7', p and ns— 1 species mass fractions Y;) define an
(ns + 1)-dimensional state space which is widely recognized to have lower-dimensional attractive manifolds
[26].

Since PCA is a linear transformation, we may apply it directly to the subset of Eq. (2) associated with T
and y; to derive the transport equations for the PCs. The full derivation has been presented elsewhere [21],

and results in
dpn
ot

The source term for the PCs, S,,, is a linear combination of the original (scaled) species and temperature

= V- pnit =V - Jy, + Sy, (3)

source terms, and must be parameterized in terms of 1 to close the model. It is important to note that (3)
requires that the PCA definition is independent of space and time so that commutativity with differential
operators is maintained. This can be achieved by using data from all space and time in constructing the
PCA reduction, and all analyses presented herein adhere to this principle.

In previous work where this approach was originally proposed [21], preliminary results were shown where
PCA was performed locally in mixture fraction space (i.e. conditioned on mixture fraction). Here we consider
unconditional PCA, and extend the analysis to examine: 1) the effects of scaling (see section 3.1.1) on the
source term parameterization, 2) the effects of filtering on the accuracy of the source term parameterization,
and 3) multivariate regression, which will be discussed in section 3.2.

Just as the species source terms are highly nonlinear functions of y; and T, the PC source terms (S,),)
are highly nonlinear functions of the PCs. The original state variables are well-parameterized by the PCs
(given a sufficient number of retained PCs) because this is the objective of PCA: to identify correlations
in the original variables. However, the PCA transformation does not necessarily identify the ideal basis for
representing source terms. Furthermore, although the original state variables can be well-characterized by
linear functions of 7, the same is not necessarily true for S,,. Thus, several questions remain to be addressed

relative to a model based on PCA:

1. Can the truncated basis (see section 3.1) adequately represent the PC source terms?

2. Given that the relationship between n; and S, is highly nonlinear, can an adaptive regression technique

be employed to obtain the functions

S"?j :]'—j(771>7727---77nn) (4)

for the j = 1...n,, retained PCs?

3. Are the functions represented by Eq. (4) sensitive to filtering? In other words, is F; a function of the
filter width, A?

This paper aims to address these questions using a priori analysis of high-fidelity combustion data. We next
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Table 3: R? values for MARS regression of state variables on principal components with different scaling
methods in PCA using 2 PCs on the temporal CO/Hy dataset [15].

Scaling T Ho O O OH H5O H HO»9 CcO COy HCO Average

VAST 1.000 0.996 1.000 0.996 0.994 0.997 0.989 0.937 0.999 0.998 0.998 0.991
STD  0.995 0.996 0.999 0.986 0.995 0.994 0.997 0.938 0.999 0.991 0.997  0.990
Level 0.990 0.996 0.997 0.982 0.991 0.991 0.994 0.938 0.997 0.982 0.997  0.987
Range 0.997 0.996 1.000 0.991 0.996 0.995 0.993 0.925 0.999 0.993 0.996 0.989
Max  0.996 0.996 1.000 0.989 0.995 0.995 0.994 0.924 0.999 0.992 0.996  0.989
Pareto 1.000 0.993 1.000 0.987 0.984 0.997 0.985 0.921 1.000 0.997 0.953  0.983

turn our attention to question 2 and outline a methodology to obtain F;.

3.2. Multiwariate Adaptive Nonlinear Regression

Because we have no physical insight into the appropriate basis functions to form F; in Eq. (4), we need
an adaptive method. Multivariate Adaptive Regression Splines (MARS) [27, 28, 29| is a technique that
allows adaptive selection of basis functions to obtain nonlinear functions such as F;. At each iteration of
the MARS algorithm, a basis function is selected that results in the largest reduction in the regression error.
The iterative procedure is repeated until convergence is achieved. To avoid over-fitting the data, we choose
lower-order basis functions (typically quadratic or cubic at most) and subdivide the high-dimensional space
into only a few sub-spaces to fit the data (5 sub-spaces were used for the results presented here).

Table 3 shows the results of applying MARS to map the state variables onto the PCs. Comparing Table 3
to Table 2, where the state variables were mapped onto the PCs directly via the (linear) PCA transformation,
we note an increase in the accuracy of all state variables (but particularly minor species and most notably
HO3), indicating a nonlinear relationship between the state variables and PCs. This nonlinear relationship
has also been observed elsewhere [19, 20, 22|, but the MARS approach allows us to capture the nonlinearity
between 11 and ¢ quite well. Figure 3 shows the OH mass fraction, Yoy projected into the two-dimensional
space defined by the first two principal components, (71, 72) . Also shown is a reconstruction of Yoy using the
(linear) PCA reconstruction (Figure 3a) and the nonlinear MARS reconstruction (Figure 3b). This clearly

illustrates the advantages of the nonlinear reconstruction.

3.2.1. MARS for Parameterizing PC Source Terms

In contrast to the state variables themselves, where the PCA defines a linear relationship with the PCs,
the PC source terms have no linear relationship to the PCs, and adaptive regression is the only plausible
method to obtain F; in Eq. (4). Table 4 shows the R? values for the regression of the source terms for
various scaling approaches. Notably, that there is a much more significant influence of the choice of scaling
on the accuracy with which the PC source terms can be represented than for the state variables (shown in
Tables 2 and 3).

With regard to question 1 posed in section 3.1.2 (can the S,, be parameterized by 1?) we observe that
the source terms have more error in their representation than the original state variables. This suggests that
the basis selected by the PCA, which seeks to identify correlations among the state variables, may not be
optimal for the representation of the PC source terms. Therefore, other methods that identify a basis that
simultaneously optimizes parameterization of both the state variables and the PC source terms should be

explored. Nevertheless, as the number of retained PCs increases, the accuracy of the S,, parameterization
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(a) PCA (linear) reconstruction of You in (11, 72)-space. (b) MARS (nonlinear) reconstruction of You in (11, 7n2)-
space.

Figure 3: Comparison of PCA and MARS reconstructions for OH mass fraction for a two-dimensional model
based on principal components 7; and 7s. VAST scaling was used.

Table 4: R? values for MARS regression of source terms on principal components with different scaling
methods in PCA using 3 PCs on the temporal CO/Hy dataset [15].

Number 1 2 3

of PCs

Scaling S S Sy, | Average || Sy, Sha Sys | Average
method

VAST || 0.838 || 0.949 0.929 0.939 0.968 0.938 0.223 0.710
STD 0.041 || 0.276 0.491 0.383 0.349 0.535 0.183 0.356
Level 0.073 || 0.331 0.509 0.420 0.437 0.600 0.178 0.405
Range || 0.369 || 0.603 0.551 0.577 0.698 0.661 0.291 0.550
Max 0.407 || 0.669 0.619 0.644 0.751 0.735 0.253 0.580
Pareto || 0.877 || 0.960 0.956 0.958 0.966 0.963 0.973 0.967

also increases. We should note that the definition for \S;, remains unchanged as n, increases, i.e. S;, for
n, = 1 is defined in the same manner as S;, for n, = 3. However, their definitions are different for different

scaling methods.

4. Filtering & Turbulent Closure

The techniques and results presented in section 3 were discussed in the context of fully-resolved quantities.

For filtered /averaged quantities, several additional issues arise:

1. How sensitive is the PCA mapping to filtering? In other words, is the PCA mapping itself affected by
filtering?

2. Are the source term functions valid for filtered quantities, i.e., is F;j(n1, M2, ... nn) = Fi(T1, 72, - - - Tn)?
We consider each of these issues in the following sections.

4.1. PCA Sensitivity to Filtering

To determine the sensitivity of PCA to filtering, we examine computational data from a fully resolved
CO/Hy jet flame (see section 2). The data is filtered and a PCA is applied to the filtered variables. This
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is performed using a top-hat filter for several filter widths to determine if/how the PCA structure itself is
affected by filtering. Figure 4 shows the temperature field extracted along a line-of-sight and shows the effect
of the filter on the temperature profile. Az is the grid spacing of the original data set, whereas A refers
to the filter width so that A/Axz = 1 implies no filtering. Figure 4 indicates that the largest filter width
employed here (A/Ax = 32) has a substantial effect on the temperature field.

1100 ‘ :
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1000+ : —AAX=4 |
g 900 ’ A/AX = 32
g )‘-’\\A ’
2 [
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Figure 4: Effect of filtering on temperature profile for a specific time and realization from the temporal

CO/H; dataset [15].

Figure 5 shows the relative size of the kinetic energy fluctuations, K;{R = K?I, at filter widths of A/Ax =

4 and 16. Note that A/Ax = 16 results in a significant fraction of the kinetic being unresolved, and
substantiates the observation from Figure 4 that A/Az = 16 is an appreciable filter width. Figure 6 shows

— A/Ax=4
— AIAX=16
V'
6 % 8
x(m) x 107
Figure 5: Instantaneous profile of K[?(f( = K?, indicating the magnitude of the unresolved kinetic energy at

A/Az =4 and 16.

the largest five contributions to the first three eigenvectors, which define the rotated basis or the principal
components. Consider the first eigenvector. The results indicate that the definition of this eigenvector /PC is
almost entirely unaffected by filtering. The same results are observed for the second and third eigenvectors.
This shows that the PCA reduction itself is insensitive to filtering. The remaining eigenvectors, which are
associated with exponentially diminishing eigenvalues (see Figure 2), exhibit the same behavior and are not
shown for brevity. These results are of significant importance, since the PCA reduction plays a key role in
the proposed modeling strategy outlined in section 3.

The results in Figure 6 suggest that, over a substantial range of filter widths, the structure of a PCA

remains unchanged. This is an important result since it implies that the definition of a (linear) manifold for
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Figure 6: Changes in largest (most important) components of the first three eigenvectors with respect to
changes in normalized filter width in temporal CO/Hy dataset [15].

the state variables is insensitive to filtering.

4.2. Turbulent Closure

We now turn our attention to the question of whether a mapping ¢ = G(n) is valid for the aver-
aged/filtered quantities, i.e. ¢ L G(7m). This is particularly important for the source terms that appear
in the averaged/filtered PC transport equation,

opil _

W——V-ﬁﬁﬁ—V-Jj{%—S‘m (5)

where 7 is the Favre-averaged /filtered value of 1 and J_g is the turbulent diffusive flux.

In traditional state-space parameterization approaches, one defines the parameterization variables and
then the mapping between the state variables ¢ and reaction variables 1, e.g. ¢ = G(n). Then the joint
probability density function (PDF) of all i, p(n), is used to obtain mean /filtered values of ¢,

¢ = /cb(n)p(n) dn.

The problem then becomes how to approximate p(n). If a function

¢ =G(n) (6)

exists so that

then there is no turbulent closure problem and the joint PDF of all i is not required.

4.2.1. Ensemble Averaging

We first consider ensemble-averaged data from Flame D (see section 2). Ensemble averages are formed
by number-averaging all samples from a given spatial location. Table 5 shows results for all of the species
available for flame D. The results show a PCA reconstruction (linear) for two and three retained PCs as
well as a (nonlinear) MARS reconstruction based on the same two and three PCs. The “original data’
refer to the data processed directly from the flame D dataset where PCA was applied to the entire dataset.
PCA and MARS regressions were performed to obtain ¢ = G(n) and the resulting R? values reported. The
“ensemble data” used the PCA and MARS regression obtained from the original data and applied it to the
ensemble-averaged values for the PCs. Specifically, 1) PCA was applied to the original dataset, 2) MARS was
performed to obtain G(n), 3) using the PCA obtained in step 1, the PCs were computed from the original
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data and then ensemble-averaged to obtain 9, 4) ¢* = G(7) was calculated and compared with the directly

averaged values of ¢ to obtain an R? value.

Table 5: R? values for different variables in flame D showing that no closure is required to reconstruct the
original variables, ¢ from the principal components, 7.

Approach | Data Type | T 0, CO, NO HO N, H, CH, CO OH

PCA 1. —9 Original 0.990 0.981 0.966 0.860 0.979 1.000 0.385 0.914 0.439 0.495
T Ensemble | 0.995 0.995 0.987 0.899 0.990 1.000 0.539 0.987 0.611 0.687

PCA n — 3 Original 0.991 0.991 0988 0911 0.989 1.000 0.944 0916 0.890 0.599
n Ensemble | 0.996 0.998 0.998 0.939 0.998 1.000 0.982 0.990 0.972 0.650
MARS. 1. — 9 Original 0.997 0.991 0976 0.926 0.989 1.000 0.625 0.941 0.666 0.650
T Ensemble | 0.998 0.999 0.995 0.950 0.999 1.000 0.917 0.992 0.933 0.744
MARS. 1. — 3 Original 0.997 0.997 0991 0974 0.993 1.000 0.938 0.941 0.904 0.745
P Ensemble | 0.998 0.999 0.999 0.899 0.999 1.000 0.971 0.993 0.979 0.755

There are several noteworthy points relative to Table 5:

1. As n, increases from 2 to 3, the R? value uniformly increases, indicating the increase of accuracy of a
PCA-based model as the number of retained components increases. This has been discussed in detail
elsewhere [19, 20, 21, 22].

2. The MARS representation of the data is more accurate than the corresponding direct PCA reconstruc-
tion, indicating that there is an underlying nonlinear relationship between the ¢ and 1 that the linear
PCA-based reconstruction cannot accurately capture.

3. The ensemble-averaged data shows R? values that are nearly always higher than their corresponding
original data values. This suggests that the PCA based models ¢ = G(n) do not incur any additional
error when evaluated using mean values, ¢* = G(#). This is true for the linear reconstruction as well

as the nonlinear (MARS) reconstruction.

4.2.2. Spatial Filtering

We next consider spatial filtering with the CO/Hy dataset discussed in section 2. Figure 4 illustrates the
effect of different filter lengths on an extracted line-of-sight represented by the ODT data for the temporal
CO/H; dataset. For this particular dataset, a filter width of A/Ax = 16 induces substantial filtering on the
data.

First, a PCA was performed on the fully resolved data and either n, = 2 or n,, = 3 PCs were retained.
This provides a linear mapping between the PCs (1) and the state variables (¢). Using this mapping, we then
compute 7 directly from the dataset and then use the mapping to approximate ¢", which is then compared to
¢ calculated directly from the dataset. These results are shown in Figure 7. Finally, a MARS regression was
performed to map the original variables onto the PCs at the fully resolved scale, providing ¢; = G;(n). Then,
7 was calculated directly from the data and qz_bf was approximated as gEf = G;(n), and this was compared
to the value of ¢; calculated directly from the dataset. The profiles in Figure 7 show these results. From
Figure 7, it is apparent that the error is well-controlled as the filter width is increased, indicating that the
PCA-based models require no explicit closure. This is consistent with the results for the ensemble-averaged
analysis performed in section 4.2.1.

Figure 8 shows extracted spatial profiles (over a small portion of the domain corresponding to an active
flame region) for CO2 and OH mass fractions for two different filter widths (A/Az =1 and 16) and n,, = 2.

10
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Figure 7: R? value changes with respect to the changes in normalized filter width (normalized with grid
spacing length) for several variables in temporal CO/Hy dataset [15].

The solid lines represent the profiles extracted directly from the data, whereas the dashed lines are the
reconstructed profiles using the PCA /MARS model. These results demonstrate the ability of the PCA/MARS
modeling approach to reconstruct the unfiltered and filtered quantities, and also indicate the strong filtering
that is occurring at A/Ax = 16. It is particularly remarkable that the OH profiles are reconstructed so well

by a two-parameter model, and that the filtered profiles are also reconstructed with reasonable accuracy.
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Figure 8: Original (solid) and reconstructed (dashed) profiles for CO2 and OH for no filtering and a filter
width of A/Az =16 and n,, = 2.

4.2.3. Source Term Parameterization

We now turn our attention to the parameterization of the PCA source terms in Eq. (3) and Eq. (5), and
seek to answer question 2 posed in section 3.1.2 and question 2 in section 4: can a function S,, = F;(n) be
found, and is S,, = F;(1)?

To ascertain the performance of the PCA-based model in representing S,, = F;(n), we first calculate S,,
and then obtain the regressing function S,, = F;(n) via MARS. Next, 1 and S are calculated directly from
the data, and compared against F;(7). Figure 9 illustrates the results of this in state space while Figure 10
shows the associated R? values. From these results, as well as those previously presented in Table 4, several

conclusions may be drawn:

1. S,, is parameterized with less accuracy than ¢;. This is not surprising given that the PCA was designed

11




ydosnuey soyany Y1 NN

ydmosnuey royiny Y1 NN

University of Utah Institutional Repository
Author Manuscript

to parameterize ¢ well, and it is well-known that Sy, is a highly nonlinear function of ¢ so that .S,
will also be a highly nonlinear function of 7.

2. The error in the approximation 5”;]"2_ = Fi(n) is bounded and well behaved with the moderate range of
filter widths considered in this study. Indeed, the structure of S';i (m) is largely unaffected by filtering

as shown in Figure 9 for 5;7“1 (1, 72), and more quantitatively in Figure 10.
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Figure 9: S, (1, 72) obtained directly from the data (points) as well as the prediction based on PCA/MARS
(surface) for various filter widths using the temporal CO/Hy dataset.