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Abstract

In this paper, we address a method to reduce the number of species equations that must be solved via
application of Principal Component Analysis (PCA). This technique provides a robust methodology to reduce
the number of species equations by identifying correlations in state-space and defining new variables that
are linear combinations of the original variables. We show that applying this technique in the context of
Large Eddy Simulation allows for a mapping between the reduced variables and the full set of variables that
is insensitive to the size of filter used. This is notable since it provides a model to map state variables to
progress variables that is a closed model.

As a linear transformation, PCA allows us to derive transport equations for the principal components,
which have source terms. These source terms must be parameterized by the reduced set of principal com-
ponents themselves. We present results from a priori studies to show the strengths and weaknesses of such
a modeling approach. Results suggest that the PCA-based model can identify manifolds that exist in state
space which are insensitive to filtering, suggesting that the model is directly applicable for use in Large Eddy
Simulation. However, the resulting source terms are not parameterized with an accuracy as high as the state
variables.

Keywords: Manifold, Data analysis, Dimensionality reduction, Principal component analysis, PCA,
Turbulent combustion modeling

1. Introduction and Background

Modeling turbulent combustion processes requires solution of a large number of equations due to the
large number of reacting species present. Furthermore, the computational cost of resolving turbulent flows
scales as Re3. Reducing the range of scales that must be resolved as well as the number of equations to be
solved is, therefore, of utmost importance to achieve simulations of practical combustion systems.

Classical turbulence theory indicates that resolution requirements scale with the Reynolds number as
Re3 for isotropic, homogeneous turbulent flow [1]. Species with large Schmidt numbers further increase the
range of scales. In addition to the separation of length scales due to turbulence, the large number of species
involved in combustion and the stiff chemistry associated with the reactions further increase the cost of direct
simulation so that it is prohibitively expensive for all but the simplest of systems.
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Typically, time averaging (RANS) or spatial filtering (LES) is used to reduce the resolution requirements.
To reduce the number of thermochemical degrees of freedom, there are two broad approaches:

• mechanism reduction, where the chemical mechanism is modified to reduce the number of species and
the stiffness, and

• state-space parameterization, where the state of the system is assumed to be parameterized by a small
number of variables which are evolved in the CFD.

The techniques proposed in this paper fall into the second category: they seek to obtain a set of variables
that parameterizes the thermochemical state, and these variables are then evolved in the CFD calculation.

There have been numerous efforts to reduce the dimensionality of a combustion process (see, e.g. [2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12] for a few). Flamelet models such as Steady Laminar Flamelet Method (SLFM) [2, 3, 4],
flamelet-generated manifold (FGM) [5, 6, 7, 9] or flamelet-prolongation of ILDM model (FPI) [11, 12, 13] are
examples of state-space parameterization model.

The remainder of this paper is organized as follows: we first identify the datasets that will be used
to evaluate the proposed model in section 2. We then review Principal Component Analysis (PCA) as a
technique to obtain a reduced parameter set (section 3), discuss how PCA can be formulated as a predictive
model (section 3.1.2), and introduce adaptive regression to enable parameterization of nonlinear functions
of the principal components (section 3.2). Section 4 then examines the model in the context of turbulent
closure and shows that the model is closed, i.e. it requires no explicit closure model for the thermochemistry.
Finally, conclusions are presented in section 6.

2. Datasets

In the discussions below we will consider two datasets:

1. A dataset from a One-Dimensional Turbulence (ODT) simulation which has been done on a temporally
evolving nonpremixed CO/H2-air jet with extinction and reignition [14, 15]. This was shown to be
a statistically accurate representation of a corresponding high-fidelity DNS dataset [15]. The calcula-
tions include detailed chemical kinetics, thermodynamics, and transport and exhibit significant local
extinction and reignition and the dataset is, therefore, a modeling challenge. The state variables are:
temperature and species mass fractions for H2, O2, O, OH, H2O, H, HO2, CO, CO2, HCO and N2.

2. Sandia TNF CH4/air Flame D [16]. This flame does not exhibit significant amounts of extinction or
reignition, and is a standard modeling target flame. The state variables are temperature and mass
fractions for O2, N2, H2, H2O, CH4, CO, CO2, OH and NO.

The Flame D dataset is “incomplete” in that it does not contain species reaction rates or a complete set
of species. The ODT/DNS dataset, on the other hand, is “complete” in that it has the full set of species,
reaction rates, etc. resolved in space and time, but relies on simulation to obtain the data, and is only as
accurate as the thermodynamic, kinetic and transport properties that were used in the simulation.

When comparing against the datasets, we report R2 values to measure the accuracy with which the model
represents the original data,

R2 = 1−
∑N

i=1(φi − φ∗
i )

2

∑N
i=1(φi − 〈φ〉)2 , (1)
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where φi is the observed value, φ∗
i is the predicted value, and 〈φ〉 is the mean value of φ. For the PCA

analysis, we consider data sampled from all space and time in the ODT dataset, and the full dataset for the
TNF data. In other words, the PCA does not vary in �x or t since we sample all �x and t to obtain the PCA.

3. Parameterization using Principal Component Analysis

3.1. Principal Component Analysis

Principal Component Analysis (PCA) provides a robust methodology to reduce the number of species
equations by identifying correlations in state-space and defining new variables (principal components) that
are linear combinations of the original variables (state variables) [17, 18, 19, 20]. Details of the formulation
have been published elsewhere [19, 20, 21, 22], and here we only review the concepts behind the PCA analysis.
The basic process of a PCA reduction is

1. Identify a new basis in the multidimensional dataset that is a rotation of the original basis. We call
this new basis η and the original data φ. The new basis is obtained via an eigenvalue decomposition of
the correlation matrix for many observations of φ for a system. At this point, we have only performed
a rotation, and no information loss has occurred.

2. Truncate the new basis and project the data onto the new basis to obtain an approximation (compres-
sion) of the data on the new basis.

3. Given an observation in the truncated basis, we can approximate the value of the original data. This
“reconstruction” is a linear reconstruction and is thus very efficient.

Steps 1 and 2 are illustrated conceptually in Figure 1.

� ��

���

φ
2

φ1

φ
2

φ1

� ��

��������	�

Figure 1: Illustration of the principal components of a hypothetical 2D data set where we retain a single
principal component.

The PCA modeling approach thus requires “training” data which should (ideally) be observations of the
a system at conditions close to where we wish to apply the model. Once ηi is known, the original state
variables (e.g. T , yj) can be easily obtained. Furthermore, the accuracy of the parameterization is obtained
a priori, and can be adjusted to obtain arbitrary accuracy by increasing the number of retained PCs. This is
illustrated in Figure 2, where the eigenvalues (relative importance of a given PC in representing the data) as
well as the percent of the variance in the original variables are shown as a function of the number of retained
eigenvalues. The eigenvalues can assist in determining how many PCs should be retained to maintain a
desired level of accuracy in the resulting model.
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Figure 2: Eigenvalue magnitude (left axis, bars) and percent variance captured (right axis, line) by retaining
the given number of components.

Table 1: Brief descriptions of the scaling options considered here.

Method Factor used to scale each state variable

STD Standard deviation

VAST Ratio of the standard deviation to the mean.

Range Maximum-minimum

Level Mean

Max Maximum

Pareto Square-root of the standard deviation

3.1.1. Effects of Scaling

Prior to applying PCA, the original data should be centered and scaled [23, 24, 19, 25, 20]. There are
many different scaling options, some of which are enumerated in Table 1. Further details regarding scaling
may be found in the aforementioned sources. For the purposes of this paper, it is sufficient to recognize that
the choice of scaling affects the accuracy of the resulting PCA parameterization. To illustrate this point,
consider the results shown in Table 2, where R2 values are shown for parameterization of the original state
variables by three PCs for various choices of scaling. The effects of scaling will become even more pronounced

Table 2: R2 values for PCA projection of state variables with different scaling methods using 2 PCs on the
temporal CO/H2 dataset.

Scaling T H2 O2 O OH H2O H HO2 CO CO2 HCO Average

VAST 0.999 0.952 1.000 0.777 0.853 0.954 0.822 0.075 0.996 0.985 0.893 0.846
STD 0.978 0.939 0.995 0.862 0.920 0.927 0.841 0.056 0.988 0.984 0.911 0.855
Level 0.944 0.947 0.978 0.906 0.951 0.877 0.824 0.037 0.976 0.965 0.933 0.849
Range 0.987 0.946 0.999 0.817 0.881 0.952 0.862 0.059 0.996 0.985 0.876 0.851
Max 0.984 0.945 0.999 0.820 0.884 0.950 0.866 0.057 0.996 0.984 0.875 0.851

Pareto 1.000 0.948 0.998 0.746 0.832 0.956 0.809 0.085 1.000 0.981 0.864 0.838

when source terms are considered in section 3.2.1. However, from Table 2, it is evident that scaling can have
an appreciable impact in the accuracy of a PCA reconstruction.

Unless explicitly stated otherwise, the results presented in this paper were obtained with VAST scaling.
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3.1.2. Transport Equations for PCs

The governing equations can be written as

∂ρφ

∂t
= −∇ · ρφ�u−∇ · �Jφ + Sφ, (2)

where φ = {1, �u, yi, T} (or any suitable energy variable in place of T ), �u is the mass-averaged velocity, �Jφ is
the diffusive flux of ρφ, and Sφ is the volumetric rate of production of ρφ. Due to the large number of species
present in combustion, Eq. (2) represents a large number of strongly coupled partial differential equations
that must be solved. The thermochemical state variables (T , p and ns−1 species mass fractions Yi) define an
(ns + 1)-dimensional state space which is widely recognized to have lower-dimensional attractive manifolds
[26].

Since PCA is a linear transformation, we may apply it directly to the subset of Eq. (2) associated with T

and yi to derive the transport equations for the PCs. The full derivation has been presented elsewhere [21],
and results in

∂ρηi
∂t

= −∇ · ρηi�u−∇ · �Jηi + Sηi . (3)

The source term for the PCs, Sηi , is a linear combination of the original (scaled) species and temperature
source terms, and must be parameterized in terms of η to close the model. It is important to note that (3)
requires that the PCA definition is independent of space and time so that commutativity with differential
operators is maintained. This can be achieved by using data from all space and time in constructing the
PCA reduction, and all analyses presented herein adhere to this principle.

In previous work where this approach was originally proposed [21], preliminary results were shown where
PCA was performed locally in mixture fraction space (i.e. conditioned on mixture fraction). Here we consider
unconditional PCA, and extend the analysis to examine: 1) the effects of scaling (see section 3.1.1) on the
source term parameterization, 2) the effects of filtering on the accuracy of the source term parameterization,
and 3) multivariate regression, which will be discussed in section 3.2.

Just as the species source terms are highly nonlinear functions of yi and T, the PC source terms (Sηi)
are highly nonlinear functions of the PCs. The original state variables are well-parameterized by the PCs
(given a sufficient number of retained PCs) because this is the objective of PCA: to identify correlations
in the original variables. However, the PCA transformation does not necessarily identify the ideal basis for
representing source terms. Furthermore, although the original state variables can be well-characterized by
linear functions of η, the same is not necessarily true for Sηi . Thus, several questions remain to be addressed
relative to a model based on PCA:

1. Can the truncated basis (see section 3.1) adequately represent the PC source terms?

2. Given that the relationship between ηi and Sηj is highly nonlinear, can an adaptive regression technique
be employed to obtain the functions

Sηj = Fj(η1, η2, . . . ηnη) (4)

for the j = 1 . . . nη retained PCs?

3. Are the functions represented by Eq. (4) sensitive to filtering? In other words, is Fj a function of the
filter width, Δ?

This paper aims to address these questions using a priori analysis of high-fidelity combustion data. We next
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Table 3: R2 values for MARS regression of state variables on principal components with different scaling
methods in PCA using 2 PCs on the temporal CO/H2 dataset [15].

Scaling T H2 O2 O OH H2O H HO2 CO CO2 HCO Average

VAST 1.000 0.996 1.000 0.996 0.994 0.997 0.989 0.937 0.999 0.998 0.998 0.991
STD 0.995 0.996 0.999 0.986 0.995 0.994 0.997 0.938 0.999 0.991 0.997 0.990
Level 0.990 0.996 0.997 0.982 0.991 0.991 0.994 0.938 0.997 0.982 0.997 0.987
Range 0.997 0.996 1.000 0.991 0.996 0.995 0.993 0.925 0.999 0.993 0.996 0.989
Max 0.996 0.996 1.000 0.989 0.995 0.995 0.994 0.924 0.999 0.992 0.996 0.989

Pareto 1.000 0.993 1.000 0.987 0.984 0.997 0.985 0.921 1.000 0.997 0.953 0.983

turn our attention to question 2 and outline a methodology to obtain Fj .

3.2. Multivariate Adaptive Nonlinear Regression

Because we have no physical insight into the appropriate basis functions to form Fj in Eq. (4), we need
an adaptive method. Multivariate Adaptive Regression Splines (MARS) [27, 28, 29] is a technique that
allows adaptive selection of basis functions to obtain nonlinear functions such as Fj . At each iteration of
the MARS algorithm, a basis function is selected that results in the largest reduction in the regression error.
The iterative procedure is repeated until convergence is achieved. To avoid over-fitting the data, we choose
lower-order basis functions (typically quadratic or cubic at most) and subdivide the high-dimensional space
into only a few sub-spaces to fit the data (5 sub-spaces were used for the results presented here).

Table 3 shows the results of applying MARS to map the state variables onto the PCs. Comparing Table 3
to Table 2, where the state variables were mapped onto the PCs directly via the (linear) PCA transformation,
we note an increase in the accuracy of all state variables (but particularly minor species and most notably
HO2), indicating a nonlinear relationship between the state variables and PCs. This nonlinear relationship
has also been observed elsewhere [19, 20, 22], but the MARS approach allows us to capture the nonlinearity
between η and φ quite well. Figure 3 shows the OH mass fraction, YOH projected into the two-dimensional
space defined by the first two principal components, (η1, η2) . Also shown is a reconstruction of YOH using the
(linear) PCA reconstruction (Figure 3a) and the nonlinear MARS reconstruction (Figure 3b). This clearly
illustrates the advantages of the nonlinear reconstruction.

3.2.1. MARS for Parameterizing PC Source Terms

In contrast to the state variables themselves, where the PCA defines a linear relationship with the PCs,
the PC source terms have no linear relationship to the PCs, and adaptive regression is the only plausible
method to obtain Fj in Eq. (4). Table 4 shows the R2 values for the regression of the source terms for
various scaling approaches. Notably, that there is a much more significant influence of the choice of scaling
on the accuracy with which the PC source terms can be represented than for the state variables (shown in
Tables 2 and 3).

With regard to question 1 posed in section 3.1.2 (can the Sηi be parameterized by η?) we observe that
the source terms have more error in their representation than the original state variables. This suggests that
the basis selected by the PCA, which seeks to identify correlations among the state variables, may not be
optimal for the representation of the PC source terms. Therefore, other methods that identify a basis that
simultaneously optimizes parameterization of both the state variables and the PC source terms should be
explored. Nevertheless, as the number of retained PCs increases, the accuracy of the Sηi parameterization
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(a) PCA (linear) reconstruction of YOH in (η1, η2)-space.
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(b) MARS (nonlinear) reconstruction of YOH in (η1, η2)-
space.

Figure 3: Comparison of PCA and MARS reconstructions for OH mass fraction for a two-dimensional model
based on principal components η1 and η2. VAST scaling was used.

Table 4: R2 values for MARS regression of source terms on principal components with different scaling
methods in PCA using 3 PCs on the temporal CO/H2 dataset [15].

Number
of PCs

1 2 3

Scaling
method

Sη1 Sη1 Sη2 Average Sη1 Sη2 Sη3 Average

VAST 0.838 0.949 0.929 0.939 0.968 0.938 0.223 0.710
STD 0.041 0.276 0.491 0.383 0.349 0.535 0.183 0.356
Level 0.073 0.331 0.509 0.420 0.437 0.600 0.178 0.405
Range 0.369 0.603 0.551 0.577 0.698 0.661 0.291 0.550
Max 0.407 0.669 0.619 0.644 0.751 0.735 0.253 0.580

Pareto 0.877 0.960 0.956 0.958 0.966 0.963 0.973 0.967

also increases. We should note that the definition for Sηi remains unchanged as nη increases, i.e. Sη1 for
nη = 1 is defined in the same manner as Sη1 for nη = 3. However, their definitions are different for different
scaling methods.

4. Filtering & Turbulent Closure

The techniques and results presented in section 3 were discussed in the context of fully-resolved quantities.
For filtered/averaged quantities, several additional issues arise:

1. How sensitive is the PCA mapping to filtering? In other words, is the PCA mapping itself affected by
filtering?

2. Are the source term functions valid for filtered quantities, i.e., is Fi(η1, η2, . . . ηn) = Fi(η̄1, η̄2, . . . η̄n)?

We consider each of these issues in the following sections.

4.1. PCA Sensitivity to Filtering

To determine the sensitivity of PCA to filtering, we examine computational data from a fully resolved
CO/H2 jet flame (see section 2). The data is filtered and a PCA is applied to the filtered variables. This
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is performed using a top-hat filter for several filter widths to determine if/how the PCA structure itself is
affected by filtering. Figure 4 shows the temperature field extracted along a line-of-sight and shows the effect
of the filter on the temperature profile. Δx is the grid spacing of the original data set, whereas Δ refers
to the filter width so that Δ/Δx = 1 implies no filtering. Figure 4 indicates that the largest filter width
employed here (Δ/Δx = 32) has a substantial effect on the temperature field.
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Figure 4: Effect of filtering on temperature profile for a specific time and realization from the temporal
CO/H2 dataset [15].

Figure 5 shows the relative size of the kinetic energy fluctuations, K−K̄
K̄

= K′
K̄

, at filter widths of Δ/Δx =

4 and 16. Note that Δ/Δx = 16 results in a significant fraction of the kinetic being unresolved, and
substantiates the observation from Figure 4 that Δ/Δx = 16 is an appreciable filter width. Figure 6 shows

5 6 7 8
x 10−3

−1
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1
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K
′
/
K̄

Δ/Δx=4
Δ/Δx=16

Figure 5: Instantaneous profile of K−K̄
K̄

= K′
K̄

indicating the magnitude of the unresolved kinetic energy at
Δ/Δx = 4 and 16.

the largest five contributions to the first three eigenvectors, which define the rotated basis or the principal
components. Consider the first eigenvector. The results indicate that the definition of this eigenvector/PC is
almost entirely unaffected by filtering. The same results are observed for the second and third eigenvectors.
This shows that the PCA reduction itself is insensitive to filtering. The remaining eigenvectors, which are
associated with exponentially diminishing eigenvalues (see Figure 2), exhibit the same behavior and are not
shown for brevity. These results are of significant importance, since the PCA reduction plays a key role in
the proposed modeling strategy outlined in section 3.

The results in Figure 6 suggest that, over a substantial range of filter widths, the structure of a PCA
remains unchanged. This is an important result since it implies that the definition of a (linear) manifold for
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Figure 6: Changes in largest (most important) components of the first three eigenvectors with respect to
changes in normalized filter width in temporal CO/H2 dataset [15].

the state variables is insensitive to filtering.

4.2. Turbulent Closure

We now turn our attention to the question of whether a mapping φ = G(η) is valid for the aver-
aged/filtered quantities, i.e. φ̄

?
= G(η̄). This is particularly important for the source terms that appear

in the averaged/filtered PC transport equation,

∂ρ̄η̃

∂t
= −∇ · ρ̄η̃�̃u−∇ · �JT

η + S̄η, (5)

where η̃ is the Favre-averaged/filtered value of η and �JT
φ is the turbulent diffusive flux.

In traditional state-space parameterization approaches, one defines the parameterization variables and
then the mapping between the state variables φ and reaction variables η, e.g. φ = G(η). Then the joint
probability density function (PDF) of all η, p(η), is used to obtain mean/filtered values of φ,

φ̄ =

ˆ
φ(η) p(η) dη.

The problem then becomes how to approximate p(η). If a function

φ = G(η) (6)

exists so that
φ̄ = G(η̄), (7)

then there is no turbulent closure problem and the joint PDF of all η is not required.

4.2.1. Ensemble Averaging

We first consider ensemble-averaged data from Flame D (see section 2). Ensemble averages are formed
by number-averaging all samples from a given spatial location. Table 5 shows results for all of the species
available for flame D. The results show a PCA reconstruction (linear) for two and three retained PCs as
well as a (nonlinear) MARS reconstruction based on the same two and three PCs. The “original data”
refer to the data processed directly from the flame D dataset where PCA was applied to the entire dataset.
PCA and MARS regressions were performed to obtain φ = G(η) and the resulting R2 values reported. The
“ensemble data” used the PCA and MARS regression obtained from the original data and applied it to the
ensemble-averaged values for the PCs. Specifically, 1) PCA was applied to the original dataset, 2) MARS was
performed to obtain G(η), 3) using the PCA obtained in step 1, the PCs were computed from the original
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data and then ensemble-averaged to obtain η̄, 4) φ̄∗ = G(η̄) was calculated and compared with the directly
averaged values of φ̄ to obtain an R2 value.

Table 5: R2 values for different variables in flame D showing that no closure is required to reconstruct the
original variables, φ from the principal components, η.

Approach Data Type T O2 CO2 NO H2O N2 H2 CH4 CO OH

PCA, nη = 2
Original 0.990 0.981 0.966 0.860 0.979 1.000 0.385 0.914 0.439 0.495
Ensemble 0.995 0.995 0.987 0.899 0.990 1.000 0.539 0.987 0.611 0.687

PCA, nη = 3
Original 0.991 0.991 0.988 0.911 0.989 1.000 0.944 0.916 0.890 0.599
Ensemble 0.996 0.998 0.998 0.939 0.998 1.000 0.982 0.990 0.972 0.650

MARS, nη = 2
Original 0.997 0.991 0.976 0.926 0.989 1.000 0.625 0.941 0.666 0.650
Ensemble 0.998 0.999 0.995 0.950 0.999 1.000 0.917 0.992 0.933 0.744

MARS, nη = 3
Original 0.997 0.997 0.991 0.974 0.993 1.000 0.938 0.941 0.904 0.745
Ensemble 0.998 0.999 0.999 0.899 0.999 1.000 0.971 0.993 0.979 0.755

There are several noteworthy points relative to Table 5:

1. As nη increases from 2 to 3, the R2 value uniformly increases, indicating the increase of accuracy of a
PCA-based model as the number of retained components increases. This has been discussed in detail
elsewhere [19, 20, 21, 22].

2. The MARS representation of the data is more accurate than the corresponding direct PCA reconstruc-
tion, indicating that there is an underlying nonlinear relationship between the φ and η that the linear
PCA-based reconstruction cannot accurately capture.

3. The ensemble-averaged data shows R2 values that are nearly always higher than their corresponding
original data values. This suggests that the PCA based models φ = G(η) do not incur any additional
error when evaluated using mean values, φ̄∗ = G(η̄). This is true for the linear reconstruction as well
as the nonlinear (MARS) reconstruction.

4.2.2. Spatial Filtering

We next consider spatial filtering with the CO/H2 dataset discussed in section 2. Figure 4 illustrates the
effect of different filter lengths on an extracted line-of-sight represented by the ODT data for the temporal
CO/H2 dataset. For this particular dataset, a filter width of Δ/Δx = 16 induces substantial filtering on the
data.

First, a PCA was performed on the fully resolved data and either nη = 2 or nη = 3 PCs were retained.
This provides a linear mapping between the PCs (η) and the state variables (φ). Using this mapping, we then
compute η̄ directly from the dataset and then use the mapping to approximate φ̄

∗, which is then compared to
φ̄ calculated directly from the dataset. These results are shown in Figure 7. Finally, a MARS regression was
performed to map the original variables onto the PCs at the fully resolved scale, providing φi = Gi(η). Then,
η̄ was calculated directly from the data and φ̄∗

i was approximated as φ̄∗
i = Gi(η̄), and this was compared

to the value of φ̄i calculated directly from the dataset. The profiles in Figure 7 show these results. From
Figure 7, it is apparent that the error is well-controlled as the filter width is increased, indicating that the
PCA-based models require no explicit closure. This is consistent with the results for the ensemble-averaged
analysis performed in section 4.2.1.

Figure 8 shows extracted spatial profiles (over a small portion of the domain corresponding to an active
flame region) for CO2 and OH mass fractions for two different filter widths (Δ/Δx = 1 and 16) and nη = 2.
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Figure 7: R2 value changes with respect to the changes in normalized filter width (normalized with grid
spacing length) for several variables in temporal CO/H2 dataset [15].

The solid lines represent the profiles extracted directly from the data, whereas the dashed lines are the
reconstructed profiles using the PCA/MARS model. These results demonstrate the ability of the PCA/MARS
modeling approach to reconstruct the unfiltered and filtered quantities, and also indicate the strong filtering
that is occurring at Δ/Δx = 16. It is particularly remarkable that the OH profiles are reconstructed so well
by a two-parameter model, and that the filtered profiles are also reconstructed with reasonable accuracy.
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Figure 8: Original (solid) and reconstructed (dashed) profiles for CO2 and OH for no filtering and a filter
width of Δ/Δx = 16 and nη = 2.

4.2.3. Source Term Parameterization

We now turn our attention to the parameterization of the PCA source terms in Eq. (3) and Eq. (5), and
seek to answer question 2 posed in section 3.1.2 and question 2 in section 4: can a function Sηi = Fi(η) be
found, and is S̄ηi = Fi(η̄)?

To ascertain the performance of the PCA-based model in representing S̄ηi = Fi(η̄), we first calculate Sηi

and then obtain the regressing function Sηi = Fi(η) via MARS. Next, η̄ and S̄ηi are calculated directly from
the data, and compared against Fi(η̄). Figure 9 illustrates the results of this in state space while Figure 10
shows the associated R2 values. From these results, as well as those previously presented in Table 4, several
conclusions may be drawn:

1. Sηi is parameterized with less accuracy than φi. This is not surprising given that the PCA was designed
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to parameterize φ well, and it is well-known that Sφi
is a highly nonlinear function of φ so that Sηi

will also be a highly nonlinear function of η.

2. The error in the approximation S̄∗
ηi = Fi(η̄) is bounded and well behaved with the moderate range of

filter widths considered in this study. Indeed, the structure of S̄∗
ηi(η) is largely unaffected by filtering

as shown in Figure 9 for S̄∗
η1(η̄1, η̄2), and more quantitatively in Figure 10.

(a) Δ
Δx

= 1 (b) Δ
Δx

= 4

(c) Δ
Δx

= 8 (d) Δ
Δx

= 16

Figure 9: S̄η1(η̄1, η̄2) obtained directly from the data (points) as well as the prediction based on PCA/MARS
(surface) for various filter widths using the temporal CO/H2 dataset. Figure 10 shows the corresponding R2

values.

Figure 11 shows extracted spatial profiles for Sη1 and Sη2 for a model with nη = 2 and filter widths of
(Δ/Δx = 1 and 16). These results were obtained using Pareto scaling, as this provided the best reconstruction
of the source terms as shown in Table 4. The solid lines represent the profiles extracted directly from the
data, whereas the dashed lines are the reconstructed profiles using the PCA/MARS model. These results
correspond to the R2 values reported in Figure 10 at Δ/Δx = 16. While the general trend for Sη is captured
in both cases, it is clear that the detailed profiles for Sη are not captured fully, and this is also reflected in
the relatively low R2 values shown in Table 4.

Another interesting feature of Figure 11 is the structure of Sη1 and Sη2 are very similar, although their
magnitudes are different. Figure 12 shows the weights that define the first three PCs using Pareto scaling.
The first PC (η1) is defined almost exclusively by temperature (this is commonly the case when Pareto scaling
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Figure 10: R2 value changes with respect to the changes in normalized filter width, Δ/Δx for the source
term of the first and the second PCs, in temporal CO/H2 dataset [15].
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Figure 11: Original (solid) and reconstructed (dashed) profiles for Sη1 and Sη2 for no filtering and a filter
width of Δ/Δx = 16 and nη = 2.

is used). The second PC is defined primarily by the reactants CO, H2 and O2. Therefore, Sη1 ≈ ST while
Sη2 is primarily comprised of SCO, SH2 and SO2 . Since these reaction rates are all spatially correlated, it
is not surprising that Sη1 and Sη2 are also highly correlated spatially. As expected, the profiles for η1 and
η2 are quite different from one another since η1 follows the temperature profile (which peaks in the reaction
zone) whereas η2 follows the reactants (which are strongly depleted in the reaction zone). It is important
to note that a different choice of scaling (resulting in a different PC structure) will have a major influence
on the resulting source term profiles. This needs to be investigated further and will be the subject of future
research.

4.3. Comparison with SLFM

To provide a reference point with a very common combustion modeling approach, we compare the SLFM
model with the PCA model in their respective abilities to reproduce the CO/H2 dataset described in section
2. At the outset, we note that the SLFM model (for the purposes of this paper) is parameterized by three
parameters: the averaged/filtered mixture fraction (Z̄), its variance (σ′2

Z ), and the scalar dissipation rate (χ).
The mapping φ = G(Z, σ′2

Z , χ) is obtained through solving the flamelet equations [2] and convoluting them
with a β-PDF for the mixture fraction. Formally, this implies that Z and χ are statistically independent and

13

U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript



T H2 O2 O OH H2O H HO2 CO CO2HCO
−1

−0.5

0

0.5

1

W
ei

gh
ts

1st EigVec
2nd EigVec
3rd EigVec

Figure 12: Weights for the first three eigenvectors (which define the first three PCs) for Pareto scaling.

that the PDF of the scalar dissipation rate is approximated as δ(χ̄). This is a common modeling assumption,
and may be justified in part by observations in previous DNS studies that suggest errors in φ(Z, χ) overshadow
errors in approximating p(χ) = δ(χ̄) [8].

Figure 13 shows parity plots and R2 values comparing the observed and reconstructed values of T and
OH for the SLFM and PCA/MARS models at the fully resolved scale (i.e. no filtering). In this case, the
PCA/MARS model employed two PCs, consistent with the number of parameters in the SLFM model (Z, χ).
While one would not expect the SLFM model to perform well in this case since extinction and reignition are
present, this does demonstrate the ability of the PCA/MARS model to identify and parameterize the state
space effectively.

Figure 14 shows realizations of the original and reconstructed data for the PCA/MARS and SLFM models
in state space. Here it is much more clear that the PCA/MARS identifies a manifold in state space whereas
the SLFM model does not. Again, while the SLFM model is not expected to perform well in this situation,
the comparison is illustrative of the differences between the models with same number of parameters.

When averaging/filtering is applied, the mixture fraction variance is typically introduced as an additional
parameter, with a presumed PDF for the mixture fraction parameterized in terms of Z̄ and σ′2

Z so that the
state variables are obtained via

φ =

ˆ
φ(Z, χ̄) p(Z; Z̄, σ′2

Z ) dZ.

For comparison purposes, we explore the performance of several models, summarized in Table 6. Figure 15
shows the performance of these models for several state variables as a function of the filter width. There are
several important observations to be made:

• The SLFM model error is bounded if the β-PDF model is also used, but the error increases (indicated
by the decrease of R2 with increasing Δ) if no closure is made.

• The PCA based models demonstrate no sensitivity to filtering, requiring no explicit closure.

• The two-parameter PCA model is more accurate than the three parameter SLFM/PDF model.

While SLFM is not expected to accurately capture the thermochemical state of this system that involves
extinction and reignition, these results illustrate the degree of accuracy that can be obtained using PCA to
identify parameterizing variables for use in defining models, and illustrates that proper selection of parame-
terizing variables can lead to significant improvements in model accuracy even for a relatively small number
parameters, nη.
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(a) MARS with nη=2 (R2=1.000) (b) MARS with nη=2 (R2=0.994)

(c) SLFM (R2=0.456) (d) SLFM (R2=0.055)

Figure 13: Parity plots for temperature (left) and OH (right) reconstructions using PCA/MARS (top row)
and SLFM (bottom row).
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(a) (b)

(c) (d)

Figure 14: Reconstruction of temperature (left) and OH mass fraction (right) for a 2D PCA/MARS model
(top) and the SLFM model (bottom) for the temporal ODT data set [15]. The R2 value of these reconstruc-
tions are reported on each plot as well.
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Table 6: Summary of models compared in Figure 15.

Model Parameters Comments

PCA, nη = 2 (η1, η2) Linear reconstruction using two PCs

PCA, nη = 3 (η1, η2, η3) Linear reconstruction using three PCs

PCA/MARS, nη = 2 (η1, η2) Nonlinear reconstruction using two PCs

PCA/MARS, nη = 3 (η1, η2, η3) Nonlinear reconstruction using three PCs

SLFM
(
Z̄, χ̄

)
Reconstruction using SLFM without closure

SLFM/PDF
(
Z̄, χ̄, σ′2

Z

)
Reconstruction using SLFM with a presumed PDF on Z
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Figure 15: R2 value changes with respect to the changes in normalized filter width (Δ/Δx) for several state
variables comparing PCA and MARS results with SLFM and SLFM-β-PDF results for the temporal CO/H2

dataset. See Table 6 for more information.

5. Considerations for Model Generation

Using PCA as the basis for combustion modeling is still a new concept, and there are several outstanding
issues regarding its application.

In traditional combustion modeling approaches, a canonical reactor configuration is adopted and solved
parametrically to obtain a mapping between the state variables φ and the parameterizing variables η. Such
models are, therefore, inherently limited by the assumptions inherent in the canonical reactor. Although
PCA can be applied to canonical systems such as the flamelet equations [2], we favor using models such as
ODT that allow for a wide range of coupling in length and time scales and provide statistical sampling of
the state over a wider range of applicable conditions than traditional canonical reactors. PCA is particularly
well-suited for application to such systems because it allows “adaptive” selection of the optimal parameterizing
variables. However, it remains to be seen how sensitive the PCA is to the chosen canonical reactor. This
may not be critically important in the case of using ODT as the model since it can provide reasonable results
for combustion systems [15].

Additionally, the sampling density for the data used to obtain the PCA may be an important considera-
tion. For example, the PCA may be influenced by the over-representation of fuel and oxidizer and relatively
small number of observations from the flame regions. Identifying biasing from over/under-sampling is not a
trivial task and future work will seek to address this issue.
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6. Conclusions & Future Work

This paper discusses a novel state-space parameterization method. It belongs to the same family as other
parameterization methods such as equilibrium, steady laminar flamelet (SLFM) [2], flamelet-prolongation
of ILDM [12, 11], etc., but extracts the parameterization directly from data rather than presuming a func-
tional form for the parameterization. We use PCA to identify the model parameters and then MARS (a
multidimensional adaptive regression technique) to obtain the functional form between the progress variables
(principal components), η and the state variables, φ. For the jet flame considered in this paper, we observe
that the structure (definition) of progress variables thus identified is independent of spatial filtering, and that
the functional dependency between η and φ is likewise independent of filter width. The same observations
hold for Flame D [16] in the context of Reynolds-averaging rather than filtering. To the extent that this is
a universal feature of PCA-based models, these results imply that no explicit closure model is required for
the thermochemistry. Further investigation into this observation, particularly using data at higher Reynolds
numbers, is certainly warranted to corroborate these observations.

The “principal components” that form the independent variables to which the state variables are mapped,
are not conserved scalars and their source terms, Sη, must be parameterized as functions of η. We have
explored using MARS to achieve this parameterization, and found reasonably accurate mappings. However,
further work is required here to achieve mappings that are sufficiently accurate for predictive modeling. A
significant finding presented here is that the functional form is independent of filter width so that given
Sηi = Fi(η), S̄ηi = Fi(η̄).

We have also considered the effects of scaling (preprocessing the data) on the accuracy of the resulting
PCA-based models and have shown that there can be significant influence, particularly on the accuracy with
which PC source terms, Sηi , can be represented.

For a point of reference, we have compared the PCA-based models with SLFM and demonstrated that
the PCA model is able to, with the same number of parameters, achieve significantly higher accuracy than
SLFM.

Future work will focus on improving the accuracy with which the PCA transformation can parameterize
source terms and consider a posteriori analysis of the modeling approach. Also, it remains to be seen how
universal a given PCA definition is. There are several factors that influence this, including sampling density
in state space, the dataset from which the PCA is obtained, etc. These important issues will be considered
in future work.
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