
Hierarchical Schedulers, Performance Guarantees, and Resource Management

file:///C|/Users/u0055039/Desktop/Regehr%20item/Hierarchical%20Schedulers.htm[6/27/2012 10:38:24 AM]

Hierarchical Schedulers, Performance Guarantees, and Resource
Management

John Regehr and Jack Stankovic
Department of Computer Science

Thornton Hall, University of Virginia
Charlottesville, VA 22903

{regehr,stankovic}@cs.virginia.edu

Introduction

An attractive approach to scheduling applications with diverse CPU scheduling requirements is to
use different schedulers for different applications. For example: real-time schedulers allow applications
to perform computations before deadlines, time-sharing schedulers provide high throughput for
compute-bound processes and fast response time for interactive applications, and gang schedulers and
cluster coschedulers permit tightly-coupled parallel applications to achieve high performance in the
presence of multiprogramming. Furthermore, individual members of these broad classes of algorithms
make tradeoffs that may or may not be appropriate for a given situation. In order to take advantage of
these diverse algorithms, we permit schedulers to be arranged in a hierarchy - a root scheduler gives
CPU time to the schedulers below it in the hierarchy and so on until an application thread is scheduled
by a leaf scheduler. This architecture has a number of advantages:

The scheduling hierarchy can be tailored to the set of applications that is running at any given
time.
Applications or groups of applications can be flexibly isolated from each other. For example, a
proportional-share scheduler near top the of the hierarchy can limit applications, users, or
accounting domains to some fraction of the CPU regardless of the number of threads they are
running.
Schedulers can be designed modularly and narrowly focused in order to do a good job scheduling
a particular type of application.

That was the "motherhood and apple pie" introduction to hierarchical scheduling. The following two
sections discuss our improvements to previous hierarchical scheduling work such as CPU Inheritance
Scheduling by Ford and Susarla (OSDI '96) and A Hierarchical CPU Scheduler for Multimedia
Operating Systems by Goyal, Guo, and Vin (also OSDI '96).

Performance Guarantees

Clearly, there are hierarchical arrangements of schedulers that don't make sense because they
prevent schedulers from providing the scheduling properties that they are designed to provide. For
example, arranging for a real-time scheduler to be scheduled by a time-sharing scheduler - since the
time-sharing scheduler guarantees no minimum rate of progress to the threads (or schedulers) that it
schedules, the real-time scheduler would have no basis for assuming that any thread it schedules would
be able to make its deadlines. We employ guarantees, (potentially revocable) contracts for a particular
kind of scheduling behavior, to help compose schedulers. For example, if a rate-monotonic scheduler is
guaranteed (by another scheduler) to receive 5ms of CPU time every 20ms, then it will be able to
schedule some kinds of tasks if their periods are also longer than 20ms. Obviously, a scheduler can
provide a guarantee no stronger than the one it receives. We say that an arrangement of schedulers is
hierarchically correct if all schedulers in the hierarchy can provide their guarantees—maintaining this
property is a key issue in hierarchical scheduling.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hierarchical Schedulers, Performance Guarantees, and Resource Management

file:///C|/Users/u0055039/Desktop/Regehr%20item/Hierarchical%20Schedulers.htm[6/27/2012 10:38:24 AM]

A key issue in resource management is the tension between sharing and isolation. An application is
isolated from other apps when, for example, it is given a guarantee of a minimum execution rate and
granularity. Once cycles are guaranteed to some application, the schedulers are no longer free to assign
them, on the fly, to some other application. In this sense, making a guarantee puts a restriction on
schedulers’ future decision making. Guarantees can be weakened when applications are known to
gracefully degrade, or when they support renegotiation of guarantees in order to admit more important
tasks.

Resource Management

Our second contribution to hierarchical scheduling is a resource manager, a generalized admission
control system that provides a level of indirection between applications and the scheduling hierarchy.
The resource manager is responsible for maintaining hierarchical correctness, for loading new schedulers
into the hierarchy when needed, for mapping threads requesting a special kind of scheduling to an
appropriate scheduler, and for enforcing user-specified policies about the allocation of CPU time. We
enforce policies in the resource manger in order to keep them out of the schedulers themselves – to
separate mechanism from policy. Policies will take the form of a rule attached to a scheduler, a user, or
an application; the resource manger checks these rules before attaching a thread to a particular
scheduler. For example, rules could:

Prevent any user except the one who "owns" a particular scheduler from attaching threads or
schedulers to it.
Specify that an application can adapt to various conditions; e.g. an MPEG player might support
several resolutions that each require a different amount of processor time.
Specify application importance. If a home computer is being used to implement a voice-mail
system, the user could indicate that voice mail is more important than playing games. Then, an
incoming call will cause the resource manager to revoke the guarantee given to the user's Quake
process in order to answer the call.

Status

We are currently beginning to implement hierarchical scheduling with performance guarantees and
resource management in a release candidate of Windows 2000.

Hierarchical Schedulers,
Performance Guarantees, and

Resource Management

John Regehr and Jack Stankovic
University of Virginia

The Problem
• People do all sorts of things using general-

purpose OSs
– Convenience, compatibility, commodity

• CPU schedulers aren’t general enough to
support the apps well
– Time-sharing
– Hard/soft real-time
– Server
– Parallel

A Solution: Hierarchical Scheduling

• Applications with different scheduling
requirements get different schedulers

• Top-level scheduler arbitrates among lower-
level schedulers

• Enables:
– Flexible composition of modular schedulers
– Hierarchical load isolation (easy)
– Flexible sharing (not as easy)

Performance Guarantees
• Schedulers require / provide guarantees

– Contract for type of scheduling provided; e.g.
• 5ms every 33ms
• 200ms before deadline
• 70% of CPU
• proportional share of available CPU

• Used to reason about hierarchical schedulers

Composability

• What does it mean when schedulers stack?
– Are they all going to work?

• Lots of combinations won’t work
– Non-RT / RT

• Within RT, some combinations work
– Depends on applications as well as schedulers

The Resource Manager
• Enforces user-specified policies attached to

schedulers, users, applications; e.g.
– Only user X can add threads to scheduler Y
– DVD player is adaptable
– Answering phone is more important than

playing Quake
• Also:

– Maps threads to schedulers
– Loads new schedulers
– Ensures composability

Status

• Beginning to implement in Windows 2000

• Let’s talk….

	Hierarchical Schedulers
	Local Disk
	Hierarchical Schedulers, Performance Guarantees, and Resource Management

	Hierarchical slides

