
Issues in Using Commodity Operating
Systems for Time-Dependent Tasks:

Experiences from a Study of Windows NT

Michael B. Jones
John Regehr

July, 1998

Technical Report
MSR-TR-98-29

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Paper published in Proceedings of the Eighth International Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 98),

Cambridge, England, pages 107-110, July 1998.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issues in Using Commodity Operating Systems for Time -Dependent Tasks:
Experiences from a Study of Windows NT

Michael B. Jones
Microsoft Research, Microsoft Corporation

One Microsoft Way, Building 9s/1
Redmond, WA 98052, USA

mbj@microsoft.com
http://research.microsoft.com/~mbj/

John Regehr*

Department of Computer Science, Thornton Hall
University of Virginia

Charlottesville, VA 22903-2242, USA

regehr@virginia.edu
http://www.cs.virginia.edu/~jdr8d/

Abstract
This paper presents a snapshot of early results from a

study of Windows NT aimed at understanding and
improving its limitations when used for time-dependent
tasks, such as those that arise for audio and video
processing.

 Clearly there are time scales for which it can
achieve effectively perfect reliability, such as the one-
second deadlines present in the Tiger Video Filesystem.
Other time scales, such as reliable sub-millisecond
scheduling of periodic tasks in user space, are clearly out
of reach. Yet, there is an interesting middle ground
between these time scales in which deadlines may be met,
but will not always be. This study focuses on system and
application behaviors in this region with the short-term
goals of understanding and improving the real-time
responsiveness of applications using Windows NT 5.0 and
a longer-term goal of prototyping and recommending
possible scheduling and resource management
enhancements to future Microsoft systems products.

Finally, while this paper primarily contains examples
and results from Windows NT, we believe that the kinds of
limitations and artifacts identified may also apply to other
commodity systems such as the many UNIX variants.
Indeed, this paper is primarily intended to provide a
starting point for fruitful discussions along these lines at
the workshop and not as a record of completed work.

1. Introduction
Windows NT and other commonly available general-

purpose operating systems such as Solaris and Linux are
increasingly being used to run time-dependent tasks such
as those that arise for audio and video processing, despite
good arguments against doing so [Nieh et al. 93]. This is
the case even though many such systems, and Windows
NT [Solomon 98] in particular, were designed primarily
to maximize aggregate throughput and to achieve
approximately fair sharing of resources rather than to
provide low-latency response to events, predictable time-
based scheduling, or explicit resource allocation
mechanisms. Nonetheless, since these systems are being
used for time-dependent tasks, it is important to

* John Regehr is a research intern at Microsoft Research
during the summer of 1998.

understand both their capabilities and limitations for such
applications.

We are in the early stages of a study of Windows NT
aimed at understanding and improving its limitations
when used for time-dependent tasks. Clearly there are
time scales for which it can achieve effectively perfect
reliability, such as for the one-second deadlines present in
the Tiger Video Filesystem [Bolosky et al. 97]. Other
time scales, such as reliable sub-millisecond scheduling of
periodic tasks, are clearly out of reach without resorting to
special tricks. But there is an interesting range in the
middle where tasks can often be executed, but not always.
Many practical multimedia activities, such as fine-grained
real-time audio synthesis, fall into this middle range.

This paper is intended to serve as a catalyst for
discussions on the effectiveness of and problems with
using commodity operating systems for time-dependent
tasks. While it does provide a snapshot of some of the
early findings from our study of Windows NT, it is not a
record of completed work. Rather, it is intended to
provide some concrete starting points for the discussion at
the workshop based on real data.

2. Windows NT Background
Windows NT contains few of the systems facilities

and design features that are commonly accepted as
providing effective underpinnings for time-dependent
applications. Features not found include deadline-based
scheduling, explicit CPU or resource management
[Mercer et al. 94, Nieh & Lam 97, Jones et al. 97],
priority inheritance, fine-granularity clock and timer
services [Jones et al. 96], and bounded response time for
essential system services. Features that it does have
include high-priority real-time thread priorities, interrupt
routines that typically re-enable interrupts very quickly,
and periodic callback routines [Solomon 98].

Windows NT schedules threads based on their
priority and processor affinity. The priorities are divided
into three ranges: real-time (16-31), normal (1-15), and
idle (0). Priorities of threads in the normal range are
boosted following I/O completions and decreased when
the thread’s time quantum runs out, as is often done in
time-sharing systems. The system never adjusts the
priorities of threads in the real-time range. The scheduler
essentially selects the first thread of the highest runnable

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

2

priority and runs it for its quantum, then places it at the
tail of its priority list. For more details on processor
affinity and related issues, see [Solomon 98].

Under Windows NT, not all CPU time is controlled
by the scheduler. Of course, time spent in interrupt
handling is unscheduled, although the system is designed
to minimize hardware interrupt latencies by doing as little
work as possible at interrupt level. Instead, much driver-
related work occurs in Deferred Procedure Calls (DPCs).
DPCs are routines executed within the kernel in no
particular thread context in response to queued requests
for their execution. For example, DPCs check the timer
queues for expired timers and process the completion of
I/O requests. Hardware interrupt latency is reduced by
having interrupt handlers queue DPCs to finish the work
associated with them. All queued DPCs are executed
whenever a thread is selected for execution just prior to
starting the selected thread. While good for interrupt
latencies, DPCs can be bad for thread scheduling
latencies, as they can potentially result in an unbounded
amount of work running before a thread is scheduled.

To enhance system portability, Windows NT uses a
loadable Hardware Abstraction Layer (HAL) module that
isolates the kernel and drivers from low-level hardware
details such as I/O interfaces, interrupt controllers, and
multiprocessor communication mechanisms. The system
clock is one service provided by each HAL. The HAL
generates periodic clock interrupts for the kernel. The
HAL interface contains no means of requesting a single
interrupt at a particular time.

The Win32 interface contains a facility called
Multimedia Timers supporting periodic execution of
application code at a frequency specified by the
application. The period is specified in 1ms increments.
By default, the Windows NT kernel receives a clock
interrupt every 10 to 15ms; to permit more accurate
timing, multimedia timers internally use a Windows NT
system call that allows the timer interrupt frequency to be
adjusted within the range permitted by the HAL (typically
1-15ms).

Multimedia timers are implemented by spawning a
high-priority thread that sets a kernel timer and then
blocks. Upon awakening the thread executes a callback
routine provided by the user, schedules its next wakeup,
and then goes back to sleep.

3. Baseline Performance Measurements
Given that Multimedia Timers are the primary

mechanism available for applications to request timely
execution of code, it is important for time-sensitive
applications to understand how well it works in practice.
We designed a set of experiments to determine this.

We wrote a test application that sets the clock
frequency to the smallest period supported by the HAL
(~1ms for all HALs used in these tests) and requests
callbacks every 1ms. Each callback just records the
Pentium cycle counter value at which it occurred in

pinned memory. The application runs at the highest real-
time priority. Note that the application is blocked waiting
for a callback nearly 100% of the time, and so imposes no
significant load on the system. The core of the
application is as follows:

int main(…) {
timeGetDevCaps(&TimeCap, …);
timeBeginPeriod(TimeCap.wPeriodMin);

// Set clock period to min supported

TimerID = timeSetEvent(
// Start periodic callback
1, // period (in milliseconds)
0, // resolution (0 = maximum)
CallBack, // callback function
0, // no user data
TIME_PERIODIC); // periodic timer

}
void Callback(…) {

TimeStamp [i++] = ReadTimeStamp();
// Record Pentium cycle counter value

}

On an ideal computer system dedicated to this program
the callbacks would occur exactly 1ms apart. Actual runs
allow us to determine how close real versions of
Windows NT running on real hardware come to this.

Performance measurements were made on two
different machines:
• a Pentium Pro 200MHz uniprocessor, with both an

Intel EtherExpress 16 ISA Ethernet card and a DEC
21140 DC21x4-based PCI Fast Ethernet card,
running uniprocessor kernels, using the standard
uniprocessor PC HAL, HALX86.

• a Pentium 2 333MHz uniprocessor (but with a dual-
processor motherboard) with an Intel EtherExpress
Pro PCI Ethernet card, running multiprocessor
kernels, using the standard multiprocessor PC HAL,
HALMPS.

NT4 measurements were made under Windows NT 4.0,
Service Pack 3. NT5 measurements were made under
Windows NT 5.0, build 1805 (a developer build between
Beta 1 and Beta 2). All measurements were made while
attached to the network.

3.1 Supported Clock Rates
The standard uniprocessor HAL advertises support

for clock rates in the range 1003µs to 14995µs. The
actual rate observed during our tests was equal to the
minimum, 1003µs. This was true for both NT4 and NT5.

The standard multiprocessor HAL advertises support
for clock rates in the range 1000µs to 15625µs. The
actual rate observed during our tests, however, was 976µs
– less than the advertised minimum. See Section 4.1 for
some of the implications of this fact. Once again, these
observations were consistent across NT4 and NT5.

Finally, note that some HALs do not even support
variable clock rates. This limits Multimedia Timer
resolution to a constant clock rate chosen by the HAL.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

3

3.2 Times Between Timer Callbacks
Table 1 gives statistics for typical 10-second runs of

the test application on both test machines for both
operating system versions.

Times Between
Callbacks

PPro,
NT4

PPro,
NT5

P2,
NT4

P2,
NT5

Minimum µs 31 31 20 33
Maximum µs 2384 18114 2144 2396
Average µs 999 999 999 999
Std Dev µs 70 211 955 941

Table 1: Statistics about Times Between Callbacks

All provide an average time between callbacks of 999µs,
but the similarities end there. Note, for instance, that the
standard deviation for the Pentium 2 runs is around 950µs
– nearly equal to the mean! Also, notice that there was at
least one instance on the Pentium Pro under NT5 when no
callback occurred for over 18ms.

The statistics do not come close to telling the full
story. Table 2 is a histogram of the actual times between
callbacks for these same runs, quantized into 100µs bins.

Times Between
Callbacks Falling
Within Interval

PPro,
NT4

PPro,
NT5

P2,
NT4

P2,
NT5

0-100µs 34 62 4880 4880
100-200µs 1
300-400µs 1
500-600µs 4 2
600-700µs 6 1
700-800µs 22
800-900µs 150 10

900-1000µs 571 1281
1000-1100µs 9014 8627
1100-1200µs 161 10
1200-1300µs 28 1
1300-1400µs 6 1
1400-1500µs 1 1 2
1700-1800µs 2 5
1800-1900µs 9 91
1900-2000µs 5107 5014
2000-2100µs 4
2100-2200µs 2 2
2300-2400µs 2 2
7700-7800µs 2

18100-18200µs 1

Table 2: Histogram of Times Between Callbacks

Now, the reason for the high standard deviation for
the Pentium 2 runs is clear – no callbacks occurred with
spacings anywhere close to the desired 1ms apart.
Instead, about half occurred close to 0ms apart and half
occurred about 2ms apart!

Also, for the Pentium Pro NT5 run, note that twice
callbacks occurred about 7.7ms apart and once over 18ms
apart. In fact, this is not atypical. On this configuration,

there are always two samples around 7-8ms apart and one
around 18ms apart.

Indeed, the point of our study is to try to learn what is
causing anomalies such as these, and to fix them!

4. Early Results
This section presents two snapshots of the kinds of

problems we discovered (and one of which we already
fixed!) during preliminary latency debugging of
applications using Multimedia Timers.

4.1 HAL Timing Differences
Because the HAL virtualizes the hardware timer

interface, HAL writers may implement timers in different
ways. For example, HALX86 uses the 8254 clock chip to
generate clock interrupts on IRQ1, but HALMPS uses the
Real Time Clock (RTC) to generate interrupts on IRQ8.

Upon receiving a clock interrupt, the HAL calls up to
the Windows NT kernel, which (among other things)
compares the current time to the expiration time of any
pending timers, and dequeues and processes those timers
whose expiration times have passed.

As we have seen, multimedia timers are able to meet
1ms deadlines most of the time on machines running
HALX86. To understand why 1ms timers do not work on
machines running HALMPS, we next examine the timer
implementation in more detail.

A periodic multimedia timer always knows the time
at which it should next fire; every time it does fire, it
increments this value by the timer interval. If the next
firing time is ever in the past, the timer repeatedly fires
until the time has moved into the future. The next firing
time is rounded to the nearest millisecond. This interacts
poorly with HALMPS, which approximates 1ms clock
interrupts by firing at 1024Hz, or every 976µs. (The RTC
only supports power-of-2 frequencies.)

Because the interrupt frequency is slightly higher
than the timer frequency, we would expect to occasionally
wait almost 2ms for a callback when the 976µs interrupt
interval happens to be contained within the 1000µs timer
interval. Unfortunately, rounding the firing time ensures
that this worst case becomes the common case. Since it
never asks to wait less than 1ms, it always waits nearly
2ms before expiring, then fires again immediately to catch
up, hence the observed behavior.

 We fixed this error by modifying the timer
implementation to compute the next firing time more
precisely, allowing it to request wakeups less than 1ms in
the future. (An alternative fix would have been to use
periodic kernel timers, rather than repeatedly setting one-
shot timers.) The results of our fix can be seen in Table 3.

As expected, approximately 2.4% of the wakeups
occur near 2ms, since clock interrupts arrive 2.4% faster
than timers. As a number of HALs besides HALMPS use
the RTC, this fix should be generally useful.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

4

Times Between
Callbacks Falling
Within Interval

P2,
NT5

P2,
NT5 fixed

0-100µs 4880 1
500-600µs 1
600-700µs 3
700-800µs 2
800-900µs 7

900-1000µs 9609
1000-1100µs 127
1100-1200µs 4
1200-1300µs 2
1300-1400µs 2
1400-1500µs 2 2
1700-1800µs 5
1800-1900µs 91
1900-2000µs 5014 240
2000-2100µs 4
2100-2200µs 2
2300-2400µs 2

Table 3: Histogram Showing Results of Timer Fix

4.2 Long-Running DPCs
DPCs are not scheduled by the thread scheduler; they

take precedence over any thread. Therefore, long-running
DPCs are an obstacle to precise scheduling of user code.

At the time of this writing, we can definitely attribute
the 18.1ms and 7.7ms delays on the Pentium Pro to DPC
activity. We know, for instance, that the 7ms DPC is in
dc21x4.sys – the driver for the DEC Fast Ethernet card.
And the 18ms are spent within the NDIS subsystem in a
DPC that is intended to check for stalled miniport drivers.
Both of these DPCs bear further study in order to identify
the exact problem and propose a solution.

5. Methodology
Our primary method of discovering and diagnosing

timing problems is to produce instrumented versions of
applications, the kernel, and relevant drivers that record
timing information in physical memory buffers. After
runs in which interesting anomalies occur, a combination
of perl scripts and human eyeballing are used to condense
and correlate the voluminous timing logs to extract the
relevant bits of information from them.

Typically, after a successful run and log analysis, the
conclusion is that more data is needed to understand the
behavior. So additional instrumentation is added, usually
to the kernel, thus unfortunately the edit/compile/debug
cycle often gets a reboot step added to it. This approach
works but we would be open to ways to improve it.

6. Future Work
Improving predictability of the existing Windows NT

features used by time-dependent programs is clearly
important, but without better scheduling and resource
management support, this can only help so much. In

addition to continuing to study and improve the real-time
performance of the existing features, we also plan to
prototype better underpinnings for real-time applications.

7. Conclusions
While the essential structure of Windows NT is

capable of providing low-latency response to events,
obvious (and often easy to fix!) problems we have seen,
such as the poor interaction between multimedia timers
and HALMPS and occasional long DPC execution times,
keep current versions of Windows NT from guaranteeing
timely response to real-time events below thresholds in
the tens of milliseconds. Bottom line – the system is
clearly not being actively developed or tested for real-
time responsiveness. We are working to change that!

While the details of this paper are obviously drawn
from Windows NT, we believe that similar problems for
time-dependent tasks will also be found in other general-
purpose commodity systems for similar reasons. We look
forward to discussing this at the workshop.

Acknowledgments
The authors wish to thank Patricia Jones for her

editorial assistance in the preparation of this manuscript.

References
[Bolosky et al. 97] William J. Bolosky, Robert P. Fitzgerald, and

John R. Douceur. Distributed Schedule Management
in the Tiger Video Fileserver. In Proc. of the 16th

ACM Symposium on Operating Systems Principles, St-
Malo, France, pp. 212-223, Oct. 1997.

[Jones et al. 96] Michael B. Jones, Joseph S. Barrera III,
Alessandro Forin, Paul J. Leach, Daniela RoÒu,
Marcel-C�t�lin RoÒu. An Overview of the Rialto Real-
Time Architecture. In Proc. of the Seventh ACM
SIGOPS European Workshop, Connemara, Ireland,
pp. 249-256, Sep. 1996.

[Jones et al. 97] Michael B. Jones, Daniela RoÒu, Marcel-
C�t�lin RoÒu, CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of
Independent Activities, In Proc. of the 16th ACM
Symposium on Operating System Principles, St-Malo,
France, pp. 198-211, Oct. 1997.

[Mercer et al. 94] Clifford W. Mercer, Stefan Savage, Hideyuki
Tokuda. Processor Capacity Reserves: Operating
System Support for Multimedia Applications. In
Proc. of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[Nieh et al. 93] Jason Nieh, James G. Hanko, J. Duane
Northcutt, and Gerald Wall. SVR4 UNIX Scheduler
Unacceptable for Multimedia Applications. In Proc.
of the Fourth International Workshop on Network and
Operating System Support for Digital Audio and
Video. Lancaster, U.K., Nov. 1993.

[Nieh & Lam 97] Jason Nieh and Monica S. Lam. The Design,
Implementation and Evaluation of SMART: A
Scheduler for Multimedia Applications. In Proc. of
the 16th ACM Symposium on Operating Systems
Principles, St-Malo, France, pp. 184-197, Oct. 1997.

[Solomon 98] David A. Solomon. Inside Windows NT, Second
Edition. Microsoft Press, 1998.

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

