
This is a slightly edited version of a paper that appeared at the High Confidence Medical
Device Software and Systems (HCMDSS) Workshop, June 2–3, 2005, Philadelphia, PA.

Proofs as a Substrate for Tool Integration Supporting
High-Confidence Embedded Software

John Regehr
School of Computing, University of Utah

regehr@cs.utah.edu

Konrad Slind
School of Computing, University of Utah

slind@cs.utah.edu

Elsa Gunter
Department of Computer Science,

University of Illinois,
Urbana-Champaign

egunter@cs.uiuc.edu

1. Problem Statement
As the size and complexity of software in safety-critical embedded
systems increases, the ability of programmers to deliver these sys-
tems in a timely fashion decreases. Specific difficulties are that em-
bedded software must interact with the physical world in real time
and that it must make efficient use of resources such as memory and
energy. Our work is driven by the observation that the fundamen-
tal scarcity limiting our ability to create high-confidence embed-
ded software is human developer time. A practical and incremental
solution to this problem istool-rich software developmentwhere
software tools such as verifiers, static bug finders, stub generators,
and optimizing compilers automate as many development tasks as
possible.

A diversity of tools is important because for a given embed-
ded system, some tools will present developers with a good value
proposition and others will not. For example, extremely low-power
devices with a few KB of main memory can benefit from static
stack overflow detection [7] while systems with megabytes of RAM
are unlikely to. The current state of the art is that tools are applied
independently and sequentially to a software system. This mode of
operation has two important drawbacks:

1. Each tool must discover all facts about a system that it requires.
This makes it difficult to create new tools that deal with, for
example, arbitrary C++ or x86 code. Furthermore there is con-
siderable reinvention of low-level analysis infrastructure across
software tools.

2. The correctness of program transformation tools such as com-
pilers, link-time optimizers, and stub generators is often depen-
dent on subtle assumptions about their input. It is difficult to
trust a long chain of sophisticated tools, and difficult to debug
problems that stem from complex interactions between devel-
oper assumptions and multiple tools.

2. Solution Outline
Research-level solutions to the first problem described above ex-
ist [1, 4], but the second problem—trusting a collection of use-
ful but certainly buggy tools—remains unsolved and largely un-
addressed.Our thesis is that formal proofs can be used as a se-
mantic substrate for ensuring the soundness of cooperating, inde-
pendently developed program analysis and transformation tools.In
order to implement this vision, useful tools must emit enough in-
formation about their operation that a proof of soundness can be
reconstructed. Then, when a final executable system has been gen-

erated, the individual proofs can be chained together and checked.
By reasoning about individual analyses and transformations, rather
than about entire analysis and transformation tools, the probably
intractable problem of verifying these tools is avoided.

We do not wish to expose embedded software developers to the-
orem proving environments. Rather, as in proof-carrying code [6],
proofs are an internal mechanism for verifying program properties.
Proof-carrying code avoids the need to insert dynamic checks when
running untrusted code; our goal is to prevent potentially untrust-
worthy tools from breaking safety-critical software.

Our insight is that at some level, an analysis or transformation
tool must prove to itself that a program property holds before mak-
ing use of this property. If it can be arranged that such tools can for-
malize and externalize the steps that comprise these informal and
internal proofs, then more tools can be used, with more confidence,
in the construction of safety-critical software. We hope that many
of the pedantic aspects of dealing with proofs can be contained in
proof-manipulation tools that are developed once, by experts, and
that are separate from the tools that support the timely production
of embedded software. Proofs are a suitable substrate for reasoning
about analyses and transformations because theorem provers are a
mature, well understood technology, because proofs should be gen-
eral enough to express any desired program properties, and because
they have a clear, generally agreed-on underlying semantics: math-
ematics.

3. An Example
Consider an ongoing (not yet published) project of ours that com-
piles higher order logic specifications of algorithms into ARM ma-
chine code, with the side effect of automatically producing a proof
that the low-level code implements the high-level semantics. This
tool performs translation validation [5]. ARM is a particularly good
target for this kind of work because it is ubiquitous in embedded
systems and because a semantics for ARM has been developed in
higher order logic [3].

The binaries emitted by our compiler are unlikely to be espe-
cially fast—our goal is not to implement a highly optimizing com-
piler. Rather, we would like to use the Diablo link-time optimizer
for ARM object code [2]. The problem is that Diablo’s transforma-
tions invalidate the proof of correctness.

To make Diablo emit proofs, we observe that it is structured as
an abstract interpreter. Recent work by Seo et al. [8] has shown how
to turn abstract interpretation results into proofs. This technique,
coupled with proofs of soundness and monotonicity of abstract

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


transfer functions for object code that we are currently working on,
will lead to automated generation of proofs that particular abstract
interpretations were sound. Subsequently, proving the soundness
of simple optimizations such as global constant propagation (from
which Diablo derives much of its benefit) is not difficult.

We believe that chaining together two proof-generating tools—
our compiler and a modified version of Diablo—will result in
the creation of verified binaries that also make efficient use of
resources. Furthermore, we will achieve these goals with less effort,
and in a more modular fashion, than would other means to the same
end, such as adding aggressive global optimization passes to our
HOL→ARM translator.

Higher order logic implementations such as PVS, HOL, and
Isabelle/HOL can be seen as providing semantic platforms upon
which to stitch together proofs generated by a variety of tools. For
example, they already provide mathematical theories needed for
precise specification of medical software, such as number systems
(integers, reals, fixed and floating point), temporal logics (CTL,
LTL), set theory, etc. Proof tools such as simplifiers, first order
logic proof search, and model-checkers can be programmed in such
environments, but our main focus is on adapting existing program
analysis tools, such as Diablo, to generate proofs and work together
soundly.

4. Questions and Answers
Our work addresses problems in infrastructure, resource manage-
ment, and verification/validation for medical device software and
systems (MDSS).

What are the three most important research challenges?
The overall challenge is to start with an assortment of tools

dealing with MDSS at various levels of abstraction—specifications,
source code, object code, and hardware—and augment them with
the capacity to argue for the soundness of their analyses and trans-
formations through proofs.

Second, if proofs are to be used as a substrate for tool inte-
gration, then proof-manipulation tools must improve dramatically.
Rather than expecting tools (and tool developers) to generate ac-
tual proofs, ways should be devised to conveniently create proof
certificates for existing analysis domains.

Third, partial program correctness is being attacked from var-
ious angles: there exist proofs that real-time deadlines are met,
proofs of type-safety, proofs of deadlock freedom, etc. These proofs
usually exist in isolation; it is often unclear that they compose
gracefully. Researchers should strive to apply various partial cor-
rectness results to an agreed-upon formal program semantics such
as the HOL model of the ARM ISA. This will be particularly chal-
lenging for proofs that deal with very abstract execution models
such as those that are typical in the real-time scheduling literature.

What are the three most important information technology re-
search needs?

First, research on tools for embedded software is impossible
without access to source code. If the MDSS industry is unwilling
to make source code available then the next best course of action
is to create a DARPA-style open experimental platform (OEP) for
each major class of medical device. Funding agencies should al-
locate resources that will be used to create and disseminate high-
quality OEPs that include requirements, specifications, documen-
tation, hardware designs, simulators, and the embedded software
itself. Research based on these OEPs will be far more likely to
solve actual problems faced by industry, and furthermore, differ-
ent research efforts that use a common platform can be directly
compared and evaluated.

Second, open infrastructure for software tools is critical to
lowering barriers to entry for validation and verification research.
Bradley et al. [1] make this point nicely.

Third, formal (and hopefully executable) semantics for MDSS
platforms should be developed. Fox’s ARM semantics [3] is a
good start. Models are also needed for other embedded processor
architectures, for sensors and actuators, for multiprocessor devices,
for configurable logic devices, for real-time operating systems, for
embedded middleware, and for the environments in which MDSS
devices operate.

What is a possible roadmap for the next 5–10 years?
In the short term, the next three years, we want to focus on the

technical challenges outlined above. In the longer term, incentives
will need to be created to convince tool vendors to generate proofs.

References
[1] Aaron R. Bradley, Henny B. Sipma, Sarah Solter, and Zohar Manna.

Integrating tools for practical software analysis. InProc. of the 2004
CUE Workshop, Vienna, Austria, October 2004.

[2] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, Dominique Chanet,
and Koen De Bosschere. Link-time optimization of ARM binaries.
In Proc. of the 2004 Conf. on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 211–220, Washington, DC, June
2004.

[3] Anthony Fox. Formal specification and verification of ARM6. InProc.
of the 16th Intl. Conf. on Theorem Proving in Higher Order Logics
(TPHOLs), pages 25–40, Rome, Italy, September 2003.

[4] Institute for Software Integrated Systems, Vanderbilt University.
Analysis Interchange Format v1.5, March 2004.

[5] George C. Necula. Translation validation for an optimizing compiler.
In Proc. of the Conf. on Programming Language Design and
Implementation (PLDI), pages 83–94, Vancouver, Canada, June 2000.

[6] George C. Necula and Peter Lee. Safe kernel extensions without run-
time checking. InProc. of the 2nd Symp. on Operating Systems Design
and Implementation, Seattle, WA, October 1996.

[7] John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack overflow
by abstract interpretation. InProc. of the 3rd Intl. Conf. on Embedded
Software (EMSOFT), pages 306–322, Philadelphia, PA, October 2003.

[8] Sunae Seo, Hongseok Yang, and Kwangkeun Yi. Automatic
construction of hoare proofs from abstract interpretation results. In
Proc. of the 1st Asian Symp. on Programming Languages and Systems,
volume 2895 ofLecture Notes in Computer Science, pages 230–245.
Springer-Verlag, 2003.


	Problem Statement
	Solution Outline
	An Example
	Questions and Answers

