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Abstract—When designing and analyzing genetic circuits, re-
searchers are often interested in the probability of the system
reaching a given state within a certain amount of time. Usually,
this involves simulating the system to produce some time series
data and analyzing this data to discern the state probabilities.
However, as the complexity of models of genetic circuits grow,
it becomes more difficult for researchers to reason about the
different states by looking only at time series simulation results
of the models. To address this problem, this paper employs the
use of stochastic model checking, a method for determining the
likelihood that certain events occur in a system, with continuous
stochastic logic (CSL) properties to obtain similar results. This
goal is accomplished by the introduction of a methodology for
converting a genetic circuit model (GCM) into a continuous-time
Markov chain (CTMC). This CTMC is analyzed using transient
Markov chain analysis to determine the likelihood that the circuit
satisfies a given CSL property in a finite amount of time. This
paper illustrates a use of this methodology to determine the
likelihood of failure in a genetic toggle switch and compares these
results to stochastic simulation-based analysis of this same circuit.
Our results show that this method results in a substantial speedup
as compared with conventional simulation-based approaches.

Keywords-stochastic model checking; genetic circuits; markov
chain analysis; continuous stochastic logic; synthetic biology

I. INTRODUCTION

Recently, biologists and engineers have begun to work

together on synthetic biology [1], [2]. Synthetic biology is

a relatively new area of research that combines biology and

engineering with the ultimate goal of designing new, useful

biological systems. Although many tools have been developed

for synthetic biology [3]–[11], there is still a need for more

efficient methods for their modeling, analysis, and design.

Biological systems are typically modeled using chemical

reaction networks, and the primary method for analyzing

these is to transform them into a set of ordinary differential

equations (ODEs) using the law of mass action [12]. ODEs can

be simulated and analyzed using a variety of well known meth-

ods [13], [14]. ODE models of reactions, however, assume that

there are large amounts of each chemical species allowing

them to be represented as continuous variables that react

deterministically. Synthetic biological systems, however, are

often constructed using DNA to form synthetic genetic circuits

that often have small, discrete amounts of species which are

modified by reactions that occur sporadically. This fact has

led researchers to utilize discrete, stochastic methods such

as Gillespie’s stochastic simulation algorithm (SSA) [15] for

their analysis. The SSA is an efficient Monte Carlo simulation

method that steps over useless time steps (time steps where no

reactions occur). The SSA can be improved further using the

next reaction method [16], tau leaping [17], [18], and reaction-

based abstractions [19], [20].

As models of genetic circuits become more complex, time-

scale separations between species cause researchers to take a

hybrid approach to modeling using both discrete and contin-

uous dynamics to represent the circuit. However, this leads to

computationally complex models that are extremely difficult to

analyze because they require that part of the model be analyzed

using deterministic methods while other parts are analyzed

using stochastic methods. Therefore, methods to abstract these

hybrid models into logical models that can be analyzed using

conventional methods are crucial to their analysis. Qualitative

logical models of genetic circuits have been considered [21],

[22], but these models are incapable of yielding quantitative

predictions of behavior. To address this problem, a quantitative

logical model can be used to encode the infinite state space

of a genetic circuit into a finite number of logical levels for

each chemical species [19], [20], [23], [24]. The resulting

logical model can then be analyzed using stochastic model

checking [25]. Stochastic model checking utilizes Markov

chain analysis to determine the probability that a system

has a specified property. As demonstrated in this paper, such

an analysis can be extremely useful to quickly compare the

robustness of alternative circuit designs and evaluate different

design trade-offs.

This paper presents a new methodology for the logical

analysis of genetic circuits. In particular, this paper describes

a process for translating a molecular biological model, the

genetic circuit model (GCM), into a continuous-time Markov

chain. After this translation, it is now possible to reason about

this model using stochastic model checking. In particular, our

method applies transient Markov chain analysis to verify prop-

erties of a genetic circuit design specified using continuous

stochastic logic (CSL). As a case study, this paper presents

results for an analysis of a genetic toggle switch [26]. These

results demonstrate not only that this method is accurate but

also that it is substantially more computationally efficient than

conventional stochastic simulation-based approaches.

Section II presents background on genetic circuits and their
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representation using GCMs. Section III presents our methods

including the logical abstraction to translate from a GCM to

a continuous time Markov chain (CTMC) and the stochastic

model checking technique that is used to analyze the resulting

Markov chain. Section IV presents our results on a genetic

toggle switch, as well as how they compare with stochastic

simulation. Lastly, Section V discusses future improvements

to the method described in this paper.

II. BACKGROUND

A genetic circuit is composed of, among other things, genes,

operator sites, and promoters on a strand of DNA. An example

of a genetic circuit for a toggle switch which was constructed

by Gardner et al. [26] is shown in Figure 1(a). Genes are

the portion of the DNA that code for proteins, the basic

building blocks for nearly all molecular machinery within a

cell. Proteins can also regulate cellular function by binding

to an operator site in order to increase, activate, or decrease,

repress, the associated promoter’s affinity. Promoters are the

regions on the DNA where RNA polymerase (RNAP) binds

to start the transcription of a gene to produce messenger

RNA (mRNA), which in turn is translated by a ribosome

into a protein. In Figure 1(a), the LacI protein binds to the

operator site associated with the Ptrc−2 promoter to repress

the production of TetR and green fluorescent protein (GFP), a

reporter that causes the cell to glow. Similarly, the TetR protein

binds to the operator site associated with the PLtetO−1 promoter

to repress the production of LacI. The molecules IPTG and aTc

are known as chemical inducers. IPTG can bind with LacI to

form a complex C1 which prevents LacI from being able to

repress TetR production. Similarly, aTc can bind with TetR to

form a complex C2 which prevents TetR from being able to

repress LacI production.

A logical model that summarizes the behavior of the genetic

toggle switch is shown in Figure 1(b). Digital designers should

recognize this circuit as a set-reset (SR) latch, a simple

asynchronous state-holding gate. The chemical inducer aTc

is the set input which is used to set the output, GFP, in the

high state. The chemical inducer IPTG is the reset input which

is used to set the output in the low state. When neither input

is applied, the latch retains its previous state. Applying both

inputs simultaneously, just like in an electronic SR latch, is

illegal as it would make the circuit oscillate erratically. While

this diagram indicates a logical behavior, one should keep

in mind that the actual behavior of this latch is extremely

noisy due to the inherent stochastic nature of genetic circuits

described earlier.

When modeling genetic circuits, researchers often use

chemical reaction networks specified using the systems biology

markup language (SBML) [27]. These models are tedious

to build because they require the modeler to construct the

model at a low level in which each chemical species and

chemical reaction must be explicitly defined. In order to help

simplify the modeling process for genetic circuits, Nguyen

et al. introduced the genetic circuit model (GCM) language

which allows systems to be specified using only the critical
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Fig. 1. (a) The genetic toggle switch circuit where LacI and TetR repress
each other (denoted by the ⊣ arrows). In this circuit, LacI can be sequestered
by IPTG, TetR can be sequestered by aTc, and GFP is the reporter protein
causing the cell to glow indicating whether the toggle is in the on or off state.
While this figure shows the operator site and promoter as distinct regions of
the DNA, their sequences typically overlap. (b) A digital circuit representation
of the genetic toggle switch. (c) The GCM for the genetic toggle switch. The
⊣ arrows indicate repression and the dashed arrows indicate that the species
come together to form a complex. As a shorthand, the promoters are used as
labels on the influences. For example, LacI represses TetR and GFP production
by binding to promoter Ptrc−2 while TetR represses LacI production by binding
to promoter PLtetO−1.

species and relationships between these species [28], [29]. A

GCM is a tuple 〈S,Pr,G, I,C,Vg,Ag〉 where:

• S is a finite set of species (i.e., proteins);

• Pr is a finite set of promoters;

• G : Pr 7→ 2S maps promoters to sets of species;

• I ⊆ S×Pr×{a,r} is a finite set of influences;

• C ⊆ S×N×S is a finite set of complex formations;

• Vg is a finite set of parameter variables used during model

generation;

• Ag ⊆ (Vg ×R) is the assignment of the variables with

defaults presented in Table I.
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TABLE I
GCM PARAMETER LIST

Parameter Symbol Value Units

Initial RNAP count nr 30 molecule

Degradation rate kd 0.0075 1
sec

Complex formation equilibrium Kc 0.05 1
molecule

Stoichiometry of binding nc 2 molecule

Repression binding equilibrium Kr 0.5 1
molecule

Activation binding equilibrium Ka 0.0033 1
molecule

Initial promoter count ng 2 molecule

RNAP binding equilibrium Ko 0.033 1
molecule

Activated RNAP binding equilibrium Koa 1 1
molecule

Basal production rate kb 0.0001 1
sec

Open complex production rate ko 0.05 1
sec

Activated production rate ka 0.25 1
sec

Stoichiometry of production np 10 unit− less

For convenience, the following functions are also defined:

Pro(s) = {p ∈ Pr | s ∈ G(p)}

Rep(p) = {s ∈ S | (s, p,r) ∈ I}

Act(p) = {s ∈ S | (s, p,a) ∈ I}

The function Pro(s) is used to determine the set of promoters

that initiate transcription of genes that lead to the production

of species s. The functions Rep(p) and Act(p) return the

species that repress and activate promoter p, respectively.

These functions are used in the logical abstraction presented

in Section III.

As an example, consider the GCM for the genetic toggle

switch which is shown in Figure 1(c). In this model, S is a set

of the species { aTc, C1, C2, GFP, IPTG, LacI, TetR }, and

Pr is a set of the promoters { Ptrc−2, PLtetO−1 }. G maps the

promoter Ptrc−2 to TetR and GFP and the promoter PLtetO−1 to

LacI. The influences in I indicate that LacI represses Ptrc−2 and

TetR represses PLtetO−1. C contains the complex formations

(IPTG, 1 C1), (LacI, 1, C1), (aTc, 1, C2), and (TetR, 1,

C2). The variables, Vg, and their assignments, Ag, are shown

in Table I. The function Pro(GFP) returns {Ptrc−2} while

Rep(Ptrc−2) returns { LacI } and Act(Ptrc−2) returns /0.

A GCM can be represented in SBML and automatically

translated into a detailed reaction-based model as described

in [28], [29]. The resulting SBML model can then be simulated

to determine the behavior of the genetic circuit. Figure 2(a)

presents the average of performing 100 stochastic simulation

runs for 25,000 seconds on a reaction-based model of the ge-

netic toggle switch. These simulations are started in an initial

state in which LacI is 60 molecules while TetR, GFP, IPTG,

and aTc are all 0 molecules. At time 5,000, 60 molecules

of IPTG are provided which causes the state of the toggle

switch to change resulting in the production of GFP. At time

10,000, the IPTG is removed, but the toggle switch on average

holds the high GFP state. At time 15,000, 60 molecules of aTc

are provided which causes the toggle switch to change state

again, and GFP degrades away. At time 20,000, the aTc is

removed, and once again the toggle switch holds its state. It

should be stressed though that this shows the average of 100

(a)

(b)

Fig. 2. These results plot the molecule count of the GFP protein showing
how the circuit is set and reset by IPTG and aTc, respectively. IPTG is added
at time 5,000s to set the switch and then is removed at time 10,000s. aTc is
later added at time 15,000s to reset the switch and then is removed at time
20,000s. (a) The average of 100 stochastic simulation runs of the genetic
toggle switch. (b) One individual stochastic simulation run where the genetic
toggle switch fails to hold state.

simulations runs. This circuit is noisy meaning that there is a

chance that the circuit does not perform ideally and loses its

state. For example, Figure 2(b) shows one such simulation run

where the circuit switches from the off state to the on state

erroneously. One of the goals of this paper is to be able to

efficiently determine the probability of erroneous behavior.

III. METHODS

Due to the inherently noisy nature of genetic circuits, any

deterministic assertion that is checked would most likely fail

to be true. Instead, for these systems, the more interesting

question is the probability that a property is true. Determining

the likelihood of properties can be accomplished using a

technique known as stochastic model checking.

There are two types of stochastic model checking used to

compute the likelihood that a property is true: statistical and

numerical based techniques [30]. Statistical techniques involve

simulating a system a large number of times and terminating

whenever a property is shown to be true or false. When

all of the simulations are complete, statistics are calculated

381



on how many simulations satisfied the property in the time

allotted versus the number of simulations that failed to do

so. One downside of using statistical techniques is that the

more rare an event is, the more simulations that need to

be run in order to observe it, and this may cause the time

that it takes to compute a likelihood to become prohibitively

expensive. Numerical methods, on the other hand, attempt to

determine these likelihoods in a more direct method. They

usually attempt to find the state space of the model and then

employ methods such as Markov chain analysis to compute

the probability of reaching a state where a given property

is satisfied. These methods are often more efficient than

statistical techniques; however, they require that the state space

be computable. Both statistical and numerical methods have

been utilized by many tools such as the probabilistic model

checker PRISM [31].

Stochastic model checking can be utilized to check a CSL

property [25], [32] specified using the following grammar:1

Prop ::= P∼p{ΨU
I Ψ} |S∼p{Ψ}

Ψ ::= true |Ψ∧Ψ | ¬Ψ | vi ≥ ci | vi > ci | vi = ci

where ∼ represents an element from the set {<,≤,=,>,≥}, p

is a probability in the range [0,1], I is a non-negative interval of

the form [t,t ′], vi is a variable, and ci is a constant. Ψ represents

a state formula that must be true in a given state. The formula

P∼p{Ψ1 U
I Ψ2} represents the probability that an execution of

the system satisfies the until formula Ψ1 U
I Ψ2 which means

that Ψ1 must remain true until Ψ2 becomes true in the interval

I within the probability bound ∼ p. The formula S∼p{Ψ}
represents the probability that once the system reaches its

steady state, it is in a state where Ψ is satisfied within the

probability bound ∼ p. To compute the truth of these formulas

requires solving the more general problem of what is the

probability of the formula. Therefore, this paper focuses on

determining the actual probability in which ∼ p is replaced

in the notation with =?. As a shorthand, Ψ can also contain

false, ∨, <, and ≤ which are easily derived. The formulas

are also allowed to contain the eventually operator, ♦, and the

globally true operator, �, defined as follows:

P∼p{♦
I Ψ} ≡ P∼p{trueU

I Ψ}

P∼p{�
I Ψ} ≡ P∼1−p{♦

I ¬Ψ}

The eventually operator is essentially used as a shorthand

for describing an until property where the left-hand side of

the formula is true. This means that the eventually formula

P∼p{♦
I Ψ} would simply require that Ψ becomes true in the

interval I within the probability bound ∼ p. The globally true

formula P∼p{�
I Ψ} requires that Ψ remains true during the

interval I within the probability bound ∼ p. This formula

builds off of the eventually operator by requiring that ¬Ψ
does not eventually become true during the interval I within

the probability bound ∼1− p where ∼ flips the direction of

the inequality, if one is used.

1Our tool currently does not allow nesting of transient and steady-state
properties.

Figure 3 presents an algorithm that determines the probabil-

ity within an error bound, ε, of a given transient CSL property,

Φ, on a GCM model, N. We also have a similar algorithm for

checking steady-state properties, but it is omitted due to space

constraints. Additionally, this algorithm requires a set of levels,

L, that includes an ordered list of threshold levels, Ls, for each

species s ∈ S in the GCM. Each level, ls,i represents a critical

threshold in the amount of the species s. It is assumed that ls,0
is always 0, and ls,i−1 < ls,i for all i > 0.

Input: GCM G; Levels L; CSL property Φ; Error-bound ε

1: T = computeCTMC(G,L,Φ)
2: t = determineTimeLimit(Φ)
3: Find infinitesimal generator matrix, QX , of T

4: Compute Γ = maxi|q
X
ii | where qXii is diagonal entry of QX

5: Find stochastic transition probability matrix, P= I+ 1
ΓQ

X

6: Set K = 0, ξ = 1, σ = 1, and η = 1−ε
e−Γt

7: while σ < η do

8: Compute K = K+ 1, ξ = ξ× Γt
K

, and σ = σ+ ξ
9: end while

10: Set π(0) so initial state has probability 1 and all others 0

11: Set π = π(0) and y = π(0)
12: for k = 1 to K do

13: Compute y = yP× Γt
k

and π = π + y

14: end for

15: Compute π(t) = e−Γtπ
16: return ∑ of all states in π(t) that satisfy Φ

Fig. 3. Method to check that a GCM satisfies a transient CSL property.

The first step of the algorithm converts the GCM into a

continuous-time Markov chain (CTMC) (line 1). Details of this

conversion are given below. Next, the algorithm determines

the amount of time necessary for the analysis, t, which is

essentially the maximum value of the interval in the transient

property (line 2). Next, the infinitesimal generator matrix is

derived from the CTMC by assigning the negation of the

sum of the transition rates out of each state to the diagonal

entries of the matrix (line 3). After that, the absolute value

of the largest diagonal entry is selected as Γ (line 4) and

the discretized stochastic probability matrix, P, is computed

(line 5). The remainder of the algorithm analyzes the CTMC

using a transient Markov chain analysis method known as

uniformization [33]. The algorithm first needs to know the

number of terms in its summation, K, which it determines

iteratively (lines 6-9). The algorithm then initializes the initial

state’s probability to 1 and all other states’ probabilities to 0

(line 10) and proceeds by iteratively performing vector-matrix

multiplications and vector additions to simulate the evolution

of the system’s likelihood of being in any state (lines 11-14).

After this is complete, the uniformization algorithm normalizes

the final probabilities in π (line 15). Finally, after applying this

method, each state is now annotated with the probability of

being in that state at the specified time. At this point, the final

probability for the CSL property is determined by summing

over all states in which the right-hand side of the until formula
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is satisfied (line 16).

The critical step in this algorithm is the conversion of

a GCM into a CTMC. This conversion process begins by

creating a sparse matrix where each entry, pi, j, represents the

rate of moving from state i to state j. Next, a state is created

with an encoding of the initial values of the species in the

GCM. The conversion then performs a depth first search by

changing one species encoding at a time to a higher or lower

encoding if they exist in the level set L. Each valid change

found this way is pushed onto a stack. The algorithm then

pops an encoding off the stack and checks to see if a transition

rate for moving from the current state to the new state exists

in the matrix. If it does, the algorithm stops exploring this

path and pops the next change off the stack to explore further.

Otherwise, the transition rate is calculated using the equations

below and is added to the matrix. During exploration, the

algorithm also checks to see if the new encoding either satisfies

or fails the supplied CSL property. Since this method accepts

only transient CSL properties, this means that the encoding

either does not satisfy the left hand side of an until formula or

satisfies the right hand side of the formula. If this is the case,

the state is marked as absorbing and no further exploration is

done from that state.

The transition rates between the states are determined using

the formulas below:

production(s, l, l′) =

∑
p∈Pro(s)

np · rate(p)

(l′− l)

degradation(s, l, l′) =
kdl

′

(l′− l)

When the state transition increases the level of species s from

l to l′, then the production formula is used, and when the state

transition decreases the level of s from l′ to l, then the degra-

dation formula is used. The rate for production is computed by

determining the rate of production for each promoter p which

produces species s using the rate(p) function defined below.

This rate is then multiplied by np, the number of proteins

produced per transcript, to convert this rate into the rate for a

single protein production. The rate of degradation is computed

as kdl
′ where kd is the degradation rate parameter and l′ is the

starting level for species s before degradation. In both cases,

these rates must be normalized by the difference in the level

before and after the state change. This is because the rates are

for the production or degradation of a single molecule of s

while the state change only occurs after l′− l molecules are

produced or degraded.

Using a quasi-steady-state approximation, the function

rate(p), shown below, can be derived which returns the rate

of production initiated from promoter p.

rate(p) =



































npkongKonr

1+Konr + ∑
sr∈Rep(p)

(Krvsr )
nc

if |Act(p)|= 0

npkbngKonr + ∑
sa∈Act(p)

npkangKoanr(Kavsa )
nc

1+Konr + ∑
sr∈Rep(p)

(Krvsr )
nc + ∑

sa∈Act(p)

Koanr(Kavsa )
nc

otherwise

The derivation of this function is a bit involved, so this paper

just presents an informal overview of the process. The rate

function is made up of constants which can be found in Table I

and variables for the repressing species, vsr , and activating

species, vsa , for this promoter. This function breaks this down

into two cases. The first case is for a promoter that does not

have any species which are activating it. In this case, it is

assumed that the promoter is constitutive which simply means

that it can initiate transcription at a significant rate without

the aid of another activating species. Assuming that there

are no repressor molecules present, this rate is approximately

npkong where np is the number of proteins produced per

mRNA produced, ko is the transcription rate for a constitutive

promoter, and ng is the number of copies of the gene. However,

this rate is reduced as the number of repressor molecules,

vsr , increases. The second case is for a promoter that must

be activated for significant transcription. Assuming that there

are no activator or repressor molecules present, the rate of

production of this promoter is npkbng where kb is a low basal

rate of production which is typically much smaller than ko. In

this case, as the number of activator molecules, vsa , increases

so does the rate of production from this promoter. Like the first

case, this production can also potentially be inhibited, if there

exists species which can repress this promoter. Lastly, if there

are complex formation reactions between repressing species

and chemical inducers such as that between LacI and IPTG

in Figure 1(c), we apply a complex formation abstraction that

uses both the quasi-steady-state approximation and the law of

mass conservation. This abstraction replaces the variable vsr
in the rate function with the expression

vsrtotal
1+Kcvi

, where vsrtotal
is the variable for the total repressing species (free and in

complex), Kc is the complex formation equilibrium constant,

and vi is the variable for the chemical inducer. Consequently,

as the amount of chemical inducer increases, the effective

amount of repressing species decreases and production from

the promoter increases. For more details about derivation of

rates using the quasi-steady-state approximation, please see,

for example, [34].

The conversion process coupled with the corresponding

rate functions have been carefully constructed such that the

CTMC generated gives a reasonable approximation of the

behavior of the GCM. This translation procedure allows the

user to efficiently trade-off between accuracy and analysis

time. Namely, the more levels used in the level set, the more

accurate the model becomes. Of course, using more levels

also increases analysis time, so the user should select the

minimal number of levels necessary to perform the desired

analysis. While we have had very good results when making

simple, intuitive choices of these levels, further research on

determining better levels automatically is of interest.

An example of using this method to analyze the GCM

in Figure 1(c) is presented in Figure 4. Here, the levels are

selected at 0, 30, and 60 for LacI and TetR and the initial value

is 60 for LacI and 0 for TetR. For simplicity, in this model, we

have assumed that IPTG, aTc, C1, and C2 are 0 (and remain

383



0) while GFP is not shown as it follows TetR’s value. The

property being considered is the probability of LacI going to

0 within 100 seconds which is represented by the following

CSL property:

P=?{♦
[0,100] LacI = 0}

There are nine states in the resulting CTMC; however, since

states S6, S7, and S8 satisfy the property, outgoing transitions

from these states are pruned. The sum of the probability of

reaching these states represents the probability of satisfying

the property, which is about 5.9 percent.

S2

<60,60>

Prob = 0.000134

S1

<30,60>

Prob = 0.013029

TetR_deg21

0.015

S3

<60,30>

Prob = 0.000558

LacI_deg21

0.015

TetR_prod12

0.000366
S0

<0,60>

Prob = 0.841618

TetR_deg10

0.0075

S4

<30,30>

Prob = 0.012512

LacI_deg21

0.015

TetR_prod01

0.000366

S5

<0,30>

Prob = 0.073097

LacI_deg21

0.015

LacI_prod12

0.165829

TetR_prod01

0.001454

S6

<0,0>

Prob = 0.054013

LacI_deg10

0.0075

LacI_prod12

0.001454

TetR_deg10

0.0075

TetR_prod12

0.001454

S7

<30,0>

Prob = 0.004878

LacI_deg10

0.0075

LacI_prod12

0.000366

TetR_deg21

0.015

S8

<60,0>

Prob = 0.00016

LacI_deg10

0.0075

Fig. 4. The CTMC shown graphically annotated with probabilities after ap-

plying stochastic model checking with the CSL property, P=?{♦
[0,100] LacI =

0}, to the GCM in Figure 1(c) with levels selected at 0, 30, and 60 for LacI
and TetR and an initial value of 60 for LacI and 0 for TetR. Note that states
S6, S7, and S8 are absorbing since they satisfy the CSL property.

IV. RESULTS

This section presents the application of our methodology

to the analysis of the genetic toggle switch that has been the

running example in the previous sections. A useful experiment

for this circuit is to determine the probability that it changes

state erroneously within a cell cycle (2,100 seconds) which

occurs if some spurious production of the low signal inhibits

the high signal enough to allow it to degrade away and switch

state. For this experiment, the toggle switch is initialized to a

starting state where LacI is set to a high state of 60 molecules

and TetR is set to a low state of 0 molecules. In order to test

whether or not it changes state, the following CSL property is

checked:

P=?{♦
[0,2100] LacI < 20∧TetR > 40}

This property makes states absorbing in which LacI has

dropped below 20 (the low state) and TetR has risen above

40 (the high state). For this analysis, the 9 levels are selected

for LacI uniformly distributed between 0 and 80, and 11 levels

are selected for TetR uniformly distributed between 0 and 50,

which produces a CTMC with 99 states. Levels are selected

to ensure that one of the levels captures the initial amount for

each species and that the levels span over the possible values

for each species going slightly above and below the property

bounds. It should be emphasized that this is a very simple and

straightforward choice for the levels.

Figure 5 shows a comparison of results found using 32,000

simulation runs both with and without reaction-based abstrac-

tion [19] and applying transient Markov chain analysis. This

figure shows that the transient Markov chain analysis tracks

the simulation results fairly closely. However, as shown in

Table II, the transient Markov chain analysis method greatly

outperforms the simulation based methods.

(a)

Fig. 5. Time course plot showing the probability of the genetic toggle switch
changing state erroneously. This plot compares the results of using simulation
both with and without reaction-based abstraction and analysis of the CTMC

using Markov chain analysis with the same CSL property, P=?{♦
[0,2100] LacI <

20∧TetR > 40}. The simulation results use 32,000 simulation runs in order to
achieve a relative error bound of 10 percent assuming a probability of failure
of 1.2 percent.

TABLE II
GENETIC TOGGLE SWITCH ANALYSIS RUN-TIME COMPARISON

Failure Rate Response Rate

Simulation w/o Abstraction 43 minutes 3 hours 12 minutes

Simulation w/ Abstraction 3 minutes 15 seconds 1 minute

Markov Chain Analysis 1 second 0.5 seconds

The choice of 32,000 simulation runs is chosen in order

to achieve 95 percent confidence that the result is within 10

percent assuming the true failure rate is 1.2 percent, the ap-

proximate value after 2100 seconds. This value is determined

using the equation below:

d = 1.96×

√

1− p

p×n
(1)

where d is the relative error bound, p is the predicted probabil-

ity, and n is the number of simulation runs [35], [36]. It should

be noted that for earlier time points where the failure rate is

lower, the error increases. For example, at 1000 seconds, the

full simulation predicts a probability of failure of 0.3 percent,

but we are only 95 percent confident that this result is within

20 percent of the true value.

The next experiment is to determine the response time of

the circuit when switching from the off state to the on state,
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and these results are presented in Figure 6. This analysis uses

the same CSL property but a slightly different initial condition.

As before, LacI is set to 60 and TetR is set to 0, but IPTG

is set to 100 representing that it has just been added to set

the toggle switch to the high state. For this experiment, 14

levels for LacI are selected uniformly distributed between 0

and 130, since individual simulation results show it reaching

a much higher value than in the last experiment. For TetR,

only 5 levels are used uniformly selected between 0 to 60

because less resolution is required for catch its change from a

low to high state. This results in a CTMC of 70 states. Again,

transient Markov chain analysis tracks the simulation results

fairly closely ending up with a final probability of 98.7 percent

while the simulation of the full model results in 98.9 percent.

Also like the previous example, the transient Markov chain

analysis method outperforms the simulation-based approaches

as shown by the run-times in Table II.

Fig. 6. Time course plot showing the probability of the genetic toggle switch
changing state correctly in response to an input change. Like Figure 5, this
plot compares the results of using simulation both with and without reaction-
based abstraction and analysis of the CTMC using Markov chain analysis
with the same CSL property, P=?{♦

[0,2100] LacI < 20∧TetR > 40}, but with
a different initial value of IPTG.

With this analysis method, the design space can be effi-

ciently explored. For example, a genetic designer may consider

the effect of parameter variation on robustness and perfor-

mance. One important parameter for the genetic toggle switch

is the degradation rate, kd , and the results of varying this

parameter are shown in Figure 7. These results indicate that

tuning the degradation rate has a significant effect. If it is too

high, the circuit is less robust, but if it is too low, it responds

too slowly.

V. DISCUSSION

Utilizing stochastic model checking, synthetic biologists

can explore the effect of varying parameters in their genetic

circuits more rapidly than using traditional methods allowing

them to rapidly explore design trade-offs in an effort to make

their circuits more responsive to inputs and more robust to

failures. The methods discussed here have been implemented

in a tool called iBioSim [8] which is freely available at

(a)

(b)

Fig. 7. (a) Plot depicting the probability of the genetic toggle switch changing
state erroneously within 2100 seconds for different values of kd . (b) Plot
depicting the probability of the genetic toggle switch changing state correctly
within 1000 seconds in response to input change for different values of kd .

http://www.async.ece.utah.edu/iBioSim/. This tool in-

cludes a schematic capture tool for constructing GCM rep-

resentations of designs, automated model construction and

abstraction, and a variety of simulation and visualization

methods. While we believe that this tool and the methods

described in this paper represent an excellent first step towards

a fully functional genetic design automation (GDA) tool, there

is still significant work that needs to be done.

One area of improvement would be in a better method

for choosing the levels used in the generation of the CTMC.

Currently, a user performs a small number of simulation runs

in order to get an idea for the range of values of interest,

and then selects a number of levels in which to divide this

range uniformly. While adding more levels improves accuracy,

it does so at the cost of a larger state space which makes

the CTMC analysis less efficient. While the resulting CTMC

can likely still be analyzed using simulation methods, a better

approach would be to make a better level assignment. For

example, using a non-uniform choice of levels may be more

efficient, since it may result in more accuracy at a lower

state space size. Using a non-uniform choice of levels though

would likely require an automated selection to assist in this
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choice. We have done some preliminary investigations which

are promising that analyze the rate equations of the original

GCM in order to determine the levels to use.

In addition to this work, we are also developing a vari-

ant of the SSA called the incremental stochastic simulation

algorithm (iSSA) [37], [38]. The idea behind this algorithm

is to perform stochastic simulations in small time increments,

compute statistics at the end of each increment, and determine

a new starting state for each run at the beginning of the next

increment with these statistics. This allows users to perform

many simulation runs to observe the “typical” behavior of

their systems instead of simply averaging several SSA runs

together which can often hide interesting behaviors due to

a washing out effect. Ideally, iSSA and stochastic model

checking could be used in concert to improve the genetic

circuit design process. For example, the typical behavior of the

system could be determined using iSSA, then the probability

of this typical behavior being observed could be checked using

a CSL property and stochastic model checking.
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