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 17 
ABSTRACT 18 

Birds combat ectoparasites with many defences but the first line of defence is grooming behaviour, 19 

which includes preening with the bill and scratching with the feet.  Preening has been shown to be very 20 

effective against ectoparasites.  However, most tests have been with feather lice, which are relatively 21 

slow moving.  Less is known about the effectiveness of preening as a defence against more mobile and 22 

evasive ectoparasites such as hippoboscid flies.  Hippoboscids, which feed on blood, have direct 23 

effects on the host such as anaemia, as well as indirect effects as vectors of pathogens.  Hence, 24 

effective defence against hippoboscid flies is important.  We used captive Rock Pigeons (Columba 25 

livia) to test whether preening behaviour helps to control pigeon flies (Pseudolynchia canariensis).  26 

We found that pigeons responded to fly infestation by preening twice as much as pigeons without flies.  27 

Preening birds killed twice as many flies over the course of our week-long experiment as birds with 28 

impaired preening; however, preening did not kill all of the flies.  We also tested the role of the bill 29 

overhang, which is critical for effective preening against feather lice, by experimentally removing the 30 

overhang and re-measuring the effectiveness of preening against flies.  Birds without overhangs were 31 

as effective at controlling flies as were birds with overhangs.  Overall, we found that preening is 32 

effective against mobile hippoboscid flies, yet it does not eliminate them.  We discuss the potential 33 

impact of preening on the transmission dynamics of blood parasites vectored by hippoboscid flies. 34 

 35 
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 40 
1. Introduction 41 

 Birds are infested with a variety of ectoparasites including lice, mites, ticks, fleas and flies, all 42 

of which have the capacity to decrease host fitness (Atkinson et al., 2008; Møller et al., 2009).  Birds 43 

combat ectoparasites with defences ranging from anti-parasite behaviour (Hart, 1992, 1997) to immune 44 

defences (Wikel, 1996; Owen et al., 2010).  Grooming behaviour, which includes preening with the 45 

bill and scratching with the feet, is the first line of defence against ectoparasites (Clayton et al., 2010).  46 

Preening is an energetically expensive activity (Goldstein, 1988; Croll and McLaren, 1993); 47 

furthermore, the time and energy devoted to preening detracts from other behaviors such as feeding 48 

and vigilance (Redpath, 1988).  Therefore, in order to be effective against ectoparasites while limiting 49 

its energetic cost, preening should be an inducible defence (Tollrian and Harvell, 1999).  The 50 

importance of preening is illustrated by recent work demonstrating that features of bill morphology, 51 

such as the upper mandibular overhang, appear to have evolved specifically to enhance the 52 

effectiveness of preening for parasite control (Clayton and Walther, 2001; Clayton et al., 2005).  53 

Nearly all of the work on the effectiveness of preening has been done with feather lice 54 

(Phthiraptera: Ischnocera), which are slow moving and therefore relatively easy targets for preening 55 

birds (Marshall, 1981; Atkinson et al., 2008).  The effectiveness of preening for controlling more 56 

mobile ectoparasites such as fleas and hippoboscid flies has not, to our knowledge, been tested.  57 

Preening may also play a role in shaping vector ecology and the evolution of pathogens transmitted by 58 

ectoparasites.   59 

The goal of our study was to test the effectiveness of preening against hippoboscid flies, which 60 

are mobile parasites of birds and mammals.  Avian hippoboscid flies are dorso-ventrally flattened and 61 

very agile at slipping between the feathers.  As described by Rothschild and Clay (1952): “They have... 62 

an extremely efficient method of moving among feathers - darting and scuttling about at a remarkable 63 
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 4 

speed - and are extremely difficult to catch on a living bird.”  Hippoboscids may also be capable of 64 

avoiding preening by using “refugia” such as the vent region of the bird or behind the bases of the legs 65 

(JL Waite, personal observation).   66 

Hippoboscid flies are a diverse group of parasites.  More than 200 species are recognized, 75% 67 

of which parasitize birds belonging to 18 orders; the rest parasitize mammals (Lloyd, 2002; Lehane, 68 

2005).  Most species of bird flies are winged and capable of flight between individual hosts (Harbison 69 

et al., 2009; Harbison and Clayton, 2011).  They spend most of their time on the body of the bird, 70 

where they feed on blood several times a day (Coatney, 1931).  Hippoboscid feeding can cause 71 

anaemia (Jones, 1985), emaciation (Lloyd, 2002) and slow nestling development (Bishopp, 1929).  72 

Parents of hippoboscid-infested nestlings have lower reproductive success (Bize et al., 2004).  73 

Hippoboscid flies also transmit blood parasites that can have negative effects on birds, including 74 

malaria (Sol et al., 2003), trypanosomes (Baker, 1967) and possibly viruses such as West Nile 75 

(Farajollahi et al., 2005).  In short, hippoboscids pose both direct and indirect threats to the health and 76 

fitness of their hosts.   77 

To test the effectiveness of preening against hippoboscid flies, we used wild caught Rock 78 

Pigeons (Columba livia) that we experimentally infested with the pigeon fly Pseudolynchia 79 

canariensis (Diptera: Hippoboscidae).  We conducted two separate experiments.  The first experiment 80 

addressed two questions: i) do Rock Pigeons infested with flies increase the amount of time they spend 81 

preening and ii) is preening effective in killing flies?  The second experiment addressed a third 82 

question: is the bill overhang important in the effectiveness of preening for fly control? 83 

 84 

2. Materials and methods 85 

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript



 5 

2.1. Experiment 1: Preening and flies 86 

Twenty-four Rock Pigeons were caught using walk-in traps in Salt Lake City, Utah, USA.  The 87 

birds were transported to the University of Utah animal facility, where they were individually housed 88 

in wire mesh cages (30 x 30 x 56 cm) suspended over newspaper-lined trays.  Each cage/tray was 89 

completely enclosed within a fly-proof net, which prevented flies from moving between birds in 90 

different cages.  Birds were given ad libitum food, water and grit and kept on a 12-hour light/dark 91 

cycle.  They were maintained in captivity for at least 6 months at low humidity prior to the experiment, 92 

which killed feather lice and their eggs that were present on the birds when they were captured 93 

(Harbison et al., 2008).  Any flies present on pigeons when they were captured would have died during 94 

the 6 month period because the life span of pigeon flies is only 2-3 months (Fahmy et al., 1977).  Since 95 

pigeons trapped in Salt Lake City do not usually have other ectoparasites, the birds were ectoparasite-96 

free at the start of our experiment.  Prior to the start of the experiment, birds were carefully examined 97 

to confirm that they did not, in fact, have any ectoparasites. 98 

We blocked the 24 birds using two factors: i) location trapped and ii) time in captivity; we then 99 

randomly assigned birds to one of three treatments, with eight birds per treatment.  All birds were 100 

sexed and weighed.  Birds in the first two treatments were then infested with 20 flies each (10 male 101 

flies, 10 female flies), which is the maximum number recorded from wild pigeons (mean = 5.07 flies; 102 

Stekhoven et al., 1954).  Flies used to infest birds were cultured from wild caught stock on pigeons 103 

kept for this purpose in another room.  The third group of eight birds was not infested with flies.  104 

Flies were removed from culture birds using CO2 (Moyer et al., 2002).  They were sexed under 105 

a microscope at 25x before putting them on experimental birds.  Half of the birds (chosen at random) 106 

in each of the two fly-infested treatments had plastic attachments fitted to their bill to impair their 107 

ability to preen.  The attachments are small C-shaped pieces of plastic that, when fitted in the nares of a 108 
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 6 

pigeon, create a 1.0 - 3.0 mm gap between the mandibles.  This gap prevents the full occlusion of the 109 

bill needed for effective preening (Clayton et al., 2005).  The attachments are harmless; they do not 110 

impair feeding or alter the amount of time that birds attempt to preen (Clayton and Tompkins, 1995; 111 

Koop et al., 2011).  112 

To address our first question whether pigeons preen more when they are infested with flies, we 113 

compared the behaviour of birds with normal (unimpaired) preening with and without flies.  Preening 114 

behaviour was quantified using instantaneous scan sampling between 13:00 and 16:00 hours (Altmann, 115 

1974). Preening was defined as touching the plumage with the bill (Clayton and Cotgreave, 1994).  116 

Birds were observed at 6 s intervals (Clayton, 1990) for 30 observations per bird per day, for 5 days 117 

following infestation.  We calculated the proportion of time that birds spent preening.  118 

To address our second question whether preening is effective in killing flies, we compared the 119 

number of flies killed by birds with impaired preening to flies killed by birds with normal preening.  120 

The experiment lasted 1 week, after which one of the authors (JL Waite) removed dead flies from the 121 

bottom of each cage; food and water dishes were also checked for dead flies.  Another author (AR 122 

Henry) re-examined all cages to ensure that nothing was overlooked.  Damage to flies was observed 123 

and recorded under a microscope at 25x.  Flies were scored as preening-damaged if the head, thorax, 124 

abdomen or at least one wing was crushed or missing, or if at least three legs were missing.  We 125 

calculated the proportion of flies with preening-damage out of the total number of dead flies recovered 126 

for each host after 1 week.  127 

2.2. Experiment 2: Bill overhang 128 

Another 12 wild-caught (individually caged) pigeons were used for this experiment.  Birds 129 

were again blocked by location trapped and time in captivity.  Half of the birds, chosen at random, had 130 

their bill overhang trimmed away with a dremel tool.  The other half was sham trimmed, i.e. they were 131 
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 7 

handled but no part of the bill was removed (Fig. 1).  The trimming method, which is fully described in 132 

Clayton et al. (2005), does not harm the birds in any way.  One week after trimming (or sham 133 

trimming) all birds were sexed and weighed, and then each bird was infested with 20 flies (10 males, 134 

10 females).  Preening behaviour and fly mortality were quantified as in Experiment 1.  135 

 136 
2.3. Statistical analysis 137 

 Statistical analyses were performed in Prism® v. 5.0b (GraphPad Software, Inc.).  Data were 138 

analyzed using Mann-Whitney U Tests for comparisons between two groups.  ANOVAs were used for 139 

comparisons among three groups.  The sex ratio of pigeon hosts in each experiment was compared 140 

using a Chi-square or Fisher’s Exact test, as appropriate.  Values are presented as mean ± S.E.  Results 141 

were considered significant at P ≤ 0.05.  142 

 143 

3. Results 144 

Sex and body mass of hosts did not differ significantly by treatment in either experiment 145 

(Experiment 1: sex, Chi-square test, P = 0.77; mass, ANOVA, F2,21 = 1.47, P = 0.25; Experiment 2: 146 

sex, Fisher’s Exact test, P = 1.00; mass, Mann-Whitney U = 12.5, P = 0.42). 147 

 148 

3.1. Experiment 1: Preening and flies 149 

Birds infested with flies preened more than twice as much as birds without flies; birds with flies 150 

preened 23.49 ± 3.96% of the time observed, whereas birds without flies preened 11.21 ± 2.11% of the 151 

time observed; (Fig. 2).  The difference in preening rates between the two groups was statistically 152 

significant (Mann-Whitney U = 10.5, P = 0.03).  153 

Birds with normal preening killed twice as many flies as birds with impaired preening; birds 154 

with normal preening killed 43.75 ± 5.41% of flies, compared with 21.88 ± 5.74% of flies killed by 155 
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 8 

birds with impaired preening (Fig. 3A).  The difference in the number of flies killed was statistically 156 

significant (U = 11.0, P = 0.03).   157 

Birds with normal preening also damaged a significantly greater proportion of dead flies than 158 

did birds with impaired preening (Fig. 3B; Mann-Whitney U = 7.0, P = 0.01).  Of the dead flies 159 

recovered from normally preening birds, 44.6 ± 0.06% were damaged, while only 16.6 ± 0.13% of flies 160 

recovered from birds with impaired preening were damaged.   161 

 162 

3.2. Experiment 2: Bill overhang 163 

Removal of the bill overhang had no significant effect on preening time; birds without 164 

overhangs preened 12.96 ± 1.08% of the time observed, while birds with overhangs preened 16.81 ± 165 

3.90% of the time observed (Mann-Whitney U = 13.0, P = 0.47).  Birds with overhangs did not kill 166 

significantly more flies than birds with no overhang; birds with overhangs killed 50.83 ± 11.93% of 167 

flies, compared with 45.00 ± 11.76% of flies killed by birds with no overhang (Fig. 4; Mann-Whitney 168 

U = 15.0, P = 0.69).  Thus, the bill overhang was not a factor in the efficiency with which preening 169 

killed flies. 170 

 171 

4. Discussion 172 

We examined the effectiveness of preening against mobile ectoparasitic flies.  Pigeons 173 

experimentally infested with flies preened twice as much as pigeons without flies (Fig. 2).  Preening 174 

also proved to be effective against flies (Fig. 3A); we recovered twice as many dead flies from the 175 

cages of birds that could preen, compared with those that could not preen.  Pigeons were able to catch 176 

and crush flies (Fig. 3B), even though the flies are extremely adept at moving quickly and evasively 177 

through the feathers (Rothschild and Clay, 1952). 178 
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 9 

Removal of the bill overhang did not decrease the efficiency of preening significantly (Fig. 4).  179 

Clayton et al. (2005) showed that lice are crushed when birds preen by the mortar-and-pestle action of 180 

the tip of the lower mandible moving against the upper mandibular overhang.  Although the overhang 181 

is essential for controlling feather lice, our results show that it is not needed when preening flies, 182 

presumably because the flies are much larger and softer-bodied than lice.  Although preening proved to 183 

be an effective defence against flies, it did not eliminate all of them over the course of our week-long 184 

experiment.  Only one of 40 birds in the two experiments cleared itself completely of flies.  185 

Preening may have the added benefit of helping to protect birds from pathogens for which the  186 

flies are vectors.  In principle, preening can prevent transmission of pathogens if it kills infected 187 

vectors before they have an opportunity to bite the host.  The fly P. canariensis is a known vector of 188 

the blood parasites Haemoproteus columbae and Trypanosoma hannae (Fahmy et al., 1977; Mandal, 189 

1991).  JL Waite (unpublished data) recently showed that pigeons exposed to just five flies for 3 days 190 

can become infected with H. columbae.  In our study, only an average of 50% of flies placed on 191 

pigeons were killed during the week-long experiment (Fig. 3A).  Thus, even birds with relatively 192 

efficient preening may remain at risk of acquiring blood parasites.  If preening irritates flies, 193 

encouraging them to move between hosts, then preening might even have the effect of increasing 194 

pathogen transmission (Hodgson et al., 2001).  It would be very interesting to measure the impact of 195 

preening on pathogen transmission by hippoboscid flies among birds in a population. 196 

We found that pigeons infested with flies doubled the amount of time that they spent preening 197 

compared with controls (without flies) and compared with the typical rates of preening for other 198 

pigeons and doves (Clayton, 1990; Koop et al., 2011).  One might predict that experimental birds 199 

would spend even more time preening, given that they did not completely remove their infestations in 200 

most cases.  However, research on the cost of preening shows that it is energetically expensive.  When 201 
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 10 

birds preen, their metabolic rates increase by as much as 200% (Wooley, 1978; Croll and McLaren, 202 

1993).  The energetic cost of preening might explain why preening is an inducible defence against 203 

hippoboscid flies.  Additional indirect costs of preening include the time taken away from courtship 204 

behaviour, foraging and predator surveillance (Redpath, 1988).  Thus, in addition to the direct impact 205 

of hippoboscid flies on host fitness, flies may have indirect effects mediated by the energetic and time 206 

related costs of preening.  Indeed, there may well be a trade-off between the indirect cost of preening 207 

and the more direct costs of fly infestation.   208 
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 303 
Figure legends 304 

 305 

Fig. 1.  Rock Pigeon bill showing upper mandibular overhang before (A) and after (B) removal of the 306 

overhang.  The overhang grows back after several weeks.  Figure reproduced from Clayton et al. 307 

(2005).  308 

  309 

Fig. 2. Proportion of time that birds with and without flies spent preening.  310 

 311 

Fig. 3. Effect of preening and an example of preening damage. A) Proportion of flies killed by birds 312 

with normal versus impaired preening. B) Example of intact versus preening-damaged flies. 313 

 314 

Fig. 4.  Proportion of flies that were dead in cages of birds with and without bill overhangs. 315 
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