
Atomicity and Visibility in Tiny Embedded Systems

John Regehr Nathan Cooprider
University of Utah, School of Computing

{regehr, coop}@cs.utah.edu

David Gay
Intel Research Berkeley

david.e.gay@intel.com

Abstract

Visibility is a property of a programming language’s
memory model that determines when values stored by
one concurrent computation become visible to other
computations. Our work exploits the insight that in
nesC, a C-like language with explicit atomicity, the
traditional way of ensuring timely visibility—volatile
variables—can be entirely avoided. This is advan-
tageous because the volatile qualifier is a notorious
source of programming errors and misunderstandings.
Furthermore, the volatile qualifier hurts performance
by inhibiting many more optimizations than are neces-
sary to ensure visibility. In this paper we extend the
semantics of nesC’s atomic statements to include a visi-
bility guarantee, we show two ways that these semantics
can be implemented, and we also show that our better
implementation has no drawbacks in terms of resource
usage.

1. Introduction

The nesC [5] language is a C dialect designed for pro-
gramming embedded wireless sensor network nodes. It
supports safe concurrent programming using anatomic
construct. This construct guarantees that a statement “is
executed ‘as-if’ no other computation occurred simul-
taneously.” These semantics do not addressvisibility,
which Alexandrescu et al. [1] define as addressing the
question: “Under what conditions will the effects of a
write action by one thread be seen by a read from an-
other thread?” In situations where a computation spins
waiting for the result of another computation, visibility
errors lead to deadlocks. In other situations data corrup-
tion is possible.

Atomicity on uniprocessor embedded systems is
easily implemented by disabling interrupts. This im-
plementation is extremely lightweight compared to soft-
ware transactional memory, but it lacks a visibility guar-
antee. Since small uniprocessor embedded systems do
not have caches, compiler optimizations are the only
issue that must be considered when making visibility
guarantees.

bool flag = false;

// interrupt handler

void __vector_5 (void)

{

atomic flag = true;

}

void wait_for_interrupt(void)

{

bool done = false;

do {

atomic if (!flag) done = true;

} while (!done);

}

Figure 1. nesC code containing a visibility er-
ror

Until now, nesC has left it to programmers to en-
sure visibility by judicious use of C’svolatile qual-
ifier. In this paper we investigate the idea of strength-
ening nesC’s memory model such that the semantics of
atomic are augmented with a visibility guarantee. This
change results in a novel design point for lightweight
atomicity in a C-like language that reduces program-
mers’ effort and opportunities to make subtle errors. We
present, and evaluate the performance and code size im-
pact of, two implementations of the new semantics.

2. Problems withvolatile

In C and nesC, a volatile variable is one where every
source-level read or write is guaranteed to correspond
to a load from or store to a physical memory location.
Furthermore, the compiler must not reorder these loads
and stores. In effect, volatile variables are exempt from
most compiler optimizations. Volatiles are used to im-
plement communication between concurrent flows and
also to ensure that hardware registers are accessed prop-
erly.

Figure 1 shows nesC code that is unlikely to
work. When this code is compiled for two pop-

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:regehr@cs.utah.edu
mailto:coop@cs.utah.edu
mailto:dgay@intel-research

ular sensor network platforms, Mica2 and TelosB,
wait for interrupt spins on a register instead of on
the actual flag variable. The problem would not have
occurred if the developer had declaredflag as volatile.

Our experience is that developers do not do a good
job of declaring variables as volatile. This problem is
common enough to appear at the top of the “frequently
asked question” list for the AVR port of the GNU C
Library [2]. Similarly, a simple inspection of the code
base of TinyOS 1.x [6], an operating system for wire-
less sensor network nodes written in nesC, shows that
volatile is used to declare 18 variables in 157k lines of
code. Clearly, most shared data is not declared volatile.
The data in Table 1, described in more detail in Sec-
tion 5, support this claim. Part of the problem is that
there are a variety of situations in which code may work
even when a shared variable is not declared volatile. For
example, a register may not be available in which to
cache a shared variable. Similarly, the scope in which a
shared variable is allocated to a register may end in time
for a value to be pushed to RAM before it is needed.
Our sense is that the latter case is most common in
TinyOS applications, where an important synchroniza-
tion idiom is for an interrupt handler toposta task that
runs at a later time. The end of the interrupt handler
serves as an implicit memory barrier, forcing the results
of its computations to be flushed to RAM. However, it
is clear that in many cases, implicit visibility is fragile,
and code making improper use of volatile can be bro-
ken by a change in compiler version, compiler flags, or
phase of the moon.

Another problem with volatile variables is that
they are overkill: they affect all accesses to a vari-
able, whereas visibility only requires that the final ac-
cess in an atomic section be forced to RAM. Since
they are such a blunt tool for inhibiting compiler opti-
mizations, declaring too many variables as volatile hurts
performance. Developers of resource constrained sys-
tems tend to use a trial-and-error approach to declaring
volatiles: initially few variables are volatile, and then
more volatile qualifiers are added in order to fix bugs
that are observed during testing.

3. Visibility Semantics for nesC

nesC encourages the use of a static programming model
with no dynamic memory allocation. Thus, in the rest
of this paper we will discuss concurrency, atomicity and
visibility in terms of variables rather than more general
memory objects.

nesC’s concurrency model divides global variables
into three categories: synchronous, asynchronous, and
racing. Synchronous variables are not modified by con-

current code. Asynchronous variables may be modi-
fied by concurrent code, but only inside atomic sections.
Racing variables are those that may be concurrently
modified from outside of an atomic section. Of these
categories, we are interested only in asynchronous vari-
ables. Synchronous variables require no visibility guar-
antee, and racing variables have platform-dependent be-
havior.

We propose updating the semantics of nesC’s
atomic construct, so it guarantees that a statement

...is executed ‘as-if’ no other computation oc-
curred simultaneously, and furthermore any
values stored to asynchronous variables from
inside an atomic statement are visible inside
all subsequent atomic statements. No guaran-
tee is made about asynchronous variables ac-
cessed outside of atomic sections (racing vari-
ables).

4. Implementing Visibility

The nesC compiler produces a single C file as output,
which is then passed to a regular C compiler. Atomic
statements are compiled by calling target-specific in-
trinsic functions at the start and end of each atomic sec-
tion. We extended this compiler with two implementa-
tions for our visibility semantics; both are straightfor-
ward.

The first is to mark all asynchronous variables as
volatile in the generated C code, and any pointers used
to access them as pointer-to-volatile. This is overkill
but it is clearly correct: all loads and stores to these
variables are forced to go to RAM.

The second implementation is to strengthen the
nesC intrinsic functions that start and end atomic sec-
tions (which until now simply disabled and enabled in-
terrupts) with compiler-level memory barriers. These
barriers stop the compiler from retaining copies of vari-
ables in registers across a barrier: values are flushed to
RAM before the barrier and reloaded afterwards. Again
we believe this implementation to be correct, even
though the analogous use of memory barriers around
mutex lock and unlock operations is not sufficient, as
pointed out by Boehm [3]. We discuss this issue further
under related work. Our second transformation enables
a minor performance optimization where the volatile
qualifier can be removed from asynchronous variables
that have already been declared as volatile.

While memory barriers cannot be portably speci-
fied,1 they are supported by many C compilers. For in-

1The common idiom of calling an external function would not
seem sufficient to prevent optimization of static global variables.

2

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

application (loc) sync async race vol
blinktask (1871) 18 4 0 3
osc (5587) 34 25 7 3
genericbase (6941) 51 57 1 4
rfmtoleds (7401) 57 46 7 4
cnttoledsandrfm (7810) 68 50 8 4
micahwverify (8131) 68 50 8 4
sensetorfm (8259) 67 54 8 4
testtimestamping (8308) 60 57 22 5
surge (10657) 117 53 10 4
ident (11146) 101 50 8 4
hfs (12284) 118 51 17 4

Table 1. Kinds of variables in the TinyOS ap-
plications that we use to evaluate our work.
The volatility of a variable is independent of
whether it is synchronous, asynchronous, or
racing.

stance, in gcc (used as a backend for all current nesC
targets), a memory barrier can be written as

asm volatile("" : : : "memory");

5. Evaluation

This section evaluates the effect of the visibility imple-
mentations on code size and duty cycle. Duty cycle is
the percentage of application running time during which
the CPU is active (as opposed to sleeping in order to
save power). We measure duty cycles using Avrora [7],
a cycle-accurate sensor network simulator.

The applications under consideration are a
representative collection of example applications
from the TinyOS 1.x CVS tree (available from
sourceforge.net). Table 1 shows, for each applica-
tion and the TinyOS components that it uses, the size
(in lines) and number of synchronous, asynchronous,
and racing variables. Note that these categories are
mutually exclusive. The target platform is the Mica2
from Crossbow [4], a sensor network node based on
Atmel’s ATmega128, an 8-bit RISC processor. Our
toolchain uses nesC 1.2.7a and gcc 3.4.3.

Figure 2 shows the impact of our transformations
on object code size. The baseline for code size is the
executable generated by the unmodified nesC toolchain.
Making asynchronous variables volatile bloats code
size by about 6%, on average. While this is not pro-
hibitive it could be a problem for large applications.
On the other hand, adding memory barriers to nesC’s
atomic intrinsics actually reduces code size slightly, on
average. The cause for this effect is not obvious since

memory barriers strictly reduce the number of optimiza-
tions that the compiler can apply, and gcc is invoked
with its optimize-for-size flag.

Figure 3 shows the impact of our transformations
on application duty cycles. Again the baseline is the
duty cycle of the executable generated by the unmodi-
fied nesC toolchain. Adding the visibility guarantee has
no clear effect in either direction on application perfor-
mance, and the differences are at most a few percent.

6. Related Work

Boehm [3] discusses why C cannot reliably be used for
threaded (concurrent) programming without compiler
knowledge of threads. In particular, he shows that the
common approach of ensuring that mutex lock and un-
lock operations contain compiler-level memory barri-
ers is not sufficient to ensure correctness. Our modifi-
cations to nesC do not suffer from the three problems
he identified. The requirement in nesC that all shared
variables be updated within atomic sections avoids the
“concurrent modification” (locks are only required if
there are races, but compiler transformations may in-
troduce races) and “rewriting of adjacent data” (e.g.,
accesses to different but adjacent bitfields in differ-
ent threads) problems.2 The fact that nesC’s atomic
sections are syntactic statements avoids the problem
of optimizations around conditionally executed locking
statements.

7. Conclusion

Visibility of data modifications is an important part
of correct concurrent programming. We observe that
programmers of C-like languages typically fail to en-
sure visibility through the use of thevolatile type
qualifier; thus visibility should be ensured at the lan-
guage level. We show that in nesC, a language targeted
at resource-constrained wireless sensor network nodes,
visibility can be guaranteed by a small change to the
compiler, and without any significant performance im-
pact.

References

[1] Andrei Alexandrescu, Hans Boehm, Kevlin
Henney, Doug Lea, and Bill Pugh. Memory
model for multithreaded C++, September 2004.

2We do assume that updates to two variables adjacent in memory
cannot cause data races. This is true of all platforms in widespread
use that we know of. It wasn’t true for, e.g., early versions of the
Alpha microprocessor.

3

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

visibility implementation 1 −− asynchronous variables volatile
visibility implementation 2 −− atomic sections use memory barriers

 −2%

 0%

 2%

 4%

 6%

 8%

 10%

av
er

ag
e

hf
s

id
en

t

su
rg

e

te
st

tim
es

ta
m

pi
ng

se
ns

et
or

fm

m
ic

ah
w

ve
ri

fy

cn
tto

le
ds

an
dr

fm

rf
m

to
le

ds

ge
ne

ri
cb

as
e

os
c

bl
in

kt
as

k

C
ha

ng
e

in
 c

od
e

si
ze

Figure 2. Change in code size relative to a baseline which does not provide visibility guarantees

visibility implementation 1 −− asynchronous variables volatile
visibility implementation 2 −− atomic sections use memory barriers

 −3%

 −2%

 −1%

 0%

 1%

 2%

 3%

 4%

av
er

ag
e

hf
s

id
en

t

su
rg

e

te
st

tim
es

ta
m

pi
ng

se
ns

et
or

fm

m
ic

ah
w

ve
ri

fy

cn
tto

le
ds

an
dr

fm

rf
m

to
le

ds

ge
ne

ri
cb

as
e

os
c

bl
in

kt
as

k

C
ha

ng
e

in
 d

ut
y

cy
cl

e

Figure 3. Change in duty cycle relative to a baseline which does not provide visibility guarantees

4

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2004/n1680.pdf.
[2] AVR C Runtime Library Project. AVR libc Frequently

Asked Questions, 2006. http://www.nongnu.org/
avr-libc/user-manual/FAQ.html.

[3] Hans-Juergen Boehm. Threads cannot be implemented
as a library. InProc. of the ACM SIGPLAN 2005 Conf.
on Programming Language Design and Implementation
(PLDI), pages 261–268, Chicago, IL, June 2005.

[4] Crossbow Technology, Inc.http://xbow.com.
[5] David Gay, Phil Levis, Robert von Behren, Matt Welsh,

Eric Brewer, and David Culler. The nesC language: A
holistic approach to networked embedded systems. In
Proc. of the Conf. on Programming Language Design
and Implementation (PLDI), pages 1–11, San Diego, CA,
June 2003.

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System architecture
directions for networked sensors. InProc. of the 9th Intl.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 93–104,
Cambridge, MA, November 2000.

[7] Ben L. Titzer, Daniel Lee, and Jens Palsberg. Avrora:
Scalable sensor network simulation with precise timing.
In Proc. of the 4th Intl. Conf. on Information Processing
in Sensor Networks (IPSN), Los Angeles, CA, April 2005.

5

 U
U

 IR A
uthor M

anuscript U
U

 IR A
uthor M

anuscript

University of Utah Institutional Repository
Author Manuscript

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1680.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1680.pdf
http://www.nongnu.org/avr-libc/user-manual/FAQ.html
http://www.nongnu.org/avr-libc/user-manual/FAQ.html
http://xbow.com

	Introduction
	Problems with volatile
	Visibility Semantics for nesC
	Implementing Visibility
	Evaluation
	Related Work
	Conclusion

