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Purpose: This study had three objectives: (1) to characterize the structures of the chicken GCAP1 and GCAP2 genes; (2) 
to determine if GCAP1, GCAP2, and GC1 genes are expressed in chicken pineal gland; (3) if GC1 is expressed in chicken 
pineal, to determine if the GC1 null mutation carried by the retinal degeneration (rd) chicken is associated with degenera
tive changes within the pineal glands of these animals.
Methods: GCAP1 and GCAP2 gene structures were determined by analyses of chicken cosmid and cDNA clones. The 
putative transcription start points for these genes were determined using 5'-RACE. GCAP1, GCAP2 and GC1 transcripts 
were analyzed using Northern blot and RT-PCR. Routine light microscopy was used to examine pineal morphology.
Results: Chicken GCAP1 and GCAP2 genes are arranged in a tail-to-tail array. Each protein is encoded by 4 exons that 
are interrupted by 3 introns of variable length, the positions of which are identical within each gene. The putative tran
scription start points for GCAP1 and GCAP2 are 314 and 243 bases upstream of the translation start codons of these 
genes, respectively. As in retina, GCAP1, GCAP2 and GC1 genes are expressed in the chicken pineal. Although the GC1 
null mutation is present in both the retina and pineal of the rd chicken, only the retina appears to undergo degeneration. 
Conclusions: The identical arrangement of chicken, human, and mouse GCAP1/2 genes suggests that these genes origi
nated from an ancient gene duplication/inversion event that occurred during evolution prior to vertebrate diversification.
The expression of GC1, GCAP1, and GCAP2 in chicken pineal is consistent with the hypothesis that chicken pineal 
contains a functional phototransduction cascade. The absence of cellular degeneration in the rd pineal gland suggests that 
GC1 is not critical for pineal cell survival.

The pineal glands of several lower vertebrates, including 
birds [1-4], fish [5,6], and reptiles [7], have been shown to be 
directly responsive to light stimulation. The light transduc
tion mechanism in the pineal glands of these species is not 
known; however, immunocytochemical, biochemical, and 
physiological data suggest that pineal photoreception in lower 
vertebrates may involve a transduction cascade similar to that 
found in retinal photoreceptors [8].

In rod and cone photoreceptors, calcium and cGMP are 
internal transmitters that are essential for phototransduction 
and its regulation [9]. After photobleaching, and as a result of 
activation of the cascade, cGMP levels drop and cGMP-gated 
cation channels close. Closure of these channels reduces the 
cationic dark current and intracellular calcium levels drop from 
~700 nM to less than 100 nM due to continued expulsion of 
calcium from the cell by light-insensitive Na+ / Ca2+-K+ ex
changer. In the presence of low intracellular calcium, Ca2+- 
binding proteins, termed GCAPs, stimulate production of 
cGMP through interactions with photoreceptor guanylate cy
clase (GC), a single subunit member of the particulate 
guanylate cyclase family. As cGMP levels increase, the cGMP- 
gated channels reopen and the dark current is reinstated. Thus,
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the GCAP/GC regulatory system plays a key role in the re
covery of the rod and cone photoreceptors in the retina fol
lowing light stimulation.

Three GCAPs (GCAP1-3) [10-13] and one GCAP-like 
protein (GCIP) [14] have been characterized in the vertebrate 
retina. The diversity in calcium binding proteins in retina is 
matched by the presence of at least 3 particulate guanylate 
cyclases in this tissue [15-18], two of which are present in 
photoreceptors [19]. In chicken retina, two GCAPs (GCAP1 
and 2) [20] and one particulate cyclase (GC1) [21] have been 
identified. Recent analyses of the retinal degeneration (rd) 
chicken confirm the importance of GC1 in maintaining the 
normal functioning of retinal photoreceptors. A re-arrange
ment in the GC1 gene that results in a null allele is postulated 
to underlie the absence of function in the photoreceptors of 
this retina at hatch, and the eventual degeneration of the pho
toreceptor cells [21].

If chicken pineal photoreception involves a transduction 
cascade similar to that observed in retina, then both GCAP 
and GC1 should be expressed in this tissue. Our analyses es
tablish that GCAP1, GCAP2, and GC1 are expressed in nor
mal chicken pineal, and that the rd pineal gland does not ex
press functional GC 1. No evidence of pineal degeneration was 
observed in 3-month-old rd chickens suggesting that, unlike 
the situation in retinal photoreceptor cells, the absence of GC1 
in the pineal gland is not detrimental to pineal cell survival.
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METHODS
Isolation and Analyses o f  Genomic Clones: Random primer- 
labeled GCAP1 and GCAP2 cDNA probes were used to screen 
a chicken pWE15 cosmid library (Clontech, Palo Alto, CA). 
Colony filters were hybridized overnight at 42 °C in a solu
tion containing 50% formamide, 5X SSC, 1X Denhardt’s, and 
0.2 mg/ml salmon sperm DNA. Filters were washed 3 times 
for 30 min each at 60 °C in a solution containing 0.1X SSC 
and 0.1% SDS. Several cosmid clones were isolated; one of 
these clones was selected for further analyses. The structure 
of the GCAP gene array was determined by sequencing re
striction and PCR-generated subclones of the cosmid clone. 
All DNA sequencing was done using a Li-Cor Model 4000L 
automatic DNA sequencer (Li-Cor, Lincoln, NE) and Excel 
DNA polymerase (Epicentre, Madison, WI) for linear PCR 
amplification.

Northern Blot Analyses: Total RNA was isolated from 1 
to 3 day old normal and rd/rdchicken retina-pigment epithe- 
lium-choroid and pineal using a RNeasy total RNA kit (Qiagen, 
Valencia, CA). Care and handling of animals was conducted 
using procedures approved by the University of Florida Insti
tutional Animal Care and Use Committee in accordance with 
guidelines published by the Institute for Laboratory Animal 
Research. Samples, each containing 10 p,g of RNA, were elec- 
trophoresed in a 1.1% formaldehyde gel. Blots were prepared 
as previously described [22] and were probed sequentially 
using random-primed 32P-labeled cDNA probes for chicken 
GC1, GCAP1, GCAP2 and 18S rRNA. Blots were exposed to 
Kodak BioMax film as follows: GC1, GCAP1, GCAP2 24 h 
at -70 °C; 18S rRNA 20 min at room temperature.

RT-PCR: Total RNA (0.5 pg for normal retina and pi
neal; 1.0 p,g for rd/rd retina and pineal) was reverse-transcribed 
and amplified with primers specific for GC1 (178, 5-CCT TCC

CCC TGC CCT ACC AC; 156, 5-CTT GCA GAA GGC CAG 
CTT GG), GCAP1 (216, 5-CCA GTT TTG GCT GCA GAG 
TGA C; 215, 5-TCA CAG CCC ATT TCG TGT CAG), and 
GCAP2 (164, 5-TCA GAT AGA GGC GTG GAA CA; 59, 5- 
GAG CCA CAG CCA CAG TCT). RT-PCR was carried out 
using a GeneAmp RNA PCR kit (Perkin Elmer, Norwalk, CT) 
and the following cycle parameters: 95 °C for 2 min; 95 °C 
for 1 min, 60 °C for 1 min, 72 °C for 2 min (35 cycles); 72 °C 
for 10 min; 4 °C soak. For each RT-PCR analyses, appropriate 
control reactions were run. The RT-PCR controls included re
actions in which the reverse transcription step was omitted, 
reactions in which only one of the primers was included in the 
PCR reaction, and RT-PCR in the absence of template. To 
control for the presence of trace amount of genomic DNA in 
the samples, all primers were designed so that PCR products 
generated from genomic DNA would include intron sequences. 
All amplified products were cloned into the pCR2.1 vector 
(Invitrogen, Carlsbad, CA) and sequenced to confirm their 
identities.

5-RACE: The 5'-RACE protocol used to analyze both 
GCAP1 and GCAP2 was identical with the exception of the 
sequence-specific primers. Total RNA (1 p,g extracted from 
normal chicken retina) was reverse transcribed using rTth DNA 
polymerase (Perkin Elmer). The final 20 p,l reaction contained 
1X rTth reverse transcriptase buffer, 1 mM MnCl2, 5 U rTth 
DNA polymerase, 200 pM each dNTP, and 1 p,M GCAP1 (5'- 
GAC GGG CTC AGG TTT TTC AAG) or GCAP2 (5'-TTT 
CCC CGT AAA ACA AGA TTC A) sequence-specific, 
antisense primer. The reaction was incubated at 65 °C for 15 
min and was stopped by placing the tube on ice. Excess primer, 
dNTPs and buffer were removed from the reaction using a 
QIAquick PCR Purification kit (Qiagen) according to the rec
ommended protocol. In the final step of the procedure, the

Figure 1. Physical map of the chicken GCAP gene array. The cosmid clone containing the GCAP2/GCAP1 gene array contained a 23 kb insert, 
which was subcloned into four Eco RI fragments (ccos 20, 6, 24, 16). GCAP2 and GCAP1 are each encoded by four exons that are depicted 
as boxes: the coding portions for GCAP2 are light blue and those for GCAP1 are dark blue. Non-coding regions of the exons are light gray for 
both GCAP2 and GCAP1. Introns and flanking sequences are depicted as lines. The GCAP2 and GCAP1 genes each contain 3 introns, the 
sizes of which are shown in bp above the lines indicating the relative positions of the introns. Each intron has been given a letter designation 
(GCAP2, a-c; GCAP1, A-C) which corresponds to those shown in Figures 2 and 3. Regions of the cosmid clone that were not sequenced are 
indicated by the light purple boxes. The direction of transcription is indicated for GCAP2 and GCAP1 genes with gray arrows.
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DNA/RNA was eluted from the column using 30 pl of 10 mM 
Tris-HCl, pH 8.5. A poly dATP tail was added to the single
stranded cDNA present in the sample using terminal 
deoxynucleotidyl transferase (Promega, Madison, WI). The 
50 pl reaction mixture contained 30 pl of DNA/RNA, 1X ter
minal transferase reaction buffer, 200 p,M dATP, and 25-50 U 
terminal transferase. The mixture was incubated at 37 °C for 
10 min and the reaction was stopped by heating at 70 °C for 
10 min. Excess dATP and buffer were removed from the reac-
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tion as described above. Second-strand cDNA synthesis was 
carried out using AmpliTaq DNA polymerase (Perkin Elmer) 
and a poly d(T) anchor primer (5'-GCG GTA CCT CGA GAA 
TTC TTT TTT TTT TTT TTT). The final 100 p,l reaction con
tained 30 p,l of tailed cDNA, 5 U AmpliTaq, 2 mM MgCl2, 
200 p,M each dNTP, 0.2 ^M anchor primer, 1 X PCR buffer. 
The reaction was incubated at 40 °C for 5 min in a Perkin 
Elmer DNA Thermal Cycler. Following the 5 min incubation, 
the temperature of the sample was ramped to 72 °C and held 
at 72 °C for 2 min. The sample temperature was then increased 
to 80 °C and held at this temperature while the sequence-spe
cific primer used in the RT step and a nested anchor primer 
(5'-GCG GTA CCT CGA GAA TTC TT) were added to the 
reaction (final concentration of these primers was 0.2 pM). 
The GCAP cDNA fragments present in the sample were then 
amplified using the following cycle parameters: 94 °C for 1 
min, 60 °C for 1 min, 72 °C for 2 min (30 cycles); 72 °C for 
10 min; 4 °C soak. To complete the 5'-RACE, 1 pl of a 1:10 
dilution of the PCR product was re-amplified using the nested 
anchor primer and a nested sequence-specific primer for 
GCAP1 (5'-GGG CAC TCC GTC ATG AAC TTC) or GCAP2 
(5'-GGT TAT CCT GGA CGC CGA AGA A). The PCR cycle 
parameters were as follows: 94 °C for 1 min; 94 °C for 1 min, 
65 °C for 1 min, 72 °C for 2 min (35 cycles); 72 °C for 10 
min; 4 °C soak. The resulting product was run on an agarose 
gel, purified, and cloned into the pCR2.1 TOPO cloning vec
tor (Invitrogen). Resulting clones were sequenced as described 
above.

Light M icroscopy: The pineal glands of 3 to 4 day old 
and 79 day old normal and rd/rdchickens were fixed for sev
eral days in 4% paraformaldehyde in phosphate-buffered sa
line at 4 °C. The tissue was embedded in paraffin and 10 pm 
thick sections were processed and stained with cresyl violet. 
Stained sections were examined and photographed using a 
Zeiss Axioplan microscope.

RESULTS
Chicken GCAP1 and GCAP2 Gene Structures: Human [23] 
and mouse [24] GCAP1 and GCAP2 genes are arranged in a 
tail-to-tail array in which the regulatory sequences governing 
expression of the genes are located on opposite ends of the 
array. As a consequence of this arrangement, transcription of

Figure 2. Sequence of the chicken GCAP1 gene. GCAP1 is encoded 
by 4 exons (shaded in light blue). Intron sequences are shown in 
lower case. The residues corresponding to the predicted EF hand Ca2+- 
binding domains are shaded in blue. The translation start (ATG) and 
stop (TAA) codons are shown in white on navy blue. A possible 
polyadenylation signal for GCAP1 is boxed in the 3'-UTR. The prim
ers used in the 5'-RACE experiment are indicated in white on black 
backgrounds. A blue arrow labeled cDNA in the 5'-UTR indicates 
the 5' extent of the GCAP1 cDNA clones analyzed previously [20]. 
The blue text interrupted by red residues shows a repeated sequence 
that is present in the 5'-UTR. The positions of the putative tsp deter
mined by 5'-RACE is indicated with a red arrow. A putative TATA 
box (+ strand, purple box), putative CAAT box (- strand, green box), 
Crx-like elements (+ strand, orange boxes), and a CREB/ATF-like 
element (- strand, blue box) are indicated in the proximal promoter 
region. The GCAP1 gene sequence is in GenBank as Accession num
ber AF172707.
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the GCAP genes proceeds along opposite strands of the DNA. 
Characterization of a single chicken cosmid clone encoding 
GCAP1 and GCAP2 revealed an identical gene arrangement 
in this species (Figure 1). The chicken GCAP array is con
tained in less than 11 kb of genomic DNA compared to the

AGGAGGAGGT GGACTATGAT 
AAAGAGCCTC AGGTTTTGAG

TGTTGGTTTC ATTGAAAATG

T G A T A A A T C T  T T A T A A C T C T

TGTGTAAGGT GTCCATTAAC

TATTTGCT cfr~ TAATGljrTCT

TGAAAiJcAGG TG^^ATGTgI:

A G T T A A T T A A  A A A C G T A A C G

GTTCCAAAAT TCTTCAGCGT

C T G C T T C T A A  A TAGG ^,

[TCTCCjr A A T C  A T C T T A G T T A

CACAGAGAAC AGCTCTGTGA

GACATGGAAG
ACAATAGACA

CAGAGTATTG
TTTCTGTATA

AACAGCAAAA
GAAAGAAAAA

CAGAAGGAAT 
TAAAAJLGCCG

TGGCTTTGGG

ATTA^LCTGTG

gJat g t g t t t

GGAGCCCTCC

ATTATCTTCA

GGGAAGCTAA

CCTCTGCAGC

TGGGTGGGAA

TCTGCCCCAG prcDNA 
GCTGGGCAGG TGGGCACAGC

•522

•462

•402

•342

282

•222

162

•102

-42

+19

+79

CTGGGGAAGG AGAAATTAAG AGGCAATAGC AACAAACAAG CCCAATATCC ACATCAGATA +139 

GAGGCGTGGA ACAGCAAGGA AAAGAAAAAG CAGCTAAAGG TGCTATAAAG GACCGTGCAA +199

GCAAAGGGAT TTGGATTTTC TCTTCTCCCA CTTTCCGGAG C.

CCAACGCTGA AGGGGAACAG ACAGAGATCG ACGTTGCTGA ATTGCAGGAA TGGTATAAGA 
T N A E  G E Q T E I  D V A E  L Q E  W T K 
AATTTGTGGT TGAATGTCCC AGTGGAACCC TCTTCATGCA TGAATTCAAG AGGIiiiAIhhHE 
K F V V E C P  S G T  L P M H  E P K  R

GAA GCAGCAGAGT ACATTGAAAA CATGTTCAGA GCTTTTGATA 
Q V V: D N H E  A A E  T I E N  M F R A F D 

■ g a g t t c t ta t  g c t g g t t t g t  c a g tgc tcag  c a c c t t tc c t

Exon 1

cctgcaaaat g ca gg tc ttc  
gaaggggcac agaccgcagc 
gactaaaggc agaacatcct 
ggcag tcg ta  t t tg c g g c a a  
gaaaaagtct g tta tg c ca g  
ta ta ta tg c a  ggtggca tga  
cgg c c ta ttc  agacc tcctg  
gca tgggg ta  c t t tc c c c a g  
a ta c g t tc tc  a tg c g t ta g t  
g tg taaaa tg  c t t g c c t t t c  
t tc tg a a g c t  c t t g c t t g c g  
cca tca g ttc  agcactgagg 
tcag tgaggc  t c t c t c t t t t

tg g tg c a g c t
g c tg tg c a tg
ta t tg g a a tg
ta t ta c tg a a
ggggg tta ca
acaaagcact
g t t t g g a t t c
g gc tcc tg gg
gcaaaagata
tc a tc t tg a a
ttcaa agcag
tt t tg c a a g c
cttcagGATA

cccacccaca 
ggc tggga tg  
t t t g ta g a t g  
aggtca tcca  
g tga c ttga t 
g a ttg ca g tt 
c c t t t  gctgc 
caagcaggct 
gc a t a a t get 
aegggtgagg 
cacagatcct 
g g t t t t c t a t  
ACACCATTGA 
N T I  D

gcg tg tg c tc  
gcctcacaaa 
gactgaaagg 
a tta tcaaag  
aegeagtaga 
gctcagaagc 
agggaaaagg 
t t c t  g g t t ta  
c tc c tg ta a t  
g a tg e ttga e  
cccagcccat 
c ag tca tgcc  
TTTTCTGGAA

caatgggaca 
tcagcacgc t 
t t t a a g tg t a  
getgaa tggg  
agt g tg tg ta  
aaaggaatgt 
aggcaccctt 
g tg g c a g ttt  
a ttca tagaa  
a c t c t t a t t t  
g ca g ta tca t 1 
cagttaagca  
TACGTGGCTG 
I T  V A

&CTGG AGCACAAGCT GAGGTGGAC G TTCAAAGTGT Exon 2
ATGACAAGGA TGGGAATGGC TGCATAGACA AACCTGAGCT GCTAGAAATT GTTGAGgtaa

g tca gca ttg  
c t c c g t t t t t  
a ccc tgg t ga 
t g t  caggt g t 
c tc c tc cca g  
aactagcaga 
t t t a a t t a g t  
aa c tg g cc tt 
tc g tg g c c a t  
aaagaactca 
tg g t g t g t  ca 
caggttcaa t 
t ta a tc c c c t  
gatgagcagg 
agtggagcag 
aggggctgtg  
caggccctag 
c t t g c c t tg t  
acagcttcaa  
tcaaaagagg 
a a t ttc a tca  
TCCATCTACA SIT 
AC ACCAGAGG 

T P E 
gagctga tgg  
g t t t t a a t t a  
t t t g g t t c t g  
t g t t c c t a t t  
c tgagagccc 
c tgca gggtg  
cccaaaggga 
t g t  agccagc 
t t g t c c t c t t  
cccacacagG

AAAGTGCTTT 
K S A L 
GGCTGTGGCT 
CAGATGAAAA 
GACTCCTGGG 
CCACTCTGGG 
CTGGGCAGCA 
CCATCTCTGC 
AAGCAATGGC 
TTCATAAAAT 
CCCATGTATT 
GGAAAAGGCA 
GAACAGATTC 
GGTGTCACTG 
ACAGAAAATC 
GCCACTCTGC 
ATATCTGACC

N Q 

c c tc a tc tg t  
g tga ta a c tg  
agggtcagag 
t t ta c a tc a g  
cagccaggct 
gaaatcccat 
gactgtgaag  
ta a c t tca gg  
a tc tg tg a gg  
gctgtggaaa  
ac ct-ggcagg 
t a t  g g t t c t g  
ctc tgggaag  
tg g c tg tc a c  
gaggtagggg 
ggttgggggc  
gaaaaagtcg 
tc c c tg ta a g  
ggcacagata 
tta a a gctgc  
c tg c t c t t c g  
AGCTGAAGAA 
K L K K 
AGGTTGTGGA 
E V V D 
ctca ga ttg c  
t g t t ta tc a a  
g t  c tg t tc g t  
t t  aatgtaaa 
acagcagcca 
t g c t t g tg a t  
tgggggggag 
tg acc tgcag  
c t t c t g t c t g  
CCAGCTGTCC

«  L  S 

GTTGCAAATG
L S M

g t t t H E jggp * 
CTGTGACTCC 
CTGCAGCGGC 
ACCCAGAGAC 
TTTTGTTACA 
TCTGGCCCAG 
AGGGCAGCGT 
AATAGGGGTG 
GTATGCATAT 
GTAGATTATA 
GCACATGGGC 
TGCTCCTTGC 
CCATGAGGAG 
CACTGCATGA 
AGAGAGAAAA 
CGTATACCTT

I
tg t t tc a g c a  
ag tttca a gg  
g g ttg g tg ga  
aacccgctg t 
tc c tg a a tg c  
t t g ta a t ta g  
g tg tgcgagg  
ta a acccctc  
t tc a a c tg a t  
g ea eg tc c tt 
gccaggggca 
aggtcagact 
acatcagaca 
g tcagg tgaa  
tc a g gg ta tg  
tg gga a g tg t 
ta ttgga a a g  
ggagctc tga  
gagcaatccc 
a g e c t t tg ta  
t t t tc c a a g c  
AGTGTGTCGA VCR 
CAGGATATTT RIF 
a ttca tg c a t  
g a a a ttg c tt  
ggtcagagct 
a ta tcacca t 
cagagt gcat 
cctggcacag 
cgaatgaatg  
a g t t t g ta t g  
a tc tg tc c tg  
CTGGATGAGT 

L D E

K
atcacagttc  
cagctgtggg  
gcccagcagt 
cctggccaag 
acagcgcctg 
g c c t t tc tg g  
aggcatgtgg  
agggactg tg  
g c t tg ta tg a  
ttgagagcca  
gctggggagc 
ggaa ttggcc 
a a a ctc ttca  
ggtgaaaaat 
tg c tg tg c a g  
aggggagcct 
g ca g g tt t t c  
g g tc ttga c c  
t g g t g t g t g t  
aaaggcctct 
c t t t c t t c t g  
TCAGAGGTGG 

S E V 
CAGTTGGTGG 

L V 
gatgaaaagt 
agaat gateg 
gggagcagct 
t c tg tc tg c a  
cccagcctg t 
ccgtgtgagc 
gat gg g g t t  a 
gggaaaacag 
t t t t g t c t c c  
TCATCGATGG 
F I  D G

I I
tg tggcaacg  
cageaaagcg 
g c tg tga g c t 
gggagagtgc 
agaa ta tge t 
g t t t c t g t t c  
g ttagcaggc 
ccagtca ctg  
tgggggtaaa  
gcagctggga 
a tctgggagc 
agagctgcg t 
gcc taa tgag  
g tg e e g t t te  
g tc g g g c ttg  
g g c c tt  ggct 
cca tc tgaag  
a g g t tc tg tg  
gagcc t aagg 
g ca ctgc tgg  
acctgtgaac 
AGGAGAGGAC

ta t c t c t g e t  
ca teac tcag  
tgg tgcagca  
tg e tgca cca  
aaactgcagc 
tgaca tgaca  
cagccc tga t 
g a gg tg g t t t  
c tg tc c tg tc  
GGC CAGGAAG ARK

t t g tg a tg c a  J 
acagcgcccg 
c a g gc c tttc  
t tc a g c c c tg  
gggaggcaca 
c g tg c t ta g t  ' 
agacacaggt 
c t tc a c c c t t  
tg caa tacca  
aatagcaact 
cggacctggg  ; 
ta g g ccc tcg  
cagagataat 
c taatggcaa 
cagctcaggc 
c tg c tc tg c t  ; 
g t t t t c c c a t  
aggaaagcaa 
tg g a tc t t t c  
taaaacaatg  
t t c c t t t c a g  ; 
TCCGCTGCTC 

P L L 
■ GGATGgtaag 
! D 

gggcaggctg  
a cgagttggg  
ggtggaaatc  ; 
g ca c tg t t c t  
ccaa tggt gc 
ctgcacactc  
a t t g g c c t t t  
t c a c t t c c t g  ; 
c tc c tc a c c t  
GACAAGTGGG 

D K W

intron b

Exon 3

GATGTAAACC CCGGGGGATG GATCTCAGAG CAGAGGCGGA 
D V N P G G W  I S E  Q R R  

AGCCCAGTTT TGACATGGCT GGAGATGTGA TGCAGACTGT

Exon 4

AGGATGTAGT 
TAAAGAAGCC 
TATTTTTGGC 
CCCCGAGGAA 
GCAACAGAGC 
CTGCATCACT 
CTCTGATGAC 
TTAGTGGATT 
AGGTTCATAC 
TGGGCAGGGG 
ACGTGGAATA 
GTGGCACTGC 
CTGAAGGGGT 
TTGGCACAGC 
CATAC CTGTA

GGCTTTCCTT 
ATATCTCAAT 
CCGTGAATAA 
CAAACTTTGC 
AGGGAAGTGA 
GATGTCTGCA 
AGTCTGCAAC 
ATACTACTAA 
TCAAGGTAAG 
GAGCAGTCAC 
AGGACTGCAG 
TCGGCTGGCA 
ATGGGCAGTT 
TTGGGGATTG 
TGAAAGAATT

GTCAATACAA 
CTAAACCCAT 
GTCTCTGTGT 
ATGGTGAAGT 
GAAGTCCTGG 
GACAACAGAT 
CGTCTGGAAT 
TAATGTAAAG 
CCAAGGGTAC 
TGCGAGTGCA 
GAAGAGCAGA 
GGGCTGGAGA 
TTACACCGGA 
ACGTCCGCTG 
CC

TCTCAGCATC ;
GTGCTGCGAG
GTACACAATG
GGAGCAGGAC
TGTGGTGGTG
GCTAACCCAA I
ACTGTTACGG
TGATTGAACA
ACGCAGCTGA
TCCCTCTGTG
GTCAGCTCAG *
ACAGGAGGGG
CTTTCACTGA
TTCTTACAGC

human and mouse GCAP genes which each span more than 
16 kb of DNA. The smaller size of the chicken array is due to 
smaller introns and a shorter intergenic region, which in 
chicken is less than 1 kb (human 4.5 kb). Existence of the 
GCAP gene array in chicken, mouse and human suggests that 
these genes originated from an ancient gene duplication/in
version event preceding vertebrate diversification.

As in mammals, the structures of the chicken GCAP1 
(Figure 2) and GCAP2 (Figure 3) genes are identical to each 
other. In addition, the positions of the intron/exon splice junc
tions in both genes are conserved between chicken, mouse, 
and human. The GCAP1 and GCAP2 proteins are each en
coded by 4 exons. In both genes, the first EF-hand Ca 2+-bind
ing domain is interrupted by the first intron, the second EF- 
hand domain is encoded by exon 2, and the last EF-hand do
main is interrupted by the third intron.

Proximal Promoters o f  the GCAP1 and GCAP2 Genes: 
We have tentatively assigned the transcription start point (tsp) 
of the GCAP 1 gene to a position 314 bp upstream of the trans
lation start point (ATG) by 5'-RACE. The sequences of all of 
the GCAP1 RACE clones analyzed (19 clones) matched the 
gene sequence of the cosmid clone, indicating that the 5' UTR 
is contiguous and that there are no introns in this region (Fig
ure 2). Analysis of the GCAP2 RACE clones (11 clones) indi
cated that the putative tsp of the GCAP2 gene is located 243 
bp upstream of the ATG (Figure 3). Both tsps are embedded 
within consensus cap signals (KCWBHYBY) [25] that are 
flanked at their 3'-ends with pyrimidine-rich sequences. Nei
ther gene possesses a canonical TATA box; however, AT-rich 
sequences resembling TATA boxes are present at -29 
(TTAAAT; GCAP1) and -20 (TATTATA; GCAP2) upstream 
of the predicted tsps. A putative CCAAT-box element is lo
cated on the antisense strand of GCAP1 at -50/-58 
(AGCCAATGA) and on the sense strand of GCAP2 at -83/
75 (AGCCAAGAA). The locations of these putative RNA 
polymerase II promoter elements are consistent with the posi
tions of the tsp sites identified using 5'-RACE.

In addition to the general eukaryotic promoter elements, 
we also searched the proximal promoter region of each gene 
for known consensus transcription factor binding sites using 
MatInspector at http://genomatix.gsf.de/cgi-bin/matinspector/ 
matinspector.pl [26]. Both proximal promoters contain puta
tive Crx sites (consensus C/TTAATCC) [27]. Three Crx-like

Figure 3. Sequence of the chicken GCAP2 gene. GCAP2 is encoded 
by 4 exons (shaded in light blue). Intron sequences are shown in 
lower case. The residues corresponding to the predicted EF hand Ca2+- 
binding domains are shaded in blue. The translation start (ATG) and 
stop (TAA) codons are shown in white on navy blue. The primers 
used in the 5'-RACE experiment are indicated in white on black back
grounds. A blue arrow labeled cDNA in the 5'-UTR indicates the 5' 
extent of the GCAP2 cDNA clones analyzed previously [20]. The 
positions of the putative tsp determined by 5'-RACE is indicated with 
a red arrow. A putative TATA box (+ strand, purple box), putative 
CCAAT box (- strand, green box), putative NF-kB site (+ strand pink 
box), paired E-box elements (+ strand, gray boxes), and Crx-like 
elements (+ strand, orange boxes) are indicated in the proximal pro
moter region. The GCAP2 gene sequence is in GenBank as Acces
sion number AF172708.
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cis DNA elements were identified within 200 bp upstream of 
the tsp of the GCAP1 gene (-84 to -90; -137 to -143; -154 to - 
161, see Figure 2) and within 500 bp of the tsp of the GCAP2 
gene (-326 to -332; -408 to -414; -491 to -497, see Figure 3). 
Crx is an Otx-like photoreceptor-specific trans-acting factor 
that is expressed in retinal photoreceptors, as well as in pineal 
gland [27,28]. This factor has been shown to play a critical 
role in the regulation of photoreceptor development [28] and 
in the expression of several photoreceptor-specific genes [27]. 
The presence of Crx-like binding sites in the chicken GCAP1 
and GCAP2 promoters suggests that Crx may play a role in 
regulating the expression of GCAP1 and GCAP2 in retina and 
pineal.

One of the distinguishing features of the GCAP2 proxi
mal promoter is that it contains two putative paired E-box el
ements (consensus CANNTG) located at position -263 to - 
275 and at position -351 to -366 (Figure 3). These elements 
bind transcription factors belonging to the basic helix-loop- 
helix (bHLH) family, a family of transcriptional activators and 
repressors that regulate several key events during neurogenesis 
and differentiation [29,30]. GCAP1 and GCAP2 proteins ex
hibit very similar functional characteristics in vitro [10-12]; 
based on the differences noted in the promoters of these genes 
and the tail-to-tail arrangement within the genome, it seems 
likely that the specific roles that these proteins play in retina 
and pineal may be quite different. Formal analyses of the pro
moters of these genes will be required to positively identify 
functionally relevant cis-elements and to determine how these

elements influence the temporal and cellular expression pat
terns of these proteins.

Expression o f  GCAP1, GCAP2, and GC1 in the chicken 
pineal: We have previously shown that GC 1 and the GC regu
latory proteins, GCAP1 and GCAP2, are expressed in normal 
chicken retina [20,21]. In the present study, we examined to
tal RNA extracted from the pineal glands of normal and rd/rd 
chickens using Northern blot and RT-PCR techniques to de
termine if GC1, GCAP1, and GCAP2 are also expressed in

GC1 GCAP1

1 kb 123bp
R

+/+
R P 

rd /rd  + /+
P

rd /rd
R

+/+
P

+/+

B
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|
a
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Figure 4. Northern blot analyses of GC1, GCAP1, and GCAP2 tran
scripts in normal and rd/rd retina and pineal. Each of the four lanes 
shown contains 10 |^g of total RNA that was isolated from the retina- 
pigment epithelium-choroid or pineal of 1 to 3 day old normal or rd/ 
rd chickens. The blot shown was hybridized sequentially with probes 
for chicken GC1, GCAP1, GCAP2 and 18S rRNA. The hybridiza
tion signals shown for GC1, GCAP1 and GCAP2 were obtained fol
lowing 24 h exposure of Kodak BioMax film at -70 °C. The signal 
for 18S rRNA was obtained after a 20 min exposure at room tem
perature. Longer exposures of the GCAP2 blots (72 h exposure at - 
70 °C) did not produce detectable GCAP2 signals. The normal GC1 
transcript is approximately 9.5 kb in size. The GCAP1 and GCAP2 
transcripts are approximately 2.4 and 2.6 kb in size, respectively.

Figure 5. RT-PCR analyses of GC1, GCAP1, and GCAP2. A. Analy
ses of GC1 and GCAP1 in normal and rd/rd retina and pineal. Prim
ers used to amplify GC1 flank the deletion previously described in 
GC1 in the rd chicken. Two GC1 products were amplified in both 
retina and pineal, the larger representing an alternatively spliced form 
of the GC1 transcript present in chicken [21]. B. Analyses of GCAP2 
in normal retina and pineal. The arrow indicates the GCAP2 prod
uct, the identity of which was verified by sequence analyses. GCAP2 
RT-PCR control experiments indicated that the additional products 
in the pineal sample were due to non-specific priming activity of 
GCAP2 primer 59 (GCAP2 primer control, lane 1). No products were 
obtained using GCAP2 primer 164 alone (GCAP2 primer control, 
lane 2). Each lane is labeled with either an R (retina) or P (pineal) 
and +/+ (normal chicken) or rd/rd (mutant chicken) indicating the 
source and type of tissue from which the sample was obtained. DNA 
size ladders (1 kb and 123 bp) are shown in the left most lanes of 
each gel.
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chicken pineal. Using Northern blot methods, GC 1 and GCAP 1 
transcripts were detected in normal pineal, albeit at levels lower 
than those observed in retina. The sizes of these transcripts 
match those present in normal retina (Figure 4). The presence 
of GC1 mRNA in chicken pineal is consistent with previous 
reports of GC1 transcripts in rat [31] and bovine pineal [32]. 
A faint GC1 mRNA signal was detected in rd/rdpineal when 
the blot was exposed to film for 48 h (data not shown), the 
size of which was identical to that present in the retinas of 
these animals [21]. Comparable levels of GCAP1 mRNA were 
detected in normal and rd/rd pineal. No GCAP2 transcript was 
detected in either normal or rd/rd pineal using this method. 
Extension of the film exposure period to 72 h did not produce 
a detectable GCAP2 signal.

RT-PCR was used to confirm the presence of the mutant 
GC1 transcript in rd/rd pineal and to verify the GCAP1 and 
GCAP2 Northern blot results obtained for normal chicken pi
neal. The results of the RT-PCR analyses of normal chicken 
retina and pineal (Figure 5A) confirmed the GC1 Northern 
blot data and revealed that the alternatively spliced GC1 tran
scripts that are present in chicken retina [21] are also present 
in the pineal gland. As expected, the GC1 transcripts in rd/ 
rdpineal possessed the same deletion that we previously char
acterized in rd/rd retina [21]. RT-PCR analyses confirmed the 
GCAP1 Northern data (Figure 5A) and also revealed that 
GCAP2 transcripts are present in pineal, albeit at very low

Figure 6. Light microscopic comparisons of normal and rd/rdpineal 
morphology. Pineal glands were obtained from 3 day old (A, B) and 
79 day old (C, D) chickens. No apparent morphological differences 
were observed between the normal and rd/rd tissues at either age. 
Note that the size of the lumens of the follicles (L) decreases with 
age in both normal and rd/rd pineal suggesting that tissue differen
tiation is normal in the mutant pineal. Sections were stained using 
cresyl violet. The bar shown in panel D equals 20 |^m. All panels 
were photographed using the same magnification.

levels (Figure 5B). All RT-PCR control reactions were nega
tive except for the single primer PCR control that was run for 
GCAP2 primer number 59. The results of the single primer 
control reactions for GCAP2 are shown in Figure 5B.

M orphology o f  normal and rd/rd pineal glands: The pres
ence of the GC1 null mutation in the rd chicken results in 
degeneration of the retinal photoreceptor cells, a process that 
begins approximately 10 days after the birds hatch and is nearly 
complete in 8-month-old birds [33,34]. In the present study, 
we were interested in determining if cellular degeneration 
occurs in pineal as a result of expression of the mutant GC1 
gene in this tissue. The pineal glands of 3-days-old rd/rd chick
ens (Figure 6B) were found to be histologically indistinguish
able from those of normal chickens at this age (Figure 6A). In 
both animals, the glands are comprised of several clearly de
fined follicles, each possessing a large lumen surrounded by 
numerous cells. In the older, 79 day old chickens, there was a 
notable decrease in the density of cells and in the size of the 
follicular lumens in both normal and rd/rd pineal glands (Fig
ure 6C,D). These changes are consistent with previous de
scriptions of the development of chicken pineal morphology 
[35]. Electron microscopic analyses of chicken pineal have 
shown that photoreceptor-like cells possessing whorls of lamel
lar membrane are among the three cell types (ependymal, secre
tory, and sensory) that border the lumen of each follicle [36]. 
Although we were unable to distinguish among these three 
cell types using light microscopy, the absence of cellular de
generation in rd/rd pineal suggests that the GC 1 null mutation 
in rd pineal does not have a significant impact survival of cells 
in this gland.

DISCUSSION
Our finding that GCAP1 and GCAP2 transcripts are present 
in chicken pineal is the first evidence that these proteins are 
expressed in pineal. In retinal photoreceptor cells, GC1 activ
ity is modulated by changes in intracellular [Ca2+] that are 
largely the consequence of closure of the cGMP-gated cation 
channels located in the plasma membrane of these cells. Light- 
induced decreases in intracellular [Ca2+] result in activation of 
GC1 through interactions with GCAP. The presence of GC1, 
GCAP1, and GCAP2 in chicken pineal suggests that GC1 ac
tivity in pineal may be regulated in a manner similar to that 
found in retinal photoreceptors. That such a mechanism may 
be present in chicken pineal is supported by two additional 
observations. First, addition of EGTA to cultured chicken pi
neal glands fosters accumulation of cGMP in both the light 
and in the dark [37]. Second, cGMP-gated cation channels 
possessing response characteristics similar to those found in 
the plasma membrane of retinal photoreceptor cells have been 
identified in chicken pineal [38,39].

What might the role of the phototransduction cascade be 
in chicken pineal? Studies of light effects on circadian func
tion in chicken pineal suggest that chicken pineal contains at 
least two independent pathways for light transduction, one of 
which resets the rhythms of the circadian oscillators intrinsic 
to the pinealocytes and one that inhibits melatonin secretion 
[40,41]. The details of these pathways are not known; how
ever, the observation that pertussis toxin fails to block light-
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induced phase shifts of the pineal circadian oscillators [40] 
suggests that if present, the phototransduction cascade may 
not be directly involved in entrainment of these oscillators to 
light. The results of a study of the rc chicken, a chicken that 
carries the same GC1 null mutation that is carried by the rd 
chicken (Semple-Rowland and Cheng, unpublished observa
tion), suggest that the phototransduction cascade may not play 
a direct role in controlling melatonin levels in chicken pineal 
either. Analyses of pineal glands of 4 to 10 week old carrier + /  
rc and rc/rc chickens revealed that melatonin levels in the 
glands of these animals are not significantly different, a result 
consistent with our observation that the GC1 null mutation in 
rd chickens does not lead to pineal degeneration [42]. Of par
ticular interest was their finding that melatonin levels in the 
pineal glands of rc/rc birds housed under a 12 h light:12 h 
dark cycle exhibit a light/dark rhythm similar to that observed 
in pineal glands of +/rc birds housed under identical condi
tions. This result suggests that the light transduction pathway 
that controls melatonin levels in chicken pineal is not depen
dent upon GC1.

Currently, there is no direct evidence that a fully func
tional retinal phototransduction cascade is present in chicken 
pineal. The identification of several key components of the 
phototransduction cascade in chicken pineal [43], together with 
the observation that pinopsin, a photopigment present in 
chicken pineal [44,45], is capable of activating rod transducin 
in a light-dependent manner [46] support the hypothesis that 
this cascade is present and functional in chicken pineal. Fur
ther study of the rd chicken provides a unique opportunity to 
determine what role the phototransduction cascade plays in 
pineal function. Clearly, the role that GC1 plays in pineal func
tion is not as critical to pineal cell survival as it is to the sur
vival of retinal photoreceptor cells.
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