
Design of 2D Time-Varying Vector Fields
Guoning Chen, Member, IEEE, Vivek Kwatra, Li-Yi Wei,

Charles D. Hansen, Fellow, IEEE, and Eugene Zhang, Senior Member, IEEE

Abstract—Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important

applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we

present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system

supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through

several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated

into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial

constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user

design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to

generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our

design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving

surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or

impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as

either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

Index Terms—Time-varying vector fields, 2D vector fields, vector field design, dynamic effects for surfaces.

Ç

1 INTRODUCTION

VECTOR field design is a fundamental component for a
variety of graphics applications such as remeshing [1],

[33], texturing [20], [13], [23], [31], [41], [46], and non-
photorealistic rendering [16], [17]. The paramount impor-
tance of vector fields in these applications has invoked a
line of comprehensive study on the techniques of vector
field design on surfaces [6], [8], [34], [51]. Nonetheless, prior
research has paid little attention to the more natural and
general applications of vector field design to modeling
dynamic effects, such as fluid animation [35], [36], crowds
[4], [29], shape deformation [45], and video editing [18].
This is partly due to the fact that such dynamic systems are
usually time varying (or time dependent), with the
additional time dimension significantly increasing the
complexity of the possible dynamics in the vector fields.
In addition, there is no existing theory for the characteriza-
tion of time-varying vector fields, compared to the well-
defined feature characterization of static vector fields upon
which the design techniques are built. For the first time, this

paper systematically studies the design of time-varying
vector fields on 2D manifolds, including the applications
and the taxonomy of the vector fields, the requirements,
and the appropriate techniques.

1.1 Requirements

For most graphics applications involving dynamic effects,
there are a number of requirements for the underlying time-
varying vector fields and how they are modeled.

First, the obtained time-varying vector fields should
preserve temporal coherence to guarantee the smooth
transition of the dynamic effects that they are driving. This
is a fundamental requirement for achieving a visually
pleasing animation.

Second, the obtained time-varying vector fields can be
physically plausible or implausible, incompressible or
compressible, in order to satisfy the requirements of
different applications. For instance, practitioners in fluid
dynamics often require incompressible flows, while anima-
tors may seek for more flexible vector fields for the dynamic
effects with volume change such as crowd simulation. Any
vector field system needs to be able to handle general time-
varying vector fields with similarly diverse properties.

Third, the time-varying vector fields are designed to
either control the evolution of the instantaneous appearance
of certain graphical primitives (e.g., the sizes and orienta-
tions of the texture and brush strokes) or advect certain
objects (e.g., flow parcels) over time, in order to control
different aspects of the dynamic effects. A vector field
design system should facilitate the creation of the vector
fields for both types of use.

Fourth, the design system for the time-varying vector
fields should provide the user an intuitive and flexible
interface to support the modeling of various flow behaviors.
In addition, a number of different modeling approaches

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012 1717

. G. Chen and C.D. Hansen are with the Scientific Computing and Imaging
Institute, University of Utah, 72 S Central Campus Drive, Room 3750,
Salt Lake City, UT 84112. E-mail: {chengu, hansen}@sci.utah.edu.

. V. Kwatra is with the Google Inc., 1600 Amphitheatre Parkway, Mountain
View, CA 94043. E-mail: kwatra@gmail.com.

. L.-Y. Wei is with the Department of Computer Science, the University of
Hong Kong, Room 301, Chow Yei Ching Building, Pokfulam Road, Hong
Kong and the Microsoft Research, Redmond, WA 98052-6399.
E-mail: liyiwei@stanfordalumni.org.

. E. Zhang is with the School of Electrical Engineering and Computer
Science, Oregon State University, 2111 Kelley Engineering Center,
Corvallis, OR 97331. E-mail: zhange@eecs.oregonstate.edu.

Manuscript received 12 Feb. 2011; revised 30 Nov. 2011; accepted 14 Dec.
2011; published online 21 Dec. 2011.
Recommended for acceptance by S. Takahashi.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2011-02-0032.
Digital Object Identifier no. 10.1109/TVCG.2011.290.

1077-2626/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

should be supported. Specifically, there are a few possible
situations during the modeling of a time-varying vector field
that a user may encounter: 1) The user wishes to design the
detailed local behavior of the flow over time; 2) The user
cares about the exact states of the flow at only certain times
and would like the system to generate the rest of the field;
and 3) The user is given a static vector field, and tries to
deform it to make up a time-varying vector field as people do
for mesh deformation. A properly devised design system
should be able to accommodate these scenarios.

1.2 Our Method

In order to develop a design system that satisfies the
aforementioned requirements, we propose a design frame-
work that is built on the discretization of the time-varying
vector fields in the time dimension such that they can be
considered as the sequences of static vector fields with slow
changes over time. This philosophy is based on an observa-
tion that solutions to the time-varying vector fields converge
to families of solutions of the instantaneous vector fields as
the rate of temporal change in the vector field goes to zero,
which preserves temporal coherence and helps achieve
smooth transition of the dynamic effects. This observation is
also a fundamental assumption when developing bifurca-
tion theory for time-varying vector fields [11]. With this
temporal discretization, we are able to adapt the previously
developed tools for static vector field design to time-varying
vector fields with the desired instantaneous dynamics.

To enable the creation of various flows, we provide the
user with the ability of modeling the following flow
properties:

1. a snapshot of the flow at a given time;
2. the path of a particle in the domain;
3. the path of a singular feature; and
4. the interaction of the features of interest.

These features in turn reflect important flow characteristics,
such as the solution of the dynamical system at a given
time, the trajectories of the flow parcels, and how the flow
parcels interact over time. These flow characteristics can be
described by streamlines, pathlines, singularity paths, and
bifurcations, respectively. They sufficiently describe the local
flow behavior in space and time, and thus can be used to
create time-varying vector fields for aligning or advecting
graphical primitives as required. We refer to vector fields
that are used for orienting graphical primitives as orientation
fields and advecting objects as advection fields. We provide
the design metaphors for the user to model these flow
characteristics. Particularly, we present the first technique
that allows the user to prescribe bifurcations, a unique type
of phenomena not present in static fields.

To support the required design scenarios, we introduce
three distinct field design approaches. Specifically, the
modeling of the local flow behaviors is supported by the
time-varying design elements extracted from the user-speci-
fied flow characteristics. A basis field summation or a
constrained optimization is performed to generate the
instantaneous vector field at a given time, based on the
instantaneous characteristics of the elements. Key-frame
design is employed to support the case when a user only
provides the instantaneous fields at the desired times. A

spatial-temporal Laplacian relaxation is proposed to gen-
erate the rest of the sequence. Time-varying transformation is
used when an initial static field is deformed over time to
produce a time-varying vector field.

The combination of the proposed design metaphors and
generation techniques has led to a design system which
takes the user input and generates a time-varying vector
field using one of the generation approaches according to
the selected design approach. The system also enables the
user to further modify the obtained vector field through
local topological editing. The generated time-varying vector
fields can be applied to a number of important computer
graphics applications to achieve various dynamic effects
including producing artistic fluid effects over static images,
steering 2D crowds, and controlling various time-varying
effects on surfaces.

2 RELATED WORK

Vector field design refers to the creation of a continuous
vector field on a manifold that respects user-specified or
application-dependent constraints. Most existing work
focuses on a static vector field. Depending on the goals,
there are two different classes of vector field design
techniques: one is nontopological based; the other is
topological based.

Nontopological-based methods. Nontopological-based
methods do not address vector field topology [15] explicitly.
The vector field design tools in the early graphics applica-
tions, such as texture synthesis [41], [46], fluid simulation
[35], [36], and visualization [43], are examples of this
category. Other applications, such as nonphotorealistic
rendering [16], [17], remeshing [1], and parameterization
[33], also employ vector field design, respectively. Most of
these applications require only the direction information of
the input vector fields, and hence a simple design function-
ality. However, the user has little control of unwanted
singularities in the field that often lead to visual artifacts.

Topological-based methods. Topological-based ap-
proaches allow the user to control the number and positions
of singularities [44], [51], [8] or the topological graph
explicitly [37]. General N-way rotational symmetry field
design has also been studied by Palacios and Zhang [27],
Ray et al. [34], and Lai et al. [21]. Recently, Crane et al. [6]
present a technique which allows arbitrary prescription of
singularities and constraints on the fields.

Time-varying methods. Most of the above work con-
cerns only time independent (i.e., static) vector fields. On
the other hand, many applications are driven by time-
varying vector fields, such as fluid simulation [35], crowd
animation [39], [29], shape deformation [45], hair modeling
[10], and video editing [50]. However, there is no interface
that allows the user to intervene the underlying time-
varying vector fields. This has restricted the achievable
effects. Wejchert and Haumann [47] introduce the idea of
flow design to create controllable aerodynamics animation.
The modeled field is steady and needs to be combined with
physically based simulation to generate aerodynamics
animation. To achieve time-dependent control, the user
exerts external force to the system as demonstrated by Stam
[35], [36]. However, simulation is expensive and hard to

1718 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

control. In addition, simulation is incapable of generating
physically impossible artistic fluid flow effects. Pighin et al.
[30] introduce an interactive pathline editing interface and
an advected radial basis function to model and edit
incompressible flows. Compared to their work, our techni-
ques enable the user to create 2D vector fields with more
general characteristics than incompressible flows. Kagaya
et al. [18] present a design interface to control time-varying
tensor fields for the temporarily coherent painterly render-
ing of videos. Xu et al. [49] describe a technique for fast
generation of static vector fields to assist interactive design.
Ma et al. [24] propose a motion field synthesis technique
that enables the user to generate artistic flow effects.
However, the method only generates detailed motion
vectors and relies on a predetermined low-resolution
dynamic vector field for synthesis. To that end, we are not
aware of any work on the design of time-varying vector
fields for the general purpose of graphics applications.

3 OVERVIEW

In this section, we provide a brief description of how our
framework assists the design of a time-varying vector field.
First, the user specifies the desired flow characteristics
using the following flow descriptors:

These descriptors depict different flow behaviors that
can be observed in many applications. For instance, in
texture synthesis and painterly rendering, the user often
wants the texture patches and brush strokes to be oriented
in a certain way. An orientation field can be created to
achieve that with the desired instantaneous flow patterns
prescribed by the specified streamlines. In crowd simula-
tion, the user would like to steer a group of pedestrians to
follow a certain route (or path). An advection field
generated from the specified pathline can be applied to
accomplish that (see Fig. 15). In a meteorological animation,
the user may create the effect of two storm systems moving
toward each other and eventually colliding (see Fig. 9). This
can be done by controlling the movement (i.e., singularity

paths) and interaction (i.e., bifurcation) of the two vortices
in a time-varying vector field.

Note that for most graphics applications shown in this
paper, instantaneous appearance is often more important
than the exact path of a particle. For the rest of the paper,
we will assume the designed fields serve as orientation
fields except for the application of crowd simulation where
the pathline design is used to generate an advection field.
Nonetheless, for most examples the orientation fields are
also used to advect the graphical primitives over time to
achieve the effect of motion.

The overall pipeline of our system is as follows (Fig. 1).
First, according to the selected design scenario, the user
specifies a number of constraints. For key-frame design and
field deformation, the focus is the creation of some
instantaneous (static) fields. As such, specifying streamlines
and singularities is sufficient. A streamline can be specified
using the drawing tool of our system, which will compute the
tangent vectors at the sample positions along the streamline
as the constraints. For element-based design, pathlines,
singularity paths, and bifurcations can be designed. In
particular, for a pathline, besides computing the tangent
vectors at the sampled positions, the temporal value for each
sample point is required from the user (Section 5.1). The user
is also responsible for providing the type for a singularity
path (source, sink, or saddle) as a time-varying Jacobian. To
specify a bifurcation, the user can describe a template
function (Section 5.1) that will create the desired bifurcation.
Note that in our system we only handle saddle-node
bifurcation where a node is either a source or sink. Fig. 2
provides some examples on how the users can specify these
flow descriptors with our system.

Once the constraints have been specified, our system
generates a time-varying vector field by using the basis
field summation (Section 5.2), constrained optimization
(Sections 5.3 and 6.1), or time-varying transformation
(Section 7) according to the selected design method. The
resulting field is analyzed with singularities and bifurca-
tions extracted. The user then has the ability to specify
additional constraints or perform local topological editing
in the form of singularity and bifurcation movement or
cancellation. This process continues until the user is
satisfied (Section 8).

In the next section, we will provide the mathematical
definitions for the aforementioned flow characteristics.

4 TIME-VARYING VECTOR FIELDS

In this section, we briefly review the important concepts of
time-varying vector fields, which will facilitate our later
design tasks.

Streamlines and pathlines. We consider a 2-manifold IM.
A time-varying vector field V is a map V : IM� IR! IM,
which can be expressed as a differential equation dx

dt ¼ V ðx; tÞ.
The solution of it given an initial state p0 ¼ ðx0; t0Þ is xðbÞ ¼
p0 þ

R b
0 V ðxð�Þ; t0 þ �Þd�, which is referred to as a pathline. It

is the trajectory of the particle under V . The vector field
V ðx; tcÞ is an instantaneous vector field of V at time tc, which is
steady. The solution from pc ¼ ðxc; tcÞ constrained in V ðx; tcÞ
is a streamline, and xðbÞ ¼ pc þ

R b
0 V ðxð�Þ; tcÞd�.

Instantaneous topology. The topology of V ðx; tcÞ is
referred to as the instantaneous topology of V at tc. It consists

CHEN ET AL.: DESIGN OF 2D TIME-VARYING VECTOR FIELDS 1719

of singularities, periodic orbits, and their connectivity [3] and
describes the qualitative information of V ðx; tcÞ. This
information has been applied to guide the creation and
control of static vector fields [3], [8], [44], [51]. It has been
shown that analyzing and tracking instantaneous features
can provide more information for graphics applications
than the space-time topology based on pathlines that is
typically featureless [38]. Therefore, in the rest of the paper,
we will make use of the notion of instantaneous topology to
discuss the structural evolution of a time-varying vector
field. Also, we focus on singularities only as they are
relevant to the present graphics applications.

Singularities and singularity paths. A point p is called a
singularity of V ðx; tcÞ if V ðp; tcÞ ¼ 0. We are interested in
the isolated singularities in the field, each of which can be
enclosed by a compact neighborhood containing no other
singularities. The type of each singularity is determined by
the flow characteristics within this neighborhood. The
linearization of V ðx; tcÞ about p results in a 2� 2 matrix
DV ðpÞ ¼ ð@vx=@x @vx=@y

@vy=@x @vy=@y
Þ (called the Jacobian) which has two

(potentially complex) eigenvalues �1 þ i�1 and �2 þ i�2. If
�1 6¼ 0 6¼ �2, then p is called a hyperbolic singularity. Observe
that on a surface there are three types of hyperbolic
singularities: sinks �1; �2 < 0, saddles �1 < 0 < �2, and sources
0 < �1; �2. If �1 ¼ �2 ¼ 0, p is a center. Any arbitrarily small
perturbation will turn it to a hyperbolic singularity. Despite
that, centers can still be structurally stable in a divergence-
free field (e.g., an incompressible flow). Each singularity has
a life span ½ts; te� (ts; te 2 IR) where ts represents the time of

its birth and te is the time of its annihilation. The curve
connecting each position of the singularity during its life
span is called a singularity path. We assume the type of a
singularity does not change during its life span.

Bifurcations. The birth and annihilation of singularities
imply the change of the topological structure of the vector
field. We refer to this qualitative change as the bifurcation
and the places where these changes occur as the bifurcation
points. Bifurcation is an important event in time-varying
vector fields. In many graphics applications involving time-
varying vector fields, bifurcations can lead to structural
changes of certain geometry or properties, such as the
splitting and merging of vortices in fluid animation. In
some cases, these structural changes may cause visual
artifacts. Fig. 3 shows an example where the break of
texture structures induced by the bifurcations of the
underlying vector field causes a visual discontinuity in
the animation. Therefore, studying bifurcations and devel-
oping effective techniques to control them is necessary from
the application perspective. The rigorous definition of
bifurcation is beyond the scope of this paper. However, a
necessary condition for a bifurcation to occur is that at a
bifurcation point pb, the Jacobian of the vector field DV ðpbÞ
is singular, i.e., its determinant is zero. In the meantime,
kV ðpbÞk ¼ 0, k @V ðpbÞ

@t k 6¼ 0, and D2V ðpbÞ is nonsingular. The
corresponding proofs and more comprehensive introduc-
tion of the bifurcation theory can be found in [11].
Consistent with our focus on singularities, in this paper
we discuss only local bifurcations, such as saddle-node (fold)

1720 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 1. This figure shows the pipeline of the presented design system for 2D time-varying vector fields. First, the user specifies the desired flow
behaviors in the forms of spatial-temporal constraints. The system then produces a time-varying vector field that matches the constraints. The
obtained field is then applied to computer graphics applications to create various dynamic effects. Here, we apply the obtained fields to produce
painterly animation from a single image. Note that we use the created time-varying vector field to orient and move the brush strokes in the lower part
of the image to achieve an artistic water wave effect: the vortex rotates, moves, and changes its characteristics, then splits into two vortices at the
end. Please see the accompanying video for this animation, which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2011.290.

bifurcation and its inverse bifurcation which refers to the
annihilation of sink/source and saddle pairs. Fig. 4
illustrates a saddle-source bifurcation where a source with
Poincaré index 1 and a saddle with index �1 move toward
and finally cancel each other over time. This bifurcation can
be formulated as follows [11]:

V ððx; yÞ; tÞ ¼ tþ x2

y

� �
; ð1Þ

while a saddle and sink creation bifurcation can be
formulated as follows:

V ððx; yÞ; tÞ ¼ t� x2

�y

� �
: ð2Þ

The change of the type of a singularity corresponds to a
transcritical bifurcation, for instance, sink! center! source,
and vice versa. When this occurs, we consider a new
singularity is born while the old one is eliminated.

With these concepts, we next describe how we support the
three different design scenarios as introduced in Section 1.
We first describe the setting of our computation domain.

Computation domain. We consider a subdomain DX ¼
ðX; tÞ where DX � IM� IR is a spatial-temporal domain. X
is a triangulation of a 2D curved surface embedded in 3D,
and t 2 ½0; 1� is the time parameter. To represent and store
the field, we discretize t evenly. We denote these discretely
sampled values as ftjg. We then compute and store the
instantaneous fields at these discrete times ftjg in order. In
each instantaneous field, vector values are sampled at the

vertices of the triangulation X. The inset figure shows such
a configuration. For a planar domain, we use a free-form
boundary. Along t, we assume the time-varying vector field
in DX is a portion of the time-varying field with
t 2 ð�1;1Þ. Other boundary conditions of t can be
employed, such as the periodic boundary conditions often
used in fluid simulation [35].

In order to enable a more flexible speed control of the
final animation sequences, the parameter t has a linear
relation with the physical time, that is, c � dt (c 2 IRþ) will be
the actual time interval when applying the created field to
the target applications.

Interpolation scheme. We assume that the vector field
is defined on the vertices of the mesh domain. In space X,
the vector values within a triangle are computed using the
parallel transport technique of Zhang et al. [51]. Along the
parameter t dimension, we employ a similar interpolation
technique proposed by Tricoche et al. [40] to guarantee the
linearity over t. In particular, the vector value of a sample
point p in-between two succeeding frames can be
computed using linear interpolation of the two values at
p at the two frames.

CHEN ET AL.: DESIGN OF 2D TIME-VARYING VECTOR FIELDS 1721

Fig. 3. This figure shows an example of saddle-node bifurcation in an
orientation vector field. The creation of a pair of saddle and sink causes
the break of texture structure on the back of the bunny. Note that we
sample the two frames before (left column) and after (right) the
bifurcation point to reveal the discontinuity.

Fig. 4. This example demonstrates a saddle-source cancellation
bifurcation. The directional curves illustrate the flow behavior. Two
singularities are shown in the left at tj0�1. They move toward each other
when t increases and collide at tj0 (middle). The two singularities are
canceled after they meet, which results in a singularity-free vector field
at tj0þ1 (right).

Fig. 2. Our user interface showing different design metaphors:
(a) Streamline. (b) Pathline. (c) Singularity path. (d) Bifurcation. A
streamline is specified at a particular time as a 2D curve. A pathline can
be provided either in the 2D domain with the starting and ending time
information or directly in the spatial-temporal domain (see the inset of b).
Similarly, a singularity path can be designed in either 2D domain with the
birth and death times or in the spatial-temporal domain (see the inset of
c). A bifurcation is prescribed as a point in the spatial-temporal domain
with the coordinate, scaling, and orientation information.

5 ELEMENT-BASED DESIGN

In this section, we describe how we support the design of
local spatial and temporal behaviors of the flow through
a number of design elements that can be extracted from
the user-specified flow characteristics. These design
elements are later combined to generate a time-varying
vector field.

5.1 Design Elements

Our system supports the following design elements.
Singular elements. Modeling singular elements is an

essential functionality for vector field design. We extend the
singular elements in the static field design [51] to our
spatial-temporal setting. Specifically, we denote a singular
element as SðJ; P ðtÞ;MðtÞÞ, where J is the Jacobian that
determines the type of the singular element, P ðtÞ represents
the path of the singular element over time, and MðtÞ is the
affine transformation matrix (i.e., scaling and rotating) that
is exerted on the element along P ðtÞ. We assume J is fixed
along P ðtÞ. P ðtÞ is derived from a user-specified path
(Fig. 5). In particular, after the user sketches the path of a
singular element, a Hermite spline curve is fitted to it to
form a smooth path P ðtÞ. MðtÞ is initialized as an identity
matrix and can vary along P ðtÞ. Given a time tc, MðtcÞ ¼
ð sxðtcÞ 0

0 syðtcÞÞRð�ðtcÞÞ where sxðtcÞ is an x scaling, syðtcÞ a y
scaling, and Rð�ðtcÞÞ a rotation centered at P ðtcÞ. The user
specifies a number of MðtiÞ at the desired times ti. MðtÞ can
then be computed through linearly interpolating sxðtiÞ and
sxðtiþ1Þ, syðtiÞ and syðtiþ1Þ, and �ðtiÞ and �ðtiþ1Þ where
ti < t < tiþ1.
P ðtÞ starts and ends at t ¼ 0 and 1 by default. If it starts

or ends in between, a certain bifurcation is induced, which
in turn involves another singularity with an opposite
Poincaré index. In design, this can be achieved by
intersecting the two singularity paths (by definition in
Section 4). At the bifurcation point where the two paths
intersect, the local Jacobian is singular with eigenvalues of
zero (Section 4), while the Jacobian of the rest of the field is
not. That said, if the singular Jacobian is used to generate a
global field as we create a field with a singularity [51], the
obtained field will not be continuous. In addition, the
Jacobian at the point pb where the bifurcation occurs is not
singular before and after bifurcation. Therefore, using the
varying Jacobian at pb to generate a sequence of static fields
will result in large variance in the obtained fields, i.e.,
discontinuity of the flow patterns can be observed before,
at, and after bifurcation. To address this issue, we introduce
the bifurcation elements that describe the globally smooth

flow behavior over time under the presence of the
corresponding bifurcations.

Bifurcation elements. Recall that we are concerned with
saddle-node bifurcations in this paper. Equations (1) and (2)
are two normal forms that define a saddle-node bifurcation
at position ð0; 0; 0Þ in domain X (i.e., a bifurcation element).
Specifically, (1) induces a saddle-source cancellation and (2)
defines a saddle-sink creation. During design, the user
prescribes the position, ðx0; y0; t0Þ, of a bifurcation with the
desired type in domain X. Thus, we replace x ¼ x� x0,
y ¼ y� y0, and t ¼ t� t0 in (1) or (2) to place the bifurcation
elements in the right position. Further, a user-controlled
transformation can be exerted to scale the range of the
bifurcation in both space and time and reorient an axis
(a straight line in this case) to control where and how the
bifurcation occurs along the axis. Fig. 6 provides an
example where the user inserts a number of bifurcations.

These bifurcation elements enable the user to insert
bifurcations through certain templates (i.e., the bifurcation
normal forms) with guaranteed smooth transition in space
and time. However, it does not allow modification of the
paths of the involving singularities. A more intuitive and
flexible design interface for bifurcations is much desired
and should be studied in the future work.

Regular elements. In static field design, a regular
element is useful in providing the translation or advection
direction for a particle located at a point and is related to
streamlines. In the design of time-varying vector fields, this
element is tightly linked to pathlines.

We define a regular element as RðV ðtÞ; P ðtÞÞ where P ðtÞ
is a prescribed pathline and V ðtÞ is the tangent direction at
P ðtÞ in space and at a time t.

Consider a user-specified pathline curve which consists
of the positions of a particle p from ts to te (te � ts), denoted
by
Ste
ts
ðpðsÞÞ. Assume m sample points, pi, along the curve

are taken. A Catmull-Rom spline P ðtÞ is computed with
fpig as the control points. The spline curve is densely
sampled as the set of evenly spaced points fspjg. Assume K
is the number of sample points on the spline curve and N is
the number of time samples. We set K > 4N for a smooth
representation such that V ðtiÞ ¼ ðspj � spj�1Þ, a good
approximation of the tangent direction, is placed at P ðtiÞ
where ti 2 ½0; 1� is the ith sampled time (see Fig. 7). To
reduce user input, a uniform sampling, ti ¼ ts þ i� ðte �
tsÞ=ðN � 1Þ can be used. However, this is not required. spj
and spj�1 are the points that enclose P ðtiÞ on P ðtÞ.

5.2 Basis Fields Summation

In order to generate a time-varying vector field from the
user-specified elements described above, a basis field

1722 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 5. Singularity path.

Fig. 6. A number of bifurcations are inserted using (2) (red) and
(1) (green). The arrows show the bifurcation directions.

summation can be used which has been applied to static
field design [47], [44], [51]. We extend this basis field
summation to take into account the design elements with
time-varying characteristics introduced in the previous
section. Specifically, the basis field generated by a singular
element at time t has the form:

Viðx; tÞ ¼ e�dkx�piðtÞk2

MT
i ðtÞJiMiðtÞ

x� xpiðtÞ
y� ypiðtÞ

� �
; ð3Þ

where piðtÞ ¼ ðxpiðtÞ; ypiðtÞÞ is the position of the singular
element at time t along the path PiðtÞ, and MiðtÞ is the
transformation acting on Ji. The basis field for a regular
element given time t has the form

Viðx; tÞ ¼ e�dkx�piðtÞk2

ViðtÞ: ð4Þ

A bifurcation element generates the following basis field:

Viðx; tÞ ¼ e�dkx�piðtÞk2

Vbi Mi
x� xpiðtÞ
y� ypiðtÞ

� �
; t� ti

� �
; ð5Þ

where ðpiðtiÞ; tiÞ is the position at which the ith bifurcation
occurs and Mi is a transformation matrix specified by the
user to orient the moving direction of the two singularities.
Vbi is one of the bifurcation normal forms (e.g., (1) and (2)).

Accordingly, the obtained global time-varying vector
field is the sum of these individual basis fields

V ðx; tÞ ¼
X
i

Viðx; tÞ: ð6Þ

Fig. 8 provides a time-varying vector field generated
using the element-based design and the basis field summa-
tion. Note that we extended the design elements to the
space-time domain from their static counterparts. Each
design element at a given time acts as a static one except for
a bifurcation element that is defined by its normal form
over time. To that end, the basis field summation is largely
the same as its static counterpart. Consequently, the issue of
the cancellation of an element by the influence of its nearby
elements can arise. To relieve that, we can use a sharper fall-
off function with a larger d value or require the design
elements to be placed sufficiently far apart to reduce their
mutual influence. Another possible solution is to extend the
work of Turk and O’Brien [42] for surface modeling (i.e.,
scalar function modeling) to basis field summation. One
could determine the weight for each basis field at a vertex
and compute a weighted sum of the basis fields instead of a
uniform sum. It is hoped this would preserve the prescribed
features. However, it is unclear whether such an extension
is easy to devise and how well it will work for vector data.
In this work, we resort to constrained optimization, a popular
vector field generation technique for static field design [6],
[8], [34], [49]. In particular, the constraints are set at the

boundaries of a number of small and compact regions that
enclose the design elements (see the inset). Note that the
regions that contain the prescribed elements need to be
isolating (i.e., not overlapping with each other) in order to
preserve the desired features, due to our discrete setting
and elected linear interpolation scheme.

5.3 Constrained Optimization

In static field design, constrained optimization solves for a
harmonic vector field which satisfies the Laplacian system
�~V ¼~0 where � ¼ r2 is the discrete Laplace operator and
~V is the unsolved vector field [51]. Specifically, given a
region N of a triangular mesh where the vector values at the
boundary vertices of N are the constraints, the constrained
optimization has the form of

V ðviÞ ¼
X
j2J

!ijV ðvjÞ; ð7Þ

where vi is an interior vertex, vj’s are its adjacent vertices in
N . V ðvÞ represents the average vector value at vertex v. !ij is
the weight between vertex vi and vj. Note that we consider
the boundary condition of Dirichlet type. Equation (7) is a
sparse linear system in the form of A~x ¼ ~b. For fast solution,
one can use a uniform weighting scheme or mean curvature
weighting [49] which guarantees A to be a symmetric
positive definite (s.p.d.) matrix such that the state-of-the-art
Cholesky factorization solver can be applied to solve it
efficiently [48], [49]. In this case, we assume the vector
values at vertices are expressed under the 3D global
coordinate system. The solution of this setting will result

CHEN ET AL.: DESIGN OF 2D TIME-VARYING VECTOR FIELDS 1723

Fig. 8. A time-varying vector field generated using a number of design
elements. The instantaneous fields are ordered from left to right and top
to the bottom. The singularity paths of the singular elements are
highlighted as the colored curves (green for source, blue for saddle, and
magenta for center). Two saddle-node bifurcations are also inserted.
The obtained field has smooth change over time as shown in the plot of
the lower right. In addition to the desired singularities and bifurcations,
there are also unexpected singularities and bifurcations as shown in the
analysis, due to the nature of the basis field summation approach.

Fig. 7. Pathline example.

in vector fields that do not always reside in the tangent space
for a curved surface. Although we can project these vector
fields to their tangent space, the projected fields usually
contain many unexpected singularities. In order to produce
a tangential vector field with better quality (i.e., fewer
unexpected singularities), we recommend the technique of
parallel transport used in [27] to construct the Laplacian
system in tangent space directly

V ðviÞ ¼
X
j2J

!ijTijV ðvjÞ;

where Tij is the transformation matrix for parallel transport
along an edge ðvi; vjÞ. This will give rise to a non-s.p.d.
matrix. To solve it, we use a biconjugate gradient approach
[32]. This also provides the foundation for our later
extension to solve for the spatial-temporal problem.

Given the constrained optimization, the time-varying
vector field can be generated by solving a sequence of
Laplacian systems with the boundary constraints set
according to the instantaneous characteristics of the pre-
scribed elements at the sampled times.

Although the constrained optimization can better pre-
serve the specified features at single time steps as long as
an isolating region can be found for each feature, it is still
challenging to preserve them over time. This is because the
features are moving and changing over time, and if two
features are getting too close to each other, it is difficult to
compute the isolating regions that enclose them. Another
limitation for the constrained optimization is, when
bifurcations occur, simply specifying the vector values at
the boundaries of the neighborhoods that contain the
bifurcation points is not sufficient due to the degeneracy
previously mentioned. Because of this issue, the basis field
summation is still used in the present system for bifurca-
tion design.

In the next two sections, we will describe two different
design scenarios that complement the element-based design.

6 KEY-FRAME DESIGN

Given our discrete setting of time-varying vector fields, it is
natural to prescribe the flow behavior in certain time steps
and ask the system to create a time-varying vector field that
smoothly transitions from one state to the next. This leads to
the key-frame design. This design scenario is useful when a
number of critical time steps need to be designed to achieve
the desired behaviors while the others are not so important.
It is a widely used technique in the computer animation
community to efficiently generate animation sequences.

The key-frame vector fields can be designed using any
existing static vector field design techniques [6], [8], [34],
[51]. In order to generate the rest of the time-varying vector
field from the given key-frame fields, some vector or angle-
based interpolation can be employed. However, using
interpolation can create degenerate instantaneous fields
(using vector-based linear interpolation) or discontinuities
due to angle ambiguity (using angle-based interpolation).
To address that, we introduce a spatial-temporal con-
strained optimization, an extension of the approach in
Section 5.3.

6.1 Spatial-Temporal Constrained Optimization

Similar to the static case, we define an extended spatial-
temporal Laplacian system by taking into account the
additional parameter t. Note that discrete Laplacian system
is constructed by considering the relation between spatially
connected vertices. This can be extended to higher dimen-
sions. Based on this observation, we treat t as the additional
dimension in space and assume a direct connection between
two neighboring vertices that are the two copies of the same
vertex of triangulationX at two succeeding times. The image
below shows such a configuration. Given a vertex ðvi; tjÞofX,
consider a stencil shown in the figure. We assume there are
(virtual) edges connecting ðvi; tjÞ and ðvi; tj�1Þ, ðvi; tjÞ, and
ðvi; tjþ1Þ, respectively. We solve a spatial-temporal Laplacian
r
P

j !jV ¼~0 where
P

j !jV represents the weighting sum of
the time-varying vector field over t. This is equivalent to
solving the following linear system:

!V ðvi; tjÞ ¼
X
k2NðiÞ

!ikTikV ðvk; tjÞ þ !j;j�1V ðvi; tj�1Þ

þ !j;jþ1V ðvi; tjþ1Þ;
ð8Þ

where NðiÞ denotes the one-ring neighbors of ðvi; tjÞ,
V ðvi; tjÞ represents the average vector value at position
ðvi; tjÞ. !j;j�1 and !j;jþ1 are positive weights determining
how fast the relaxation is along t. In our implementation
!j;j�1 ¼ !j;jþ1 ¼ b

P
k !ik. ! ¼

P
k2NðiÞ !ik þ !j;j�1 þ !j;j�1 is

the normalization coefficient. b controls the speed of
relaxation along t. We use b ¼ 30 for all examples. We
point out that this formula can be further extended by
considering more sampled steps along the t axis to achieve
smoother results as bi-Laplace smoothing does in static case
[8]. For better quality, we use parallel transport to solve for
tangential vector fields with mean value weights [9].

With the spatial-temporal constrained optimization, a
bifurcation can be implicitly created by specifying the
instantaneous fields before and after bifurcations, e.g., the
left and right fields in Fig. 4. However, the user is not able to
specify the exact paths for both singularities, which can be
achieved by the element-based design. Fig. 9 shows a time-
varying vector field generated using key-frame design. It
demonstrates that two vortices move toward each other,
finally collide, and merge into one.

1724 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

7 TIME-VARYING FIELD DEFORMATION

In some design cases, the user is only given or has to start
with an existing static field to generate a sequence of
continuously changing fields over time. One way to achieve
that is to gradually deform the initial field. This deformation
process can be performed through physically based simula-
tion as one uses in fluid simulation. To incorporate the initial
field in the simulator, it has to be considered as some external
force field to start the simulation. The initial field has only
indirect influence to the obtained sequence. This is not
always desirable if the user prefers a time-varying vector
field, that is, neither incompressible nor physically plausible.
Therefore, other more intuitive and flexible approaches need
to be explored. In this section, we propose a simple way to
deform the initial field by using a global time-varying
transformation, i.e., a matrix whose entries are functions of
time. We refer to this approach as the matrix-based design.

Our system assists such design by exerting a time-

dependent transformation matrix on the initial field,

V ðtÞ ¼MðtÞV ðt0Þ. MðtÞ is an affine transformation of the

form ðM11ðtÞ M12ðtÞ
M21ðtÞ M22ðtÞÞ, where MijðtÞ are some functions of t.MðtÞ

can be designed through the graphics interface by specifying

the x scaling, y scaling, and rotation similar to what has been

described in Section 5.1. Our system also provides a text

editor interface to allow the user to directly provide the

numeric values for the four entries. The transformation

matrix at ti is then computed through linearly interpolating

the identity matrix and the user-specified one. However,

such random specification of transformation can easily lead

to degenerate (e.g., zero or discontinuous) fields. Matrix-

based design has its own value where the transcritical

bifurcations can be achieved easily by rotating the Jacobian of

the singularities over time. For instance, a transcritical

bifurcation (i.e., source! center! sink) is induced at the

belly of the Buddha (Fig. 10).
In addition to transforming the whole field, our system

also allows the user to select one or more representative
streamlines computed from the initial field and continu-
ously transform them over time. The deformed representa-
tive streamlines are then used to generate new
instantaneous fields at each sampled time using the static
field generation techniques mentioned earlier. The inset
figure shows an example of a representative streamline
(shown in magenta) deformed over time. A surface
connecting the new position of this streamline with the
preceding one is shown. The intersection of this surface
with the t ¼ ti plane is a smooth curve representing the

streamline at ti, which is used to generate an instantaneous
field. However, more elegant and sophisticated techniques
should be devised to refine the deformation process and
achieve more flexible and controllable results, which we
will leave for the future work.

8 LOCAL TOPOLOGICAL EDITING

Editing functionality is required for a design system
because of the appearance of undesired features such as
singularities and bifurcations in the generation phase. Our
system provides the user with a number of options to edit a
given time-varying vector field. First, the user can edit the
instantaneous fields to modify the time-varying vector field
at specific times. Second, the bifurcations can be canceled or
moved under certain conditions.

Instantaneous field topological editing. Given the
instantaneous field at a particular time t, the user can
remove two unwanted singularities using the simplification
techniques of Chen et al. [3]. This instantaneous field is then
considered as a key frame for the regeneration of the field.

8.1 Bifurcation Editing

We have demonstrated the relations between saddle-node
bifurcations and the structural changes in texture anima-
tions. We now describe techniques to control them. To do
so, the system first extracts bifurcations from the designed
fields using the techniques proposed by Tricoche et al. [40],
and then provides two editing operations for the user.

Bifurcation removal. Certain bifurcations can be re-
moved. First, the user can remove the isolated bifurcations.
According to our setting (Section 4) and the Poincaré
theorem, these isolated bifurcations can only involve
singularities that start or end at the boundary of our

CHEN ET AL.: DESIGN OF 2D TIME-VARYING VECTOR FIELDS 1725

Fig. 9. This image shows a number of frames from a texture animation
on sphere which simulates the collision of two storm systems. The
animation is driven by an orientation field and an advection field. Both
are designed using the techniques introduced in this paper. Frames 1
(not shown), 50, and 100 (not shown) are the key frames.

Fig. 10. A transcritical bifurcation at the belly of the Buddha using field
deformation.

computation domain DX. Other isolated bifurcations in-

volve singularities whose paths form loops. The top row of

the inset shows the removable isolated bifurcations. To

remove them, we simply cancel the pairs of the involving

singularities [3]. Second, consider three singularities pi
(i ¼ 1; 2; 3) with intervals of existence ð0; �Þ, ð�; �Þ, ð�; 1Þ,
respectively. Assume a saddle-node bifurcation between p1,

p2 at �, and a saddle node bifurcation between p2 and p3 at �.

We then can remove both bifurcations and retain only one

singularity. The bottom row of the inset shows such an

example. The two bifurcations that are connected by the blue

curve (the path of a saddle) can be collapsed. Fig. 11 shows

an example of saddle-node bifurcation removal. More

complex control of nonisolated (i.e., connected) bifurcations

is possible, which is beyond the scope of this paper.

Bifurcation movement. Similar to singularities, a bifur-

cation can be moved using our system. This can be achieved

by moving the involving singularities over space at

particular time t. The edited instantaneous field is then set

as a key frame. The spatial-temporal constrained optimiza-

tion will smooth the rest of the field. Note that the

movement of these two singularities should obey the

topological constraints proposed by Zhang et al. [51]. This

guarantees that no other topological features are affected

during the movement. This functionality is particularly

useful when the bifurcation is not isolated and causes visual

discontinuity (e.g., Fig. 3). The bifurcation movement could

move it to a nonvisible part of the object.
General global smoothing over the spatial-temporal

domain is also available, similar to the smoothing scheme

of [18] for fining the edge fields, i.e., some tensor fields, in

the application of painterly rendering of videos.

9 APPLICATIONS AND DISCUSSION

In this section, we present a number of graphics applica-

tions that can benefit from the time-varying vector fields

generated using the proposed techniques.

9.1 Texture Synthesis and Animation

We have applied the designed time-varying fields to create a
number of synthetic texture animations (Figs. 3 and 9). Flow-
guided texture synthesis and advection has been introduced
to the visualization community for dense flow visualization
by van Wijk [44], [43], Laramee et al. [22], and Neyret [26].
Kwatra et al. [20] present an optimization-based plane
texture synthesis which can be used for flow-guided texture
animation. Lefebvre and Hoppe [23] introduce an appear-
ance-space texture synthesis technique that can handle
texture advection over static surfaces. Han et al. [13] extend
the work of [20] to 3D mesh surfaces. Later, Kwatra et al. [19]
and Bargteil et al. [2] extend the texture advection
techniques to the problem of fluid texturing on surfaces.
Recently, Ma et al. [24] introduce a texture synthesis
technique for flow patterns to create a more detailed
synthetic texture and animation. In this paper, we employ
the technique of Kwatra et al. [19]. To apply the created time-
varying vector fields, we make use of the instantaneous
snapshots of the time-varying vector fields to orient and
move the texture patches on surfaces.

9.2 Creation of Dynamic Scenes

Our system can be used to create fluid effects on surfaces
through proper design and setting of the boundary condi-
tions. Fig. 12 shows an incompressible flow on the sphere
generated using our system. In addition, the present system
allows the creation of more complex dynamic effects such as
wind writing on a meadow (Fig. 13), and the advection of
leaves in the fluid flow with self-spinning effect (Fig. 14). In
Fig. 13, instead of adding physically realistic winds, we
design a time-varying vector field that mimics writing on the
grass. To achieve that, the user first specifies the flow to
represent the writing of the letters. The system automatically
records the vector fields as key frames during the sketching of
these letters. The spatial-temporal constrained optimization
is then used to solve for a time-varying vector field. Each

1726 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 11. Example of bifurcation editing.

Fig. 12. A time-varying incompressible flow on the sphere.

strand of the grass is represented as a rigid body skeleton. The
bottom of the skeleton is fixed on the ground while the top
node is manipulated by a force field which is the created time-
varying vector field. The movement of this skeleton is
computed by an inverse kinematic solver [28]. The grass is
rendered using the technique of illuminated lines [25]. The
field used to drive the movement of the leaves (Fig. 14) was
created through element-based design. The spinning effect is
achieved by maintaining a constant angle between the up
direction of a particle and the advection direction at the given
position.

9.3 Steerable 2D Crowd Animation

Crowd simulation is an important technique in games,
movies, and urban planning. There are two groups of crowd
simulation techniques: agent-based and force-based. While
agent-based methods can provide more detailed and realistic
simulation, it is still prohibitively expensive to simulate a
large number of pedestrians with a complex environment. In
contrast, the force-based technique considers the pedestrians
in the crowd as particles. Their movement is determined by
computing the gradient of a potential field by taking into
account the environment and neighboring people. This
method is fast at the expense of losing the detailed behavior
of the individual pedestrians. Both approaches support the
control of initial states yet lack of the continuous steering of
the crowds over time. Recently, Patil et al. [29] propose the
use of a navigation field (essentially a vector field) to control
the traveling paths of groups of pedestrians, which has
achieved better control of crowds. We further observe that
the paths of the individual pedestrians can be considered as

pathlines, thus can be designed and controlled using our
system. In our steerable crowd simulation, the crowds are
driven by both a gradient field G derived from the cost
function introduced in the continuum crowd technique [39]
and a designed time-varying field F . The final direction that
each pedestrian will take is the weighted sum of these two
fields !GGþ !FF . Different combinations of weights will
determine how closely the crowd follows the specified paths.
In the example shown in Fig. 15, we compare the results of
different combinations: !G ¼ 0:4; !F ¼ 0:6 (top) and !G ¼
0:53; !F ¼ 0:47 (bottom). The swirling pattern of the paths
was created to show the difference between pathlines and
streamlines. Streamlines cannot achieve such self-intersect-
ing patterns.

9.4 Artistic Painterly Animation

In painterly rendering, the brush stroke orientations are
typically guided by a vector field [16], [14], [51]. A time-
varying vector field can also be applied to a static image to
achieve animating effect in certain regions, such as back-
ground, to make the static photo seem alive [5]. Fig. 1
provides such an example. The effect of the evolution of one
vortex is inserted to the lower part of the painting to
provide water animation. The input time-varying vector
field is used to orient the brush strokes as well as advecting
them along the flow directions. Fig. 16 shows another

CHEN ET AL.: DESIGN OF 2D TIME-VARYING VECTOR FIELDS 1727

Fig. 13. An animation of writing on grass. The dynamics of the grass is
driven by a created time-varying vector field. The grass consists of
over 32,000 strands, each of which has the structure shown in the top
left corner.

Fig. 14. An animation of fallen leaves advected by a time-varying flow.
The leaves are self-spinning according to the advection flow and their
orientation direction. This scene contains 1,000 particles. Please see the
accompanying video for the spinning effect, available in the online
supplemental material.

Fig. 15. This example demonstrates a crowd simulation driven by the
combination of a social force G with a designed time-varying vector field
F . The top shows the results of the combination 0:4Gþ 0:6F , and the
bottom is 0:53Gþ 0:47F . The cyan curves are the reference pathlines
based on the initial positions of the pedestrians and the underlying time-
varying flow. The brown curves are the actual paths that the pedestrians
have taken.

example where several vortices are inserted to provide a
burning effect to the original steady image. These vortices
interact with each other and eventually collapse into a large
vortex in the center. Both fields of these two examples were
created using key-frame design, although they could also be
generated using element-based design.

9.5 Performance

For all the examples shown in this paper, the initialization
of a planar time-varying field with 100 frames defined on a
65� 65 regular grid typically takes less than 5 seconds on a
3 GHz PC with 4 GB RAM. For the design on surfaces (up to
20,000 vertices), it can take up to 3.5 minutes to generate the
field with 100 frames without optimization and with an
error threshold of 1:e� 10 and maximum iteration number
of 400 for the bi-Conjugate Gradient solver. Note that a
direct solver could be applied, such as the Cholesky
decomposition. However, when a time-varying vector field
with a long sequence is created on a large mesh, the
memory usage may not be efficient for such a direct
decomposition method.

9.6 Evaluation and Discussion

To evaluate the generated time-varying vector fields, we
display a plot showing the change of the instantaneous field
over time for each example field used in the paper (Fig. 17).
This plot allows us to visualize the temporal coherence of a
time-varying vector field. TheX axis of each plot is the frame
index and the Y axis is the total change of the vector field
computed as yðxiÞ ¼

P
k kV ðvk; tiþ1Þ � V ðvk; tiÞk where

V ðvk; tiÞ is the vector value at vertex k at time ti. According
to our smoothness assumption in the introduction, the
smaller the yðxiÞ, the slower and smoother the change is.
From the plots, we can see that the fields generated using the
key-frame design combined with the spatial-temporal
Laplacian are typically smooth because of its energy
minimization nature. The element-based method could
generate fields with larger fluctuation due to the occurrence
of unexpected features or insufficient sampling along an

integral curve (e.g., the pathline design shown in Fig. 15).
Field deformation also generates fields with large variations
over time. This is because of the large change of the
transformation matrix or the reference streamline in suc-
ceeding times. However, this issue is not fundamental and
can be resolved by simply increasing the time sampling to
capture the smooth transition of the features that are
manipulated. In terms of which design scenario should be
used for a given situation, it is application dependent. It is
determined by what and how the graphics properties need to
be controlled in the specific applications, as demonstrated
through various applications in this section. For instance, if
the path of certain local graphics primitives (e.g., a vortex in
Fig. 5 and the path of a group of pedestrian in Fig. 15) need to
be controlled exactly, the element-based design can be
employed. If the exact states at some desired times have to
be met (e.g., the writing on the grass in Fig. 13), the key-frame
design is more suitable. In addition, element-based design
and the field deformation approach may provide full control
of the local behaviors of the flow at and near the prescribed
elements and the representative streamline, but could be
labor intensive if the number of local patterns that need to be
controlled is large. Key-frame design is effective if instanta-
neous appearance is the main goal and only a few
instantaneous fields at the desired times are required to
meet, but it lacks the control of the rest of the field. An ideal
solution would be the combination of these different
approaches to devise a more flexible and thorough design
framework. We plan to investigate this in the future work.

10 CONCLUSION AND FUTURE WORK

This paper addresses the problem of the design of time-
varying vector fields on 2D domains. We have identified a
set of design requirements for different applications as well
as two different uses of time-varying vector fields, i.e., for
orienting graphical primitives or advecting objects. A

1728 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 16. The effect of a burning sun.

Fig. 17. Coherence plots of the time-varying vector fields used in the
paper.

number of design scenarios and the corresponding design
metaphors are then discussed based on these requirements
for different purposes in computer graphics. Efficient
algorithms are introduced to generate time-varying vector
fields from the user-specified design metaphors. A number
of editing operations with certain topological guarantees are
introduced to enable the fine adjustment of the obtained
fields. We have incorporated the present techniques into a
design system for the modeling of various time-varying
vector fields. To our knowledge, the presented design
system is the first of its kind for general time-varying vector
field design with bifurcation control. This work opens a
new direction in the area of field design which can be
extended to the more complex time-varying field design
problems. For instance, the same framework can be easily
modified to handle the design of time-varying tensor fields
by extending the time-varying singular elements to the
elements for degenerate points in the element-based design
or solving a tensor-based spatial-temporal Laplacian in the
key-frame design.

There are a number of future research directions. First,
the present generation techniques do not guarantee the
desired topology over time, especially for key-frame design.
Only the topology at the key-frame fields are defined. More
comprehensive control of topology in between key-frame
fields is needed. Second, the bifurcation design is an
important component in time-varying vector field design
as shown in the paper. More flexible and sophisticated
design techniques for bifurcations are much desired. We
also wish to extend our system to handle a variety of
bifurcations that may involve more sophisticated features
such as periodic orbits and separation and attachment lines.
Third, we plan to explore other flow descriptors including
streaklines, timelines [7], and Lagrangian coherent struc-
tures [12]. Fourth, more comprehensive combinations of
different design functionality and generation techniques,
such as combining the presented design with physically
based simulation, should be studied to support more
complex design tasks in the future. Finally, extending the
design techniques for 2D fields to 3D ones will be more
challenging yet important for computer graphics.

ACKNOWLEDGMENTS

We would like to thank Dr. Konstantin Mischaikow for the
valuable discussion on the topology and dynamics of vector
fields, which initiated this work. We also thank Dr. Mark
van Langeveld for the valuable discussion on potential
applications. We appreciate the help by Timothy O’Keefe
on proofreading the paper. This work was supported by
NSF IIS-0546881, IIS-0917308, OCI-0906379, and CCF-
0830808 award. Guoning Chen was partially supported by
King Abdullah University of Science and Technology
(KAUST) Award No. KUS-C1-016-04 and DOE VACET.

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
“Anisotropic Polygonal Remeshing,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 485-493, 2003.

[2] A.W. Bargteil, F. Sin, J.E. Michaels, T.G. Goktekin, and J.F.
O’Brien, “A Texture Synthesis Method for Liquid Animations,”
Proc ACM SIGGRAPH/Eurographics Symp. Computer Animation
(SCA ’06), pp. 345-351, Sept. 2006.

[3] G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang,
“Vector Field Editing and Periodic Orbit Extraction Using Morse
Decomposition,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 4, pp. 769-785, July-Aug. 2007.

[4] S. Chenney, “Flow Tiles,” Proc. ACM SIGGRAPH/Eurographics
Symp. Computer Animation (SCA ’04), pp. 233-242, 2004.

[5] Y.-Y. Chuang, D.B. Goldman, K.C. Zheng, B. Curless, D.H. Salesin,
and R. Szeliski, “Animating Pictures with Stochastic Motion
Textures,” ACM Trans. Graphics, vol. 24, no. 3, pp. 853-860, 2005.

[6] K. Crane, M. Desbrun, and P. Schröder, “Trivial Connections on
Discrete Surfaces,” Computer Graphics Forum (SGP), vol. 29, no. 5,
pp. 1525-1533, 2010.

[7] T. Faber, Fluid Dynamics for Physicists. Cambridge Univ. Press,
1995.

[8] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe, “Design of
Tangent Vector Fields,” ACM Trans. Graphics, vol. 26, no. 3,
pp. 56:1-56:9, 2007.

[9] M.S. Floater, “Mean Value Coordinates,” Computer Aided Geometric
Design, vol. 20, no. 1, pp. 19-27, 2003.

[10] H. Fu, Y. Wei, C.-L. Tai, and L. Quan, “Sketching Hairstyles,” Proc.
Fourth Eurographics Workshop Sketch-based Interfaces and Modeling
(SBIM ’07), pp. 31-36, 2007.

[11] J. Hale and H. Kocak, Dynamics and Bifurcations. Springer, 1991.
[12] G. Haller, “Finding Finite-Time Invariant Manifolds in Two-

Dimensional Velocity Fields,” Chaos, vol. 10, no. 1, pp. 99-108, 2000.
[13] J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo,

“Fast Example-Based Surface Texture Synthesis via Discrete
Optimization,” The Visual Computer, vol. 22, no. 9, pp. 918-925, 2006.

[14] J. Hays and I. Essa, “Image and Video Based Painterly Anima-
tion,” Proc. Third Int’l Symp. Non-Photorealistic Animation and
Rendering (NPAR ’04), pp. 113-120, 2004.

[15] J.L. Helman and L. Hesselink, “Representation and Display of
Vector Field Topology in Fluid Flow Data Sets,” Computer, vol. 22,
no. 8, pp. 27-36, Aug. 1989.

[16] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes
of Multiple Sizes,” Proc. SIGGRAPH ’98, pp. 453-460, 1998.

[17] A. Hertzmann and K. Perlin, “Painterly Rendering for Video and
Interaction,” Proc. First Int’l Symp. Non-Photorealistic Animation and
Rendering (NPAR ’00), pp. 7-12, 2000.

[18] M. Kagaya, W. Brendel, Q. Deng, T. Kesterson, S. Todorovic, P.J.
Neill, and E. Zhang, “Video Painting with Space-Time-Varying
Style Parameters,” IEEE Trans. Visualization and Computer Graphics,
vol. 17, no. 1, pp. 74-87, Jan. 2011.

[19] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carlson, and
M. Lin, “Texturing Fluids,” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 5, pp. 939-952, Sept.-Oct. 2007.

[20] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture
Optimization for Example-Based Synthesis,” ACM Trans. Graphics,
vol. 24, pp. 795-802, Aug. 2005.

[21] Y.-K. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-M. Hu, and
X. Gu, “Metric-Driven Rosy Field Design and Remeshing,” IEEE
Trans. Visualization and Computer Graphics, vol. 16, no. 1, pp. 95-
108, Jan.-Feb. 2010.

[22] R.S. Laramee, B. Jobard, and H. Hauser, “Image Space Based
Visualization of Unsteady Flow on Surfaces,” Proc. IEEE 14th
Visualization (VIS ’03), pp. 131-138, Oct. 2003.

[23] S. Lefebvre and H. Hoppe, “Appearance-Space Texture Synth-
esis,” ACM Trans. Graphics, vol. 25, no. 3, pp. 541-548, 2006.

[24] C. Ma, L.-Y. Wei, B. Guo, and K. Zhou, “Motion Field Texture
Synthesis,” ACM Trans. Graphics, vol. 28, no. 5, pp. 110:1-110:8,
2009.

[25] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo, “Illuminated Lines
Revisited,” Proc. IEEE Visualization (VIS ’05), pp. 19-26, 2005.

[26] F. Neyret, “Advected Textures,” Proc. ACM SIGGRAPH/Euro-
graphics Symp. Computer Animation (SCA ’03), pp. 147-153, 2003.

[27] J. Palacios and E. Zhang, “Rotational Symmetry Field Design on
Surfaces,” ACM Trans. Graphics, vol. 26, no. 3, pp. 56:1-56:10, 2007.

[28] R. Parent, Computer Animation: Algorithms and Techniques, second
ed. Morgan Kaufmann Publishers, Inc., 2007.

[29] S. Patil, J. van den Berg, S. Curtis, M.C. Lin, and D. Manocha,
“Directing Crowd Simulations Using Navigation Fields,” IEEE
Trans. Visualization and Computer Graphics, vol. 17, no. 2, pp. 244-
254, Feb. 2011.

[30] F. Pighin, J.M. Cohen, and M. Shah, “Modeling and Editing Flows
Using Advected Radial Basis Functions,” Proc. ACM SIGGRAPH/
Eurographics Symp. Computer Animation (SCA ’04), pp. 223-232,
2004.

CHEN ET AL.: DESIGN OF 2D TIME-VARYING VECTOR FIELDS 1729

[31] E. Praun, F. Adam, and H. Hugues, “Lapped Textures,” Proc.
SIGGRAPH ’00, pp. 465-470, 2000.

[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
Univ. Press, 1992.

[33] N. Ray, W.C. Li, B. Lévy, and A.S. an d Pierre Alliez, “Periodic
Global Parameterization,” ACM Trans. Graphics, vol. 25, no. 4,
pp. 1460-1485, 2006.

[34] N. Ray, B. Vallet, W.-C. Li, and B. Levy, “N-Symmetry Direction
Field Design,” ACM Trans. Graphics, vol. 27, no. 2, pp. 10:1-10:13,
2008.

[35] J. Stam, “Stable Fluids,” Proc. SIGGRAPH ’99, pp. 121-128, 1999.
[36] J. Stam, “Flows on Surfaces of Arbitrary Topology,” ACM Trans.

Graphics, vol. 22, no. 3, pp. 724-731, July 2003.
[37] H. Theisel, “Designing 2D Vector Fields of Arbitrary Topology,”

Proc. Eurographics Conf., vol. 21, no. 3, pp. 595-604, July 2002.
[38] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Topolo-

gical Methods for 2D Time-Dependent Vector Fields Based on
Stream Lines and Path Lines,” IEEE Trans. Visualization and
Computer Graphics, vol. 11, no. 4, pp. 383-394, July-Aug. 2005.

[39] A. Treuille, S. Cooper, and Z. Popovi�c, “Continuum Crowds,”
ACM Trans. Graphics, vol. 25, no. 3, pp. 1160-1168, 2006.

[40] X. Tricoche, G. Scheuermann, and H. Hagen, “Topology-based
Visualization of Time-Dependent 2D Vector Fields,” Proc. Data
Visualization, pp. 117-126, 2001.

[41] G. Turk, “Texture Synthesis on Surfaces,” Proc. SIGGRAPH ’01,
pp. 347-354, 2001.

[42] G. Turk and J.F. O’ brien, “Modelling with Implicit Surfaces That
Interpolate,” ACM Trans. Graphics, vol. 21, no. 4, pp. 855-873, 2002.

[43] J. van Wijk, “Image Based Flow Visualization for Curved
Surfaces,” Proc. IEEE 14th Visualization (VIS ’03), pp. 123-130, 2003.

[44] J.J. van Wijk, “Image Based Flow Visualization,” ACM Trans.
Graphics, vol. 21, no. 3, pp. 745-754, July 2002.

[45] W. von Funck, H. Theisel, and H.-P. Seidel, “Vector Field Based
Shape Deformations,” ACM Trans. Graphics, vol. 25, no. 3,
pp. 1118-1125, 2006.

[46] L.Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary
Manifold Surfaces,” Proc. SIGGRAPH ’01, pp. 355-360, 2001.

[47] J. Wejchert and D. Haumann, “Animation Aerodynamics,” Proc.
SIGGRAPH ’91, pp. 19-22, 1991.

[48] K. Xu, D. Cohne-Or, T. Ju, L. Liu, H. Zhang, S. Zhou, and Y. Xiong,
“Feature-Aligned Shape Texturing,” ACM Trans. Graphics, vol. 28,
no. 5, pp. 108:1-108:7, 2009.

[49] K. Xu, H. Zhang, D. Cohen-Or, and Y. Xiong, “Dynamic
Harmonic Fields for Surface Processing,” Computers and Graphics,
vol. 33, no. 3, pp. 391-398, 2009.

[50] L. Xu, J. Chen, and J. Jia, “A Segmentation Based Variational
Model for Accurate Optical Flow Estimation,” Proc. 10th European
Conf. Computer Vision (ECCV ’08), pp. 671-684, 2008.

[51] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on
Surfaces,” ACM Trans. Graphics, vol. 25, no. 4, pp. 1294-1326, 2006.

Guoning Chen received the bachelors degree
in 1999 from Xi’an Jiaotong University, China
and the masters degree in 2002 from Guangxi
University, China. In 2009, he received the PhD
degree in computer science from Oregon State
University. His research interests include scien-
tific visualization, computational topology, and
computer graphics. Currently, he is a postdoc-
toral research associate in Scientific Computing
and Imaging (SCI) Institute at the University of

Utah. He is a member of the IEEE.

Vivek Kwatra received the BTech degree in
computer science and engineering from the
Indian Institute of Technology (IIT) Delhi, India,
in 1999 and the MS and PhD degrees in computer
science from the Georgia Institute of Technology
in 2004 and 2005, respectively. He was a
postdoctoral researcher in the Computer Science
Department at the University of North Carolina,
Chapel Hill, from 2005 to 2007. He is currently
working at Google as a research scientist.

Li-Yi Wei received the PhD degree from
Stanford in 2001. He is an associate professor
at The University of Hong Kong. He has been
with Microsoft Research from 2005 to 2011 and
NVIDIA from 2001 to 2005.

Charles D. Hansen received the BS degree in
computer science from Memphis State Univer-
sity in 1981 and the PhD degree in computer
science from the University of Utah in 1987. He
is a professor of computer science at the
University of Utah and an associate director of
the SCI Institute. From 1989 to 1997, he was a
technical staff member in the Advanced Com-
puting Laboratory (ACL) located at Los Alamos
National Laboratory, where he formed and

directed the visualization efforts in the ACL. He was a Bourse de
Chateaubriand postdoc fellow at INRIA, Rocquencourt France, in 1987
and 1988. His research interests include large-scale scientific visualiza-
tion and computer graphics. He is a fellow of the IEEE.

Eugene Zhang received the PhD degree in
computer science in 2004 from Georgia Institute
of Technology. He is currently an associate
professor at Oregon State University, where he
is a member of the School of Electrical En-
gineering and Computer Science. His research
interests include computer graphics, scientific
visualization, geometric modeling, and computa-
tional topology. He received an National Science
Foundation (NSF) CAREER award in 2006. He

is a senior member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1730 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

