
A Triangulation-Invariant Method
for Anisotropic Geodesic Map

Computation on Surface Meshes
Sang Wook Yoo, Joon-Kyung Seong, Min-Hyuk Sung, Sung Yong Shin, and Elaine Cohen

Abstract—This paper addresses the problem of computing the geodesic distance map from a given set of source vertices to all other

vertices on a surface mesh using an anisotropic distance metric. Formulating this problem as an equivalent control theoretic problem

with Hamilton-Jacobi-Bellman partial differential equations, we present a framework for computing an anisotropic geodesic map using

a curvature-based speed function. An ordered upwind method (OUM)-based solver for these equations is available for unstructured

planar meshes. We adopt this OUM-based solver for surface meshes and present a triangulation-invariant method for the solver. Our

basic idea is to explore proximity among the vertices on a surface while locally following the characteristic direction at each vertex. We

also propose two speed functions based on classical curvature tensors and show that the resulting anisotropic geodesic maps reflect

surface geometry well through several experiments, including isocontour generation, offset curve computation, medial axis extraction,

and ridge/valley curve extraction. Our approach facilitates surface analysis and processing by defining speed functions in an

application-dependent manner.

Index Terms—Geodesic, anisotropy, surface mesh, Hamilton-Jacobi-Bellman, curvature minimization, curvature variation

minimization, shape analysis.

Ç

1 INTRODUCTION

COMPUTING geodesics on 2-manifolds has been a recur-
rent theme for the last two decades in both numerical

analysis and computer graphics communities. Formulated
as first-order partial differential equations with boundary
conditions, the problem of finding geodesic curves is
important in its own right and also as an integral part of
applications, including surface segmentation and editing
[1], [2], distortion-minimizing parameterization [3], [4],
surface remeshing [5], [6], [7], isometry-invariant shape
classification [8], [9], [10], medical imaging [11], [12], and
geophysics [13], to name a few.

A geodesic is a distance-minimizing curve in the sense
that any perturbation of this curve increases its length. The
geodesic computation problem has been investigated in
various settings under isotropic distance metrics. Much
effort has been focused on the Eikonal equation that
represents the propagation of a front in an isotropic manner.

Adopting the Dijkstra-type algorithmic framework of fast
marching, Kimmel and Sethian [14] proposed a method to
compute approximate geodesic paths by numerically solving
this equation.

A more general form of geodesics, called anisotropic
geodesics, has been considered under anisotropic distance
metrics, each of which is a function of both the position of a
point and the direction at it. Sethian and Vladimirsky [15]
presented a class of methods referred to as ordered upwind
method (OUM)-based solvers for Hamilton-Jacobi partial
differential equations (H-J PDEs), which can be regarded as
a generalization of Eikonal equations under anisotropic
distance metrics (or the inverse of speed functions). Thus,
an OUM-based solver also adopts the algorithmic frame-
work of fast marching. They argued that their OUM-based
solver could be extended to manifolds without providing
explicit algorithms.

In this paper, we discuss how to build the anisotropic
geodesic map (AG map for brevity) on a surface mesh.
Given an anisotropic distance metric, we formulate the
problem of computing the AG map as an equivalent control
theoretic problem with Hamilton-Jacobi-Bellman (H-J-B)
PDEs. In order to solve the H-J-B PDEs on a surface mesh,
we adopt an OUM-based solver and present a triangula-
tion-invariant method for the solver. Since a triangulation
scheme would impose connectivity information to the
underlying surface, the AG map constructed by an original
OUM-based solver could be dependent on the given
triangulation. Our approach is based on exploring proxi-
mity among the vertices on a surface mesh rather than
connectivity information given by a specific triangulation
scheme, which is therefore independent of a given
triangulation for the surface. We further propose two

1664 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

. S.W. Yoo and S.Y. Shin are with the Computer Graphics Laboratory, Korea
Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro,
Yuseong-gu, Daejeon 305-701, Korea.
E-mail: {ysw81, syshin}@jupiter.kaist.ac.kr.

. J.-K. Seong is with the School of Computer Science and Engineering,
Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul 156-743, Korea.
E-mail: seong@ssu.ac.kr.

. M.-H. Sung is with the Image Media Research Center, Korea Institute of
Science and Technology (KAIST), Hwarangno 14-gil 5, Seongbuk-gu,
Seoul 136-791, Korea. E-mail: smh0816@imrc.kist.re.kr.

. E. Cohen is with the Geometric Design and Computation Group, School of
Computing, 50 Central Campus Drive, University of Utah, Salt Lake City,
UT 84112. E-mail: cohen@cs.utah.edu.

Manuscript received 18 May 2011; revised 10 Dec. 2011; accepted 8 Jan. 2012;
published online 26 Jan. 2012.
Recommended for acceptance by P. Cignoni.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2011-05-0109.
Digital Object Identifier no. 10.1109/TVCG.2012.29.

1077-2626/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

anisotropic distance metrics for surface analysis and
processing. Based on the fact that curvature information
encodes rich surface features, we use normal curvature-
based tensors of a surface to derive curvature-based speed
functions as well as their respective anisotropic distance
metrics. Fig. 1 shows examples of AG paths on a surface
under three different distance metrics: euclidean speed
function, curvature-minimizing speed function, and curva-
ture variation-minimizing speed function. In Fig. 1c, the
ridge and valley curves are marked red and blue, respec-
tively. The effectiveness of the proposed metrics is demon-
strated through experiments including geodesic offset curve
extraction, medial axis computation, and ridge/valley
curve extraction.

The rest of this paper is structured as follows: Section 2
reviews related work. Section 3 describes a Hamilton-
Jacobi-Bellman formulation. In Section 4, we present a
triangulation-invariant solver for computing an AG map on
a surface mesh. Section 5 proposes two anisotropic
curvature-based distance metrics. In Section 6, we show
experimental results to support the efficacy of the proposed
method. Finally, Section 7 concludes this paper.

2 RELATED WORK

Rich results have been reported on geodesic computation in
various domains. However, we focus our review on those
most closely related to our work.

Mitchell et al. [16] proposed the exact method for
solving the shortest path problem on a triangular mesh in
R3. They computed the geodesic distances from a single
source to all vertices on a meshed surface by partitioning
each mesh edge into a set of intervals over which the exact
distance computation can be performed. Later, an approx-
imation algorithm with a bounded error was implemented
[17]. Bommes and Kobbelt [18] further generalized the
algorithm to handle an arbitrary, possibly open, source
region on the mesh.

To approximate geodesic distances on a point set surface,
Klein and Zachmann [19] provided a method for finding a
shortest path on a geometric proximity graph called a
spheres-of-influence graph. Hofer and Pottmann [20]
computed a geodesic curve by formulating it as an
energy-minimizing discrete curve constrained on a moving
least squares (MLS) surface, and later this formulation was

generalized to estimate the proximity of the geodesic path
to the point cloud, utilizing surfel disks [21]. Our approach
in this paper considers the proximity of the points in a more
general sense by adopting anisotropic distance metrics.

Sethian [22] proposed the fast marching framework to
compute an approximate geodesic. Qin et al. [23] presented
a similar approach earlier based on front propagation
without using a heap data structure. The fast marching
framework adopts the Dijkstra-type algorithmic structure of
computing the shortest paths from a single source to all
destinations in order to solve Eikonal equations. The time
complexity of this method is OðNlogNÞ, which is optimal in
the worst case. Tsitsiklis [24] also presented a Dijkstra-type
algorithm for solving eikonal equation. The fast marching
method was generalized to arbitrary triangulated surfaces
[14], implicit unorganized surfaces [25], point set surfaces
[26], and parametric surfaces [27]. Recently, an efficient
parallel algorithm for first-order approximation of geodesic
distances on parametric surfaces was proposed by Weber et
al. [28]. However, all these methods can solve only Eikonal
equations, which are a special type of H-J PDEs.

H-J PDEs are a generalization of Eikonal equations under
anisotropic metrics. There are two groups of solvers for H-J
PDEs from an algorithm point of view: sweep-based solvers
and OUM-based solvers. Sweep-based solvers adopt the
plane sweep framework from computational geometry [29],
[30]. Based on a control theoretic perspective, Qian et al. [31]
proposed a sweep-based method, which uses a Gauss-
Seidel updating order for fast convergence. Kao et al. [32]
introduced a new interpretation of Hamiltonians based on
the Legendre transformation for solving arbitrary static H-J
PDEs. Based on prior approaches [33], [34], a parallel
algorithm called the fast iterative method (FIM) was
recently proposed to solve a class of H-J PDEs on massively
parallel systems [35]. Seong et al. [36] used the FIM for
segmenting and matching parametric surfaces using a
curvature-based local distance function. It is challenging,
however, to extend the sweep-based solvers to surface
meshes with arbitrary boundaries.

The other group consists of OUM-based solvers, which
can be regarded as an extension of fast marching methods.
An early work of Sethian and Vladimirsky [37] and its later
enhancement [15] were able to solve H-J PDEs on
unstructured meshes in Rn. The underlying idea of OUM-
based solvers is that the solution of a H-J PDE at a point

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1665

Fig. 1. Three different geodesic paths are computed using three different distance metrics: euclidean speed function (a), curvature-minimizing speed
function (b), and curvature variation-minimizing speed (c). In right figure, the ridge and valley curves are marked red and blue, respectively.

depends only on its “upwind neighbors” along the
characteristic direction. We generalize the later version to
handle surface meshes, which is independent of a triangu-
lation scheme for the underlying surface.

Mémoli and Sapiro [25] presented an algorithm for
computing the geodesic distance map on an implicit surface
under an isotropic metric. This solver approximates the
geodesic distance map on a regular grid embedded in a thin
offset band surrounding the surface. As the offset band gets
thinner, the approximate solution converges to the geodesic
distance map. The authors later showed that their approach
can be generalized for solving Hamilton-Jacobi PDEs on
point set surfaces [26]. However, they mainly dealt with
Eikonal equations without providing an explicit solver for
the more general class of equations, Hamilton-Jacobi PDEs.
Recently, Konukoglu et al. [38] presented a recursive
algorithm for solving anisotropic Eikonal equations on mesh
surfaces. This method improves the fast marching algorithm
by employing a recursive correction scheme under an
anisotropic metric. However, the solution to the anisotropic
Eikonal equations depends on a triangulation of the surface
since the nearest neighbors of each vertex are determined by
its incident edges of the specific triangulation.

3 HAMILTON-JACOBI-BELLMAN (H-J-B)
FORMULATION

In this section, we briefly summarize the control theoretic
view of AG computation based on the Hamilton-Jacobi-
Bellman (H-J-B) formulation in [15]. We use this formula-
tion to construct an AG map for a surface mesh under an
anisotropic distance metric ðx; aðxÞÞ on a 2-manifold �,
where aðxÞ is a unit vector in the tangent plane at x 2 �,

that is, aðxÞ 2 S1 ¼ fv 2 R2j kvk ¼ 1g. Let Cx ¼ fc j cðsÞ 2
�; 0 � s � L; cð0Þ ¼ x; cðLÞ 2 @�g, where c is a curve on
the surface connecting x and a point on the boundary @�.
Then, the length of the AG curve from x to the point on the
boundary @�, denoted by uðxÞ, is given as follows:

uðxÞ ¼ inf
c2Cx

Z L

0

 ðcðsÞ; c
0ðsÞ
kc0ðsÞkÞds: ð1Þ

Interpreting as the inverse of speed (the time per unit
distance along the curve), the length (or cost) of the curve is
the time needed to travel along it. Thus, uðxÞ is the time to
travel along the AG curve from x to the boundary, which is
the infimum over all possible curves between x and the
boundary.

The infimum in the above definition is due to the fact
that there are infinitely many possible paths and the
optimal path in general does not necessarily exist. By using
a suboptimal path instead, uðxÞ is the unique viscosity
solution of the following H-J-B equation [15]:

min
a2S1
fðruðxÞ � aÞfðx; aÞ þ 1g ¼ 0; x 2 �;

uðxÞ ¼ qðxÞ; x 2 @�;

(

where qðxÞ is the time penalty for exiting the domain at the
point x 2 @� and f ¼ 1

 is a speed function [11]. In our
problem setting, we set qðxÞ ¼ 0. Let a Hamiltonian be
chosen as follows:

Hðru;xÞ ¼ �min
a2S1
fðruðxÞ � aÞfðx; aÞg

¼ max
a2S1
fðruðxÞ � ð�aÞÞfðx; aÞg ¼ 1:

ð2Þ

This Hamiltonian turns out to be convex and homogeneous
of degree one in the first argument, and thus the OUM-
based solver converges to solutions of H-J-B PDEs. We
design the speed function fðx; aÞ in an application-
dependent manner, which is Lipschitz-continuous and
bounded by some constants f1 and f2

0 < f1 � fðx; aÞ � f2 <1: ð3Þ

In order to exploit the framework of the OUM-based solver,
we propose to use normal curvature-based speed functions
that satisfy these conditions (Section 5).

Given a set of seed points with boundary conditions, the
AG map for a surface mesh provides the viscosity solution
of (2) at every vertex on the surface under an anisotropic
distance metric . In other words, this map gives the arrival
time uðxÞ to every vertex x on the surface from the given
seed points. Also, the maximizer a in the last part of (2)
corresponds to the characteristic direction for vertex x.
Therefore, starting from any vertex on the surface, we can
trace back an approximate geodesic curve to a seed guided
by this map.

4 TRIANGULATION-INVARIANT AG MAP

CONSTRUCTION

4.1 Overview

Motivation. In this section, we present a triangulation-
invariant solver for AG map construction by adopting an
OUM-based solver [15] for surface meshes. The OUM-based
solver converges to the solution of the H-J-B PDE as a mesh
is successively refined. Given a mesh of fixed resolution, the
quality of the solution depends on the quality of the mesh,
that is, how well the surface is triangulated.

A triangulation of a set of points on a 2-manifold encodes
proximity information. Specifically, in a Delaunay triangu-
lation, the nearest neighbors of each vertex in euclidean
sense are connected by its incident edges. Guided by this
information, an isotropic geodesic map can be constructed
naturally while traversing the triangular mesh from vertex
to vertex starting from the seeds. However, the proximity
information that is embedded in a Delaunay triangulation
provides a limited guide to AG map construction for a
given vertex set on a 2-manifold although the convergence
of the OUM-based solver is guaranteed as the mesh is
successively refined.

From the algorithmic point of view, the OUM-based
solver chooses the next closest vertex to the seeds under an
anisotropic distance metric among the vertices in the
candidate vertex set. However, these vertices have been
chosen based on the connectivity of a triangular mesh, which
does not reflect the proximity of the vertices in the sense of
the same anisotropic metric. Unfortunately, it is difficult, if
not impossible, to obtain a generalized Delaunay triangula-
tion for an arbitrary surface under an anisotropic distance
metric. Therefore, our strategy is to locally enumerate
proximity of the vertices in a triangulation-invariant manner
rather than to obtain it from a specific triangulation.

1666 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Framework. Being inherited from the OUM-based
solver, the framework of our triangulation-invariant solver
is similar to that of the Dijkstra’s shortest path finding
algorithm from a single source to all other vertices. A
pseudocode for our triangulation-invariant solver is given
in Algorithm 1 (see Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2012.29). Starting
from the user-provided seed points, the solver estimates
the arrival times to all vertices, one by one, guided by the
proximity information at each vertex on the surface mesh.
While the solver is being executed, the vertices on the
surface are partitioned into three sets: Far, Considered, and
Accepted, as illustrated in Fig. 2. The set Far consists of
vertices for which no information on the arrival times are
available. On the other hand, the arrival time to every
vertex in the set Accepted has already been computed. The
set Considered is the boundary of Far, along which a
tentative arrival time to each vertex has been computed.
Each vertex in Considered is a neighbor of a vertex in Far
and also that of a vertex in Accepted. The set Considered
consists of all candidates for the next vertex that moves to
Accepted, and the tentative arrival times to these vertices
are used as the criteria to choose the next vertex.

The vertices on the boundary of Accepted form an
accepted front (AF), which can be regarded as a snapshot
of a discretization of the front formulated by a H-J PDE [15].
More precisely, we define the accepted front AF in terms of
two sets, Accepted and Considered as follows:

AF ¼
xjxkj; xj and xk are adjacent to each other in

Accepted and also adjacent to a vertex in
Considered

8<
:

9=
;:

As shown in Fig. 2, the set AF is a piecewise linear curve
(bold) which is progressively evolved from time to time by
the triangulation-invariant solver.

4.2 Triangulation-Invariant Solver

In this section, we explain the main algorithm of our
triangulation-invariant solver. Since the framework of our
solver is similar to that of the OUM-based solver, we
concentrate our discussion on the following issues that arise
for the triangulation-invariant solver:

. How to determine the neighbors of a vertex (steps 4
and 9 in Algorithm 1).

. How to compute a tentative arrival time V ðxÞ (steps 4
and 9).

. How to construct Considered (step 8).

. How to update AF and Considered (steps 7 and 8).

. Why our solver converges to the viscosity solution.

Neighbor determination. A triangular mesh specifies the
neighbors of each vertex explicitly via its incident edges,
thereby providing partial information on the proximity for a
vertex set on a mesh in a euclidean sense, although biased to
a specific triangulation. However, our objective is to avoid
such a mesh so as to obtain a triangulation-invariant solver.
Specifically, for each vertex pi of the mesh, we choose as its
neighbors the vertices that are located within distance h
from pi in a geodesic manner. In order to estimate h, one
may employ the recent result for optimal “bandwidth”
selection for a MLS surface, where the bandwidth of a
sample vertex is its influence radius [39]. For efficiency,
however, we use a heuristic scheme to choose h as follows:

h ¼ max
i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

i =ni

q� �
; ð4Þ

where ni is the number of vertices from which geodesic
distance to the vertex pi is less than si and � is a user-
defined constant. �s2

i =ni approximates the average area per
vertex near pi. Given pi and sufficiently large ni, we choose
si using the Dijkstra’s shortest path finding algorithm such
that all ni neighbors of pi are within distance si from pi in a
geodesic manner on the surface mesh. In our experiments,
we empirically set ni ¼ 60-70 and � ¼ 4.

Tentative arrival time computation. We describe how to
evaluate the tentative arrival time to a vertex x in Considered
(steps 4 and 9 in Algorithm 1). Consider the projection of a
line segment xjxk in the set AF onto the tangent plane of the
surface at x (Fig. 3a). Since both xj and xk are from Accepted,
their minimum arrival times uðxjÞ and uðxkÞ have already
been estimated. Let �xj and �xk be the projected points of xj
and xk, respectively, on the tangent plane. Then, an ordered
upwind approximation of the tentative arrival time Vxj;xkðxÞ
to x through the projected simplex x�xj�xk on the tangent
plane can be computed as follows:

Vxj;xkðxÞ ¼ min
t2½0;1�

�ðtÞ
fðx; aÞ þ tuðxjÞ þ ð1� tÞuðxkÞ
� �

; ð5Þ

where �ðtÞ ¼ k~x� xk ¼ kðt�xj þ ð1� tÞ�xkÞ � xk and a ¼ ~x�x
�ðtÞ .

Appendix B, available in the online supplemental material,
describes how to compute the tentative value Vxj;xkðxÞ using
a speed function fðx; aÞ based on the normal curvature at a
vertex (Section 5). In general, there are multiple line
segments in AF, and thus the minimum of Vxj;xk ’s over all
line segments in AF is chosen for the tentative arrival time
V ðxÞ to x (see (1) and (2) in Appendix A, available in the
online supplemental material).

For a vertex x 2 Considered, the part of AF that affects
the arrival time to x turns out to be a portion of AF near x.
Denoting this part as the near front NFðxÞ, we define

NF ðxÞ ¼ fxjxk 2 AF j9 ~x on xjxk such that k~x� xk < h�g;

where h is a bandwidth computed using (4) and � is the
anisotropy ratio f2=f1, for the bounding constants f1 and f2

of the speed function f defined in (3). Fig. 3b shows the
NFðxÞ for a vertex x in Considered. In Fig. 3b, every line

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1667

Fig. 2. Three vertex sets: Far (yellow), Considered (blue), and Accepted
(red). The accepted front (AF) is represented in bold lines.

segment xjxk 2 NFðxÞ is represented in bold lines. Both h
and � are computed once in a preprocessing step. Since the
arrival time to x is affected only by the line segments in
NFðxÞ, we could discard a large portion of AF except NFðxÞ
when updating the tentative arrival time V ðxÞ.

Proximity-based construction of ConsideredConsidered. We explain
a new method for constructing the set Considered based on
proximity among vertices on the surface. We modify the
original definition of the set Considered to make our method
for AG map construction triangulation-invariant. As de-
scribed in Algorithm 1, the accepted front AF propagates
gradually by moving a vertex in Considered to Accepted, one
by one, where the tentative arrival times are used as the
criteria to choose the next vertex. The vertices in the set
Considered are candidates for the next closest vertex to AF. In
order to achieve triangulation-invariance in front propaga-
tion, we newly define a candidate set for a line segment in AF
based on its proximity with adjacent vertices in Far.

While the solver is being executed, the two vertex sets
Considered and AF are boundaries of Far and Accepted,
respectively. Since there are no vertices between Considered
and AF, each vertex in Considered forms one or more empty
triangles together with line segments in AF as illustrated in
Fig. 4: we define an empty triangle for a vertex x as a
triangle that contains no neighbor vertices projected on the
tangent plane at x. In Fig. 4, for example, a vertex x4 forms
empty triangles together with line segments xixj and xjxk
in AF. Given the accepted front AF, we define a candidate
set Cjk for a line segment xjxk in AF to be a set of vertices on
the surface that form empty triangles with xjxk. Specifi-
cally, the candidate set construction method consists of two
steps: neighbor vertex projection and empty triangle check.
First, the neighbor vertices of both xj and xk are projected
onto the tangent plane at each neighbor vertex x. Second, an
empty triangle check is done for x by testing if a triangle
connecting x, xj, and xk contains any of the projected
neighbor vertices on the tangent plane at x. In Fig. 4, for
example, Cjk ¼ fx1;x4;x5g since every vertex xl; l ¼ 1; 4; 5,
forms empty triangles xlxjxk with the line segment xjxk.
Once the candidate sets Cjk are constructed for all line
segments xjxk in AF, the set Considered is finally constructed
as their union.

A candidate set Cjk encodes the proximity information
with respect to xjxk. Each candidate set may have multiple

vertices in Considered, and also two different candidate sets
may have the same vertices as elements. For example, Cij ¼
fx1;x2;x3;x4g and Cjk ¼ fx1;x4;x5g in Fig. 4. For the
original version of the OUM-based solver, however, every
candidate set is reduced to a single vertex on the surface
which would restrict the choice of the next vertex that
moves to Accepted. The triangulation-invariant solver is
allowed to use more candidates for the next vertex, which
leads to a better solution for a given surface mesh. On the
other hand, we have to pay an extra cost for constructing
the candidate sets. Specifically, an empty triangle check
requires projection of the neighbors of xj or xk onto the
tangent plane at each of the neighbors when constructing
Cjk. However, the candidate set construction is a local
operation on the neighbors of xj or xk, which can be
performed on the fly.

Updating AAF and ConsideredConsidered. AF and Considered are
updated based on the candidate sets. Note again that
Considered is the union of the candidate sets Cjk for all xjxk
in AF . Suppose that a vertex x� in Considered is newly
accepted. Then, our solver identifies the line segment xjxk
in AF that is closest to x� in euclidean metric, removes this
line segment from AF, and adds x�xj and x�xk to AF.
Accordingly, the vertices in Cjk is removed from Considered,

1668 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 4. Candidate sets for edges in AF : Cij ¼ fx1;x2;x3;x4g and
Cjk ¼ fx1;x4;x5g. Color scheme: Far (yellow), Considered (blue),
Accepted (red), and AF (bold lines).

Fig. 3. Tentative arrival time computation: (a) A line segment xjxk in the set AF is projected onto the tangent plane at x. (b) The near front NF ðxÞ for
a vertex x is represented in bold lines.

and those in C�j or C�k are added to it. For example,
suppose that x4 in Considered is newly accepted in Fig. 4.
Then, the line segment xjxk is removed from AF while xjx4

and x4xk are added to AF . Accordingly, the solver removes
the vertices fx1;x4;x5g in Cjk from Considered, computes
candidate sets Cj4 and C4k for the newly added line
segments to AF , and finally adds the vertices in Cj4 and
C4k to Considered.

Convergence of the solver. As illustrated in Fig. 4, each
vertex in a candidate set forms an empty triangle with a line
segment in AF. Therefore, the candidate sets provide the
information on all possible triangles formed by the vertices
in Considered together with the line segments in AF.
Therefore, the triangulation-invariant solver implicitly
enumerates all possible triangulations, in a local sense, by
building AF and Considered as explained in this section. In
[15], the authors proved that the OUM-based solver
converges to the viscosity solution in Rn, and also noted
that their solver can be adapted to a triangulated 2-
manifold. Since the triangulation-invariant solver locally
enumerates all possible triangulations of a given surface,
the convergence of our solver follows directly from that of
the original OUM-based solver.

We finally analyze the time complexity of our triangula-
tion-invariant solver. For updating the tentative arrival time
V ðxÞ of each vertex x in Considered (steps 4 and 9 in
Algorithm 1), we need to evaluate Vxj;xkðxÞ for every
xjxk 2 NF ðxÞ, where the size of NF ðxÞ is asymptotically
proportional to h2�2. Assuming that the surface mesh has M
vertices, the main loop of our solver (step 5) has the time
complexity of Oðh2�2MlogMÞ since there are a total of M
vertices to accept, and at every such iteration we need to
reevaluate V ðxÞ at most h2�2 times. A factor of logM is for
maintaining an ordering of Considered in terms of the
tentative arrival time V .

5 CURVATURE-BASED SPEED FUNCTIONS

Given a general H-J-B PDE solver on a surface mesh, a
speed function fðx; aÞ (2) can be chosen in an application-
dependent manner. For surface analysis and processing
(Section 6), we propose two curvature-based speed func-
tions based on classical curvature tensors on a 2-manifold.

Curvature-minimizing speed function. Consider a
vehicle that moves on a surface. It will move fast on a low

curvature region of the surface while moving slowly on a

high curvature region. In order to capture this intuition, the

speed function f should reflect the curvature characteristics

of the surface. Let �aðxÞ be the normal curvature in the

direction of a unit vector a on the tangent plane at a vertex x

on a surface. Then,

�aðxÞ ¼ aTNa;

where N is the second fundamental tensor. The symmetric

matrix N can be diagonalized using the principal curvature

directions, umin and umax, giving the minimum and

maximum curvatures, �min and �max, respectively, to yield

N ¼ ½umin umax�
�min 0

0 �max

� �
uTmin
uTmax

� �
: ð6Þ

We now define the speed function using the magnitude

of �aðxÞ at vertex x as follows:

f1ðx; aÞ ¼ exp�Bj�aðxÞj; ð7Þ

for user-provided constant B. Fig. 5 shows the speed

functions in terms of the unit vector a on the tangent plane

at a vertex x on a surface. Here, B controls the anisotropy of

the speed function. Fig. 6 illustrates how B affects AG

paths. Specifically, large B results in high anisotropy ratio �.

In an extreme case (B ¼ 0), the curvature-minimizing speed

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1669

Fig. 5. The curvature-minimizing speed function f1 with B ¼ 0:4 at an
elliptic point (a) and a hyperbolic point (b).

Fig. 6. Level sets of the AG map for different constants B. High B results in high anisotropy ratio �. The distance metric becomes isotropic when
B ¼ 0.

function f1 is reduced to a constant, which gives rise to an
isotropic metric. Recently, Seong et al. [36] presented a
similar curvature-based anisotropic speed function. How-
ever, their speed function is not general since it cannot
handle a hyperbolic point on the surface.

Curvature variation-minimizing speed function. Deri-
vatives of curvature have been used to characterize
interesting surface features such as creases [40] and
suggestive contours [41]. The variations of curvature tend
to be minimized along such features. Inspired by this
observation, we derive curvature variation-minimizing
curves on a surface. Let C be the derivative of the normal
curvature tensor N defined in (6). Then, C can be
represented as a 2� 2� 2 rank-3 tensor as follows [12]:

C ¼ ½DuN DwN � ¼
a b
b c

� �
b c
c d

� �� �
; ð8Þ

where u and w are a pair of orthogonal vectors defining a
tangent frame. C is a symmetric tensor having only four
unique entries, a ¼ Dumin�min; b ¼ Dumax�min; c ¼ Dumin�max,
and d ¼ Dumax�max. A similar curvature variation was
estimated on a parametric surface by measuring the
difference of curvature tensors at neighbor points [36]. It
depends, however, on a global parametrization of para-
metric surfaces since it requires a regular grid for neighbor
information.

The directional derivative of curvature in the direction of
a, denoted by Cða � a � aÞ, is computed by multiplying
the tensor C with a three times. Cða � a � aÞ gives the
curvature variation along the direction a. Similarly to (7),
the curvature variation-minimizing speed function is
defined using the magnitude of Cða � a � aÞ

f2ðx; aÞ ¼ exp�BjCða�a�aÞj : ð9Þ

With the speed functions f1 and f2, the AG map for a
surface mesh is constructed with the speed highly adaptive
to the surface geometry. By the way in which f1 is defined,
a solution uðxÞ of a H-J-B PDE (2) tends to minimize the
normal curvature along the AG curve from the seed points
to x, where the curvature is measured in the curve’s tangent
direction. With the speed function f2, a solution uðxÞ of (2)
tends to minimize the curvature variation along the AG
curve. As shown in Fig. 1, the AG path under the curvature-
minimizing speed f1 (Fig. 1b) differs from the conventional
(isotropic) geodesic curve under euclidean metric (Fig. 1a).
Fig. 1c shows an example of two AG paths, ridge, and
valley curves under the curvature variation-minimizing
speed f2. The ridge and valley curves are marked red and
blue, respectively.

6 RESULTS

This section consists of three parts: we first validate the
triangulation-invariant (TI) solver (Section 4) and provide
timing data on AG map construction for various models
with this solver. We then show geometric structures
extracted from AG maps. All experiments were performed
on a PC equipped with an Intel Core2 Duo 2.6 GHz CPU
with 2.75 GB memory.

6.1 Validation of the Triangulation-Invariant Solver

In order to demonstrate the accuracy of the triangulation-
invariant (TI) solver in comparison to the triangulation-
specific (TS) solver (the OUM-based solver [15] with fixed
connectivity information), we performed two experiments
with different surface meshes: a rectangular surface in the
plane and a cylindrical surface (Figs. 7 and 8). We first built
the former surface by sampling a set of 22 K points from a
rectangular region and performed a Delaunay triangulation

1670 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 7. Average errors by both the triangulation-invariant (TI) solver and the triangulation-specific (TS) solver are shown for various values of � under
the L1 metric.

algorithm to get a surface mesh [42]. We then created the
latter by bending the former and stitching a pair of its
boundaries. Thus, there is a one-to-one correspondence
between the vertices of the two surfaces. For each
experiment, we used two different anisotropic speed
functions: the L1 metric and a speed function in [15]. For
convenience, the latter is referred to as the G metric. For the
L1 metric, we set the speed function fðx; aÞ in a direction a
at each vertex x to be equal to the radius of the L1-unit
circle centered at x. As illustrated in Fig. 7a, the radius of
this circle varies with respect to the direction a. We chose
L1 metric as the anisotropic metric for ease of error analysis
since it gives the analytic solution for a H-J-B PDE on each
of the two surfaces, which we used as the ground truth
value. For the G metric, fðx; aÞ ¼ ð1þ ðrgðxÞ � aÞ2Þ�

1
2,

where gðxÞ ¼ 0:75 sinð3�x1Þ sinð3�x2Þ for x ¼ ðx1; x2Þ. As in
[15], the AG maps constructed from finer surface meshes
(1,000 K) were regarded as ground truths for the second
speed function.

For the rectangular surface with 22 K vertices on it, we
constructed the AG map using the TS solver with the fixed
connectivity information. We also constructed a series of AG
maps independently using the TI solver by varying the
coefficient � in (4) while fixing the number of vertices on
the surface (22 K). Since the radius of the sphere (h in the
equation) that determines the neighbors of a vertex is
proportional to �, the number of neighbors increases as �
gets large. For each of these AG maps, we estimated the
mean relative error (MRE) over all vertices on the surface.
The error for each vertex is measured as the relative
deviation of the solution from the ground truth value.
Fig. 7c plots the estimated errors by the two solvers under
the L1 metric. Blue and red curves in the figure exhibit the
errors by the TS and TI solvers, respectively. The same
experiment was repeated for the cylindrical surface under

the L1 metric and Fig. 7e shows a plot of estimated errors.
Table 1 summarizes the timing data. We set � ¼ 4 for
measuring the execution time of the TI solver. The
experimental results under the other speed function were
consistent with those under the L1 metric for both the planar
and the cylindrical surfaces (Fig. 8 and Table 1).

The results on both the rectangular and the cylindrical
surfaces supported our intuition on the TI solver. As �

increases while fixing the number of vertices on a surface,
the number of the neighbors of each vertex increases
accordingly. Thus, the solver becomes more accurate since
it enumerates more candidates for the next vertex that
moves to the set Accepted at each time step, as mentioned in
Section 4. However, we have to pay cost for accuracy.
Specifically, the TI solver spent 1.2-2 times more time than
the TS solver for both surfaces.

6.2 AG Map Construction

We performed an experiment to collect timing data for
constructing the AG maps for eight models: Rocker Arm,
Bunny, Armadillo Head, Hand, MIT Face, Leaf, Santa, and
Igea. The AG map construction consists of two steps:
preprocessing and solving H-J-B PDEs (Section 4).

In the preprocessing step, a speed function was
computed by estimating a curvature tensor on the surface.
We computed the curvature tensor to build a speed
function using a library CGAL [43]. Let f1 and f2 be the
minimum and maximum speed function values over all
surface vertices, respectively. Then, the anisotropy ratio �

was estimated as f2=f1.
Given a set of seed points together with a speed

function and an anisotropy ratio �, the proposed TI solver
was applied to the surface in order to compute an AG
map. The resulting AG map contains the solution of a H-J-
B PDE at every surface vertex, that is, the arrival time uðxÞ
to each vertex x. Fig. 9 shows that the AG map on various
surface meshes under a curvature-minimizing speed f1.
We used a single seed point for each model and set
B ¼ 0:05. In Fig. 9, the seed point of a model is represented
as a black sphere. A color map visualizes the distance
(time) from a seed. Red and blue colors represent “close
to” and “far from” the seed, respectively, while yellow
does “inbetween.” Table 2 summarizes the models used in
all examples and timing data.

6.3 Geometric Structure Extraction

We performed an experiment to extract geometric struc-
tures from AG maps on surface meshes: AG paths,

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1671

Fig. 8. Average errors by both the triangulation-invariant (TI) solver and
the triangulation-specific (TS) solver are shown for various values of �
under the G metric.

TABLE 1
Timing Data for Numerical Error Estimation

isocontours, offset curves, medial axes, and ridges/valleys.
To extract such structures, we developed a simple algo-
rithm for tracing a curve on a surface mesh based on a
piecewise linear approximation.

AG paths. An AG path was traced back from a query
vertex x to a seed point, guided by the AG map. Given the
query vertex x, the geodesic path was followed in the
characteristic direction WðxÞ at this vertex, which was
computed while constructing the AG map (Section 4). AG
path tracing was done in three steps: sliding, projection, and
characteristic direction interpolation. Given a query vertex
x, the sliding step moves on the tangent plane at x in the
direction WðxÞ by a small step size, d ¼ minif�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

i =ni
p

g

(Section 4) to arrive at a point x0. Then, x0 is projected onto
the surface. Finally, a characteristic direction at the
projected point is estimated by averaging those at its
neighbor vertices. This process was repeated until a seed
point was reached.

Figs. 10a and 10b show curvature-minimizing geodesic
curves on the Armadillo Head model using euclidean metric
(B ¼ 0) and the curvature-minimizing metric (B ¼ 2:5),
respectively. The geodesic curves from 20 random query
vertices were traced using the respective AG maps on the
input surface. In Fig. 10b, the AG paths (blue) reflect the
anisotropic nature of the geometry better than those of
Fig. 10a since the anisotropy is amplified for a large value of

1672 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 9. AG map construction from a seed point.

TABLE 2
Models and Timing Data for AG Map Construction

B. The curvature-minimizing AG paths from several vertices
on the surface may follow the narrow valley to avoid high
curvature regions. In such a case, the approximate AG paths
look like merging with each other due to the approximate
nature of the AG path tracing algorithm. Model and timing
data are given in Table 3. Most of computation time was
spent in the AG map construction.

Isocontours. The level set of the AG map was visualized
using a series of equidistance curves from the seed points. In
this context, a geodesic distance map was regarded as a
geodesic distance functionuðxÞ sampled at the vertices on the
surface. Given the constructed AG map from the seed points,
our approach to isocontour tracing is based on the AG paths
extracted from the seed points to every vertex on the surface.
Fig. 11a shows an example of extracted AG paths from a
single seed point. We then generate a series of isocontours by
exploiting the AG paths. Appendix C, available in the online
supplemental material, describes a first order approximation
method for isocontour generation. Fig. 11b presents an
example of isocontours traced using this method.

Figs. 10c and 10d show two sets of equidistance curves
under different distance metrics on the Armadillo Head
model: isocontours under euclidean metric (Fig. 10c) and
those under the curvature-minimizing metric f1 (Fig. 10d).

In the latter, feature-aligned isocontours were observed in

high curvature regions, which reflect the local geometry of

the model. This supports our intuition on the curvature-

minimizing speed f1 for surface analysis and processing.

Timing data are available in Table 3.
Offset curves and medial axes. Equidistance curves

arise naturally in computing geometric structures such as

geodesic offset curves [5] and geodesic medial axes. Using

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1673

Fig. 10. AG paths computation (a) and (b). Isocontours extraction (c) and (d).

TABLE 3
Models and Timing Data for Geometric Structure Extraction

Fig. 11. Isocontour tracing: AG paths from the seed points to every
vertex on the surface were extracted (a). Each isocontour of the AG map
was traced from sampled points on the AG paths.

the curvature-minimizing speed function f1, these struc-
tures can be generalized: Figs. 12a and 12c show the
geodesic offset curves and a medial axis under euclidean
metric, respectively, while Figs. 12b and 12d exhibit the
same structures under the anisotropic metric. The offset
curves were obtained by sampling a series of equidistance
points from a connected set of seed points. The medial axis
of a surface was extracted by identifying a set of vertices in
a geodesic map at which the closest neighbors on the
boundary change abruptly. We employed the method of
Hamilton-Jacobi skeleton [44], [45] to extract the geodesic
medial axis of a surface. In the first example (Fig. 12), the
offset curves nicely trace along feature lines under the
anisotropic distance metric (Figs. 12b). In the second
example (Fig. 12), the AG medial axis reflects the geometry
of the Leaf model quite well under the curvature-minimiz-
ing metric (Fig. 12d). In Figs. 12c and 12d, colors represent
mean curvatures of the surface model: the red color
corresponds to a valley region with high curvature. The
anisotropic medial axis captures local valleys of the Leaf
model better than the isotropic medial axis.

Ridges and valleys. Finally, we show that ridge/valley
curves can be extracted from AG maps on surface meshes.

A ridge or valley is defined to be a curve along which the
derivative of a principal curvature vanishes. Thus, the
derivative of the principal curvature in the tangent direction
is zero at every point on the curve so as to follow a
curvature variation-minimizing curve with the speed
function f2 as defined in Section 5.

The ridge/valley extraction consists of three steps:
initialization, AG map construction, and curves tracing. A
pseudocode for the extraction method is given in Algorithm 2
(see Appendix A, available in the online supplemental
material). Steps 2-6 are for initialization, step 7 is for AG
map construction, and steps 8-11 are for curves tracing. For
initialization, a set of seed vertices were acquired by
sampling the points on the surface, where the derivative of
a principal curvature vanishes. We employed a method
presented in [46] in order to sample the ridge/valley vertices:
for noise removal the sample points with smaller mean
curvature were discarded using a user-defined threshold,
and every connected ridge/valley vertices were grouped
together. Then, a seed vertex is selected for each group so that
the seed vertex has the maximum value of the mean
curvature in the group. Figs. 13a, 13b, and 13c show the
input model, the ridge/valley vertices, and the groups with

1674 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

Fig. 12. Geodesic offset curves and geodesic medial axis are constructed under two different distance metrics: euclidean metric ((a) and (c)) and
curvature-minimizing metric ((b) and (d)). In (c) and (d), colors represent mean curvature of the Leaf model (red to blue: inward folding to outward
folding).

Fig. 13. Ridge/valley curves extraction under a curvature variation-minimizing metric.

the selected seed vertices, respectively. In the second step, an
AG map was built from these seed vertices under the
curvature variation-minimizing metric. Fig. 13d shows a
snap shot of front propagation during the AG map construc-
tion. Finally, a ridge or valley curve was extracted from a
query vertex by tracing back the curvature variation-
minimizing curve from it guided by this map (Fig. 13e). In
our ridge/valley extraction method, a user manually selects a
query vertex for each group of the ridge/valley vertices.
Fig. 14 shows examples of ridge/valley curves from complex
models, Rocker Arm and Igea. Ridges and valleys are marked
blue and red, respectively. The last two rows of Table 3 show
timing data for the ridge/valley extraction. For visual
comparison, Fig. 14 also shows the ridge/valley curves
generated by a different method [46].

6.4 Discussion

The local neighbors of a vertex provide its proximity
information on a surface, which plays the central role in
the triangulation-invariant solver. These are contained
within distance h from the vertex in a geodesic manner.
We provide a heuristic method to determine h in Section 4.
However, h should be computed in a more principled
manner to guarantee the sufficient proximity information for
every vertex while minimizing the number of the neighbors.

Another limitation is stemmed from the way of setting
parameters B for curvature-based speed functions. In our
experiments, we manually adjusted B case by case, which is
time consuming. AG distances depend greatly on these
parameters. Moreover, B determines the anisotropy ratio �,
which directly affects the efficiency of our OUM-based
solver since the set NF becomes large as the anisotropy
ratio � increases. Thus, a more principled way is needed
again to choose B depending on applications.

Since our method constructs the AG map in a
triangulation-invariant manner, it can be extended for
surfaces represented in point clouds. For point clouds,
determining the neighbors of each point in the data set is
not a trivial task due to the lack of information on the
underlying surface geometry. One could employ some
recent method for optimal selection of the neighbors using
a MLS surface. However, in order to show the potential of
our triangulation-invariant solver, we modified our neigh-
bor determination method such that the neighbor points
are chosen based on the euclidean distance rather than the
geodesic distance. The extended method was successfully
applied to most point clouds data set except for some
high-curvature regions with insufficient sample points or

regions with topological errors. Fig. 15 shows the AG map
on the Lucy model represented by 119 K points. The AG
map was constructed well for surface regions (e.g., face)
with dense sample points, while it has errors for sharp
regions (e.g., right hand).

7 CONCLUSIONS AND FUTURE WORK

We have presented a triangulation-invariant scheme for
computing AG maps on surface meshes. Our approach
builds the AG distance maps by numerically solving
Hamilton-Jacobi-Bellman PDEs. We generalized the OUM-
based solver for surface meshes. In particular, a triangula-
tion-invariant algorithm has been proposed to compute the
AG map exploiting the underlying geometry as much as
possible rather than depending on a specific triangulation.
For surface analysis and processing, we further proposed
two curvature-related speed functions, which are intuitive
and easy to compute. The effectiveness of our approach is

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1675

Fig. 14. Ridge (blue) and valley (red) curves.

Fig. 15. We extended the triangulation-invariant solver for point clouds: a
seed point is located at the tip of the nose and the color represents the
AG map (red ! blue: close ! far).

demonstrated by extracting geometric structures, including

isocontours, geodesic medial axes, and ridge/valley curves.
In the future, we wish to further explore surface analysis

and processing using proposed curvature-related AG dis-

tance metrics. Reflecting the local geometric information of a

surface, AG curves could be used as an effective means for

distortion-minimizing surface parameterization. Also, we

are currently investigating the possibility of the curvature-

minimizing geodesic curves for surface segmentation.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MEST) (No. 2012-004157).

REFERENCES

[1] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,” Proc. ACM SIGGRAPH ’03, pp. 954-
961, 2003.

[2] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by Example,” ACM
Trans. Graphics, vol. 23, no. 3, pp. 652-663, 2004.

[3] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture Mapping Using
Surface Flattening via Multidimensional Scaling,” IEEE Trans.
Visualization and Computer Graphics, vol. 8, no. 2, pp. 198-207, Apr.-
June 2002.

[4] K. Zhou, J. Synder, B. Guo, and H.-Y. Shum, “Iso-Charts: Stretch-
Driven Mesh Parameterization Using Spectral Analysis,” Proc.
Eurographics/ACM SIGGRAPH Symp. Geometry Processing (SGP ’04),
pp. 45-54, 2004.

[5] G. Peyré and L.D. Cohen, “Geodesic Remeshing Using Front
Propagation,” Int’l J. Computer Vision, vol. 69, no. 1, pp. 145-156,
2006.

[6] O. Sifri, A. Sheffer, and C. Gotsman, “Geodesic-Based Surface
Remeshing,” Proc. 12th Int’l. Meshing Roundtable, pp. 189-199, 2003.

[7] Q. Du and D. Wang, “Anisotropic Centroidal Voronoi Tessella-
tions and Their Applications,” SIAM J. Scientific Computing,
vol. 26, no. 3, pp. 737-761, 2005.

[8] A. Elad and R. Kimmel, “Bending Invariant Representations for
Surfaces,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 168-174, 2001.

[9] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, “Topology
Matching for Fully Automatic Similarity Estimation of 3D
Shapes,” Proc. ACM SIGGRAPH ’01, pp. 203-212, 2001.

[10] A.M. Bronstein, M.M. Bronstein, and R. Kimmel, “Generalized
Multidimensional Scaling: A Framework for Isometry-Invariant
Partial Surface Matching,” Proc. Nat’l Academy of Sciences of USA,
vol. 103, no. 5, pp. 1168-1172, 2006.

[11] E. Pichon, C.-F. Westin, and A. Tannenbaum, “A Hamilton-
Jacobi-Bellman Approach to High Angular Resolution Diffusion
Tractography,” Proc. Eighth Int’l Conf. Medical Image Computing
and Computer-Assisted Intervention (MICCAI ’05), pp. 180-187, 2005.

[12] S. Rusinkiewicz, “Estimating Curvatures and Their Derivatives on
Triangle Meshes,” Proc. Second Int’l Symp. 3D Data Processing,
Visualization and Transmission, pp. 486-493, Sept. 2004.

[13] J.A. Sethian and A.M. Popovici, “3D Traveltime Computation
Using the Fast Marching Method,” Geophysics, vol. 64, no. 2,
pp. 516-523, 2006.

[14] R. Kimmel and J. Sethian, “Computing Geodesic Paths on
Manifolds,” Proc. Nat’l Academy of Sciences of USA, vol. 95,
no. 15, pp. 8431-8435, 1998.

[15] J.A. Sethian and A. Vladimirsky, “Ordered Upwind Methods for
Static Hamilton-Jacobi Equations: Theory and Algorithms,” SIAM
J. Numerical Analysis, vol. 41, no. 1, pp. 325-363, 2003.

[16] J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou, “The
Discrete Geodesic Problem,” SIAM J. Computing, vol. 16, no. 4,
pp. 647-668, 1987.

[17] V. Surazhsky, T. Surazhsky, D. Kirsanov, S.J. Gortler, and H.
Hoppe, “Fast Exact and Approximate Geodesics on Meshes,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 553-560, 2005.

[18] D. Bommes and L. Kobbelt, “Accurate Computation of Geodesic
Distance Fields for Polygonal Curves on Triangle Meshes,” Proc.
VMV ’07, pp. 151-160, 2007.

[19] J. Klein and G. Zachmann, “Point Cloud Surfaces using Geometric
Proximity Graphs,” Computers and Graphics, vol. 28, no. 6, pp. 839-
850, 2004.

[20] M. Hofer and H. Pottmann, “Energy-Minimizing Splines in
Manifolds,” ACM Trans. Graphics, vol. 23, no. 3, pp. 284-293, 2004.

[21] M.R. Ruggeri, T. Darom, D. Saupe, and N. Kiryati, “Approximat-
ing Geodesics on Point Set Surfaces,” Proc. IEEE/Eurographics
Symp. Point-Based Graphics, pp. 85-93, 2006.

[22] J.A. Sethian, “A Fast Marching Level Set Method for Mono-
tonically Advancing Fronts,” Proc. Nat’l Academy of Sciences of
USA, vol. 93, pp. 1591-1595, 1996.

[23] F. Qin, Y. Luo, K. Olsen, W. Cai, and G. Schuster, “Finite-Dierence
Solution of the Eikonal Equation along Expanding Wavefronts,”
Geophysics, vol. 57, no. 3, pp. 478-487, 1992.

[24] J. Tsitsiklis, “Efficient Algorithms for Globally Optimal Trajec-
tories,” IEEE Trans. Automatic Control, vol. 40, no. 9, pp. 1528 -1538,
Sept. 1995.

[25] F. Mémoli and G. Sapiro, “Fast Computation of Weighted
Distance Functions and Geodesics on Implicit Hyper-Surfaces:
730,” J. Computational Physics, vol. 173, no. 2, p. 764, 2001.

[26] F. Memoli and G. Sapiro, “Distance Functions and Geodesics on
Points Cloud,” Proc. IEEE Workshop Variational Geometric and Level
Set Methods in Computer Vision, 2003.

[27] A. Spira and R. Kimmel, “An Efficient Solution to the Eikonal
Equation on Parametric Manifolds,” Interfaces and Free Boundaries,
vol. 6, pp. 315-327, 2003.

[28] O. Weber, Y.S. Devir, A.M. Bronstein, M.M. Bronstein, and R.
Kimmel, “Parallel Algorithms for Approximation of Distance
Maps on Parametric Surfaces,” ACM Trans. Graphics, vol. 27, no. 4,
pp. 1-16, 2008.

[29] P.-E. Danielsson, “Euclidean Distance Mapping,” Computer
Graphics and Image Processing, vol. 14, no. 3, pp. 227-248, 1980.

[30] M. Boue and P. Dupuis, “Markov Chain Approximations for
Deterministic Control Problems with Affine Dynamics and
Quadratic Cost in the Control,” Proc. IEEE 36th Conf. Decision
and Control, vol. 4, pp. 3424 -3429, Dec. 1997.

[31] J. Qian, Y.-T. Zhang, and H.-K. Zhao, “A Fast Sweeping Method
for Static Convex Hamilton-Jacobi Equations,” J. Scientific Comput-
ing, vol. 31, nos. 1/2, pp. 237-271, 2007.

[32] C.-Y. Kao, S. Osher, and J. Qian, “Legendre-Transform-Based Fast
Sweeping Methods for Static Hamilton-Jacobi Equations on
Triangulated Meshes,” J. Computational Physics, vol. 227, no. 24,
pp. 10 209-10 225, 2008.

[33] L. Polymenakos, D. Bertsekas, and J. Tsitsiklis, “Implementation
of Efficient Algorithms for Globally Optimal Trajectories,” IEEE
Trans. Automatic Control, vol. 43, no. 2, pp. 278-283, Feb. 1998.

[34] F. Bornemann and C. Rasch, “Finite-Element Discretization of
Static Hamilton-Jacobi Equations Based on a Local Variational
Principle,” Computing and Visualization in Science, vol. 9, pp. 57-69,
2006.

[35] W.-K. Jeong, P.T. Fletcher, R. Tao, and R. Whitaker, “Interactive
Visualization of Volumetric White Matter Connectivity in DT-MRI
Using a Parallel-Hardware Hamilton-Jacobi Solver,” IEEE Trans.
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1480-1487,
Nov. 2007.

[36] J.-K. Seong, W.-K. Jeong, and E. Cohen, “Anisotropic Geodesic
Distance Computation for Parametric Surfaces,” Proc. IEEE Int’l
Conf. Shape Modeling and Applications, pp. 179-186, June 2008.

[37] J.A. Sethian and A. Vladimirsky, “Fast Methods for the Eikonal
and Related Hamilton?? Jacobi Equations on Unstructured
Meshes,” Proc. Nat’l Academy of Sciences of the USA, vol. 97,
no. 11, pp. 5699-5703, 2000.

[38] E. Konukoglu, M. Sermesant, O. Clatz, J.-M. Peyrat, H. Delingette,
and N. Ayache, “A Recursive Anisotropic Fast Marching
Approach to Reaction Diffusion Equation: Application to Tumor
Growth Modeling,” Proc. 20th Int’l Conf. Information Processing in
Medical Imaging (IPMI ’07), pp. 687-699, 2007.

[39] H. Wang, C. Scheidegger, and C. Silva, “Optimal Bandwidth
Selection for Mls Surfaces,” Proc. IEEE Int’l Conf. Shape Modeling
and Applications, pp. 111-120, June 2008.

[40] K. Watanabe and A. Belyaev, “Detection of Salient Curvature
Features on Polygonal Surfaces,” Computer Graphics Forum, vol. 20,
pp. 385-392, 2001.

1676 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 10, OCTOBER 2012

[41] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive Contours for Conveying Shape,” ACM Trans. Gra-
phics, vol. 22, no. 3, pp. 848-855, 2003.

[42] N. Amenta, S. Choi, T.K. Dey, and N. Leekha, “A Simple
Algorithm for Homeomorphic Surface Reconstruction,” Proc.
16th Ann. Symp. Computational Geometry (SCG ’00), pp. 213-222,
2000.

[43] CGAL, “Computational Geometry Algorithms Library,” http://
www.cgal.org, 2009.

[44] K. Siddiqi, S. Bouix, A. Tannenbaum, and S.W. Zucker,
“Hamilton-Jacobi Skeletons,” Int’l J. Computer Vision, vol. 48,
no. 3, pp. 215-231, 2002.

[45] Y. Shi, P. Thompson, I. Dinov, and A. Toga, “Hamilton? Jacobi
Skeleton on Cortical Surfaces,” IEEE Trans. Medical Imaging,
vol. 27, no. 5, pp. 664-673, May 2008.

[46] Y. Ohtake, A. Belyaev, and H.-P. Seidel, “Ridge-Valley Lines on
Meshes via Implicit Surface Fitting,” ACM Trans. Graphics, vol. 23,
no. 3, pp. 609-612, 2004.

Sang Wook Yoo received the BS degree in
computer science from Sogang University,
Korea, in 2005 and the MS degree in computer
science from the Korea Advanced Institute of
Science and Technology (KAIST) in 2008. He is
currently working toward the PhD degree at the
KAIST. His research interests include computer
graphics, computational brain imaging, and
machine learning.

Joon-Kyung Seong received the BS and the
PhD degrees from Seoul National University in
2000 and 2005, respectively. He was a post-
doctoral fellow in the School of Computing at the
University of Utah from 2005 to 2008. After that
he was a research professor in the department
of computer science at Korea Advanced Institute
of Science and Technology (KAIST). He is an
assistant professor in the school of computer
science and engineering at Soongsil University,

Korea. His research interests include computer graphics, geometric
modeling, and computational brain imaging.

Min-Hyuk Sung received the BS and the MS
degrees in computer science from Korea Ad-
vanced Institute of Science and Technology
(KAIST), Korea, in 2008 and 2010, respectively.
He is currently affiliated with Imaging Media
Research Center, Korea Institute of Science and
Technology (KIST), Korea, as a researcher. His
research interests include computer graphics,
geometric processing, and object recognition.

Sung Yong Shin received the BS degree in
industrial engineering from Hanyang University,
Seoul, in 1970 and the MS and PhD degrees in
industrial engineering from the University of
Michigan in 1983 and 1986, respectively. Since
1987, he has been with the Department of
Computer Science, Korea Advanced Institute of
Science and Technology (KAIST), Taejon, Kor-
ea, where he is currently a professor, teaching
computer graphics and computational geometry.

He also leads a computer graphics research group that has been
nominated as a national research laboratory by the Government of
Korea. His recent research interests include data-driven computer
animation and geometric algorithms.

Elaine Cohen received the MS degree in 1970
and the PhD degree in mathematics in 1974
from Syracuse University after receiving the BS
(cum laude) degree in mathematics in 1968 from
Vassar College. She is a professor in the School
of Computing at the University of Utah since
1974 and has coheaded the Geometric Design
and Computation Research Group since 1980.
Her research interests include theory and algo-
rithms for computer graphics, geometric model-

ing, geometric computation, haptics, and manufacturing, with emphasis
on complex sculptured models represented using NURBS (Non-Uniform
Rational B-splines) and NURBS-features. In addition to her research
papers, she is first author of a reference textbook entitled Geometric
Modeling with Splines.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YOO ET AL.: A TRIANGULATION-INVARIANT METHOD FOR ANISOTROPIC GEODESIC MAP COMPUTATION ON SURFACE MESHES 1677

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

